BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI
 (END SEMESTER EXAMINATION)

CLASS:	BE
BRANCH:	CSE

SEMESTER : V
BRANCH: CSE
SESSION : MO/18

SUBJECT: CS5101-FORMAL LANGUAGES AND AUTOMATA THEORY
TIME: 03:00
FULL MARKS: 60

INSTRUCTIONS:

1. The question paper contains 7 questions each of 12 marks and total 84 marks.
2. Candidates may attempt any 5 questions maximum of 60 marks.
3. The missing data, if any, may be assumed suitably.
4. Before attempting the question paper, be sure that you have got the correct question paper.
5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall.
Q.1(a) What is Abstract machine? Answer in only one sentence.
(b) Is DFA an Abstract Machine? If yes, then describe its structure.
(c) Design a DFA to recognize strings over $\Sigma=\{0,1\}$ such that its last 3 places contain exactly one ' 0 '.
Q.2(a) What do you mean by Regular Expression?
(b) Prove the identity:
$\varepsilon R=R \varepsilon=R$
(c) Write R.E. for string containing even number of 0 's over $\Sigma=\{0,1\}$. From this R.E. derive the corresponding DFA.
Q.3(a) How Mealy and Moore machines are different?
(b) Mealy and Moore machine are equivalent to each other. Justify
(c) Design a Mealy machine that read a string of $\{0,1\}$ and produce string of $\{a . b\}$. It will produce an 'a' for a ' 0 ' in input and a ' b ' for a ' 1 ' in input. Convert this Mealy machine to corresponding Moore machine.
Q.4(a) Differentiate between context free languages and context sensitive languages.
(b) Write down grammar for the language $L=\left\{u_{w w r}{ }^{r} \mid \mathbf{u} \varepsilon(c, d)^{*}\right.$ and $\left.w \varepsilon(a, b)^{*}\right\}$
(c) Remove all unit-productions, all useless productions, and all ε-productions from the grammar
$A-\rightarrow$ aaA| ε
$\mathrm{B}-\rightarrow \mathrm{bB} \mid \mathrm{bbC}$
$\mathrm{C}-\rightarrow \mathrm{B}$
What language does this grammar generate?
Q.5(a) Draw block diagram of Pushdown automata.
(b) Design a PDA that will recognize string of $\{a, b, c\}$ such that sum of number of a 's and number of b's is equal to number of c's.
(c) Prove that for every CFG there exists an equivalent PDA.
Q.6(a) Describe multi tape Turing Machine.
(b) Design a TM to recognize string of form $w c^{i} w^{r} \mid i>=0, w \varepsilon(a, b)^{*} w^{r}$ is reverse string of w.
(c) Design a TM to perform addition of 2 binary numbers of different lengths.
Q.7(a) State Arden's theorem.
(b) Explain Halting problem of TM with suitable example.
(c) Write short notes on: 1. Pumping Lemma 2. Ambiguous Grammar
