BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI
 (END SEMESTER EXAMINATION)

CLASS:	MTECH
BRANCH:	IS/CS/IT

SEMESTER : I
SESSION : MO/18

SUBJECT: CS501 MATHEMATICAL FOUNDATION OF COMPUTER SCIENCE
TIME: $\quad 3.00$ HRS
FULL MARKS: 50

INSTRUCTIONS:

1. The question paper contains 5 questions each of 10 marks and total 50 marks.
2. Attempt all questions.
3. The missing data, if any, may be assumed suitably.
4. Before attempting the question paper, be sure that you have got the correct question paper.
5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall.
Q.1(a) Determine necessary and sufficient condition for a triangular matrix to be invertible. Let $\mathrm{A}=[-2]$. Then
find $\operatorname{det}(\mathrm{A})$. Explain the main idea of Jacobi approach for solving a set of linear equations.
Q.1(b) Apply Jacobi approach to solve
$5 x_{1}-2 x_{2}+3 x_{3}=-1$
$-3 x_{1}+9 x_{2}+x_{3}=2$
$2 x_{1}-x_{2}-7 x_{3}=3$
Continue iterations until two successive approximations are identical when rounded to three significant digits.
Q.2(a) There are m different types of food: F_{1}, \ldots, F_{m}, that supply varying quantities of the n nutrients, N_{1}, \ldots, N_{n}, that are essential to good health. Let c_{j} be the minimum daily requirement of nutrient, N_{j}. Let b_{i} be the price per unit of food, F_{i}. Let $a_{i j}$ be the amount of nutrient N_{j} contained in one unit of food F_{i}. The problem is to supply the required nutrients at minimum cost. Formulate the problem in LPP.
Q.2(b) Solve this LPP using any suitable approach.

Minimize: $4 a+5 b+6 c$
subject to

$$
\begin{aligned}
& a+b \geq 11 \\
& a-b \leq 5 \\
& c-a-b=0 \\
& 7 a \geq 35-12 b \\
& a \geq 0, b \geq 0, c \geq 0
\end{aligned}
$$

Q.3(a) What is basis of a vector space? Let us consider V_{4} over $F(2)$. Find the number of vectors in V_{4}. Let S be a sub-space of V_{4} as: (1100), (1011), (0111) and S_{d} be another sub-space as: (1101), (111 0), ($00 \begin{array}{ll}0 & 1\end{array}$). Are the dual space to each other? Justify your answer.
Q.3(b) An urn contains 10 black and 10 white balls. Draw three (a) without replacement, and (b) with replacement. What is the probability that all three are white?
Q.4(a) Toss a coin 10 times. If you know (a) that exactly 7 Heads are tossed, (b) that at least 7 Heads are tossed, what is the probability that your first toss is Heads?
Q.4(b) (i) The average number of accidents at a level-crossing every year is 5. Calculate the probability that there are exactly 3 accidents there this year.
ii) A random sample of 10 boys had the following IQ's $70,120,110,101,88,83,95,98,107,100$. Do these data support the assumption of a population mean IQ of 100? Find the reasonable range in which most of the mean IQ values of samples of 10 boys lie? [Tabulated Value $=2.26$ (at 5% level of significance with 9 degrees of freedom)].
Q.5(a) Give some applications of planar graph. Discuss the limitations of Adjacency matrix representation and adjacency list representation of graph.
Q.5(b) Does the graph shown below is regular? Find the cut-vertices and the cut-edges of the following graph [5] (if exist). Define clique. Also, give some applications of clique.

:::::28/11/2018:::::M

