BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

	(END SEMESTER EXAMINATION)			
CLASS: BRANCH	MTECH I: IS/CS/IT	SEMESTER : I SESSION : MO/18		
TIME:	SUBJECT: CS501 MATHEMATICAL FOUNDATION OF COMPUTER SCIENCE TIME: 3.00 HRS FULL MARKS: 50			
	3:00 HK3	FULL MARKS: 50		
 INSTRUCTIONS: The question paper contains 5 questions each of 10 marks and total 50 marks. Attempt all questions. The missing data, if any, may be assumed suitably. Before attempting the question paper, be sure that you have got the correct question paper. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall. 				
Q.1(a)				
Q.1(b)	find det(A). Explain the main idea of Jacobi approach for solving a set of linear equations.) Apply Jacobi approach to solve		[5]	
Q. (0)	$5x_1 - 2x_2 + 3x_3 = -1$ $-3x_1 + 9x_2 + x_3 = 2$ $2x_1 - x_2 - 7x_3 = 3$		[0]	
	Continue iterations until two successive approximations are identical when rounded digits.	to three significant		
Q.2(a)	There are <i>m</i> different types of food: F_1, \ldots, F_m , that supply varying quantities N_1, \ldots, N_n , that are essential to good health. Let c_j be the minimum daily requirement. Let b_i be the price per unit of food, F_i . Let a_{ij} be the amount of nutrient N_j cont food F_i . The problem is to supply the required nutrients at minimum cost. Formul. LPP.	ent of nutrient, N_j . ained in one unit of	[5]	
Q.2(b)	Solve this LPP using any suitable approach.		[5]	
	Minimize: 4a + 5b + 6c			
	subject to			
	a + b ≥ 11			
	a - b ≤ 5			
	c - a - b = 0			
	7a ≥ 35 - 12b			
	$a \ge 0, b \ge 0, c \ge 0$			

- Q.3(a) What is basis of a vector space? Let us consider V_4 over F(2). Find the number of vectors in V_4 . Let S [5] be a sub-space of V_4 as: (1 1 0 0), (1 0 1 1), (0 1 1 1) and S_d be another sub-space as: (1 1 0 1), (1 1 1 0), (0 0 1 1). Are the dual space to each other? Justify your answer.
- Q.3(b) An urn contains 10 black and 10 white balls. Draw three (*a*) without replacement, and (*b*) with [5] replacement. What is the probability that all three are white?
- Q.4(a) Toss a coin 10 times. If you know (a) that exactly 7 Heads are tossed, (b) that at least 7 Heads are [5] tossed, what is the probability that your first toss is Heads?
- Q.4(b) (i) The average number of accidents at a level-crossing every year is 5. Calculate the probability that [5] there are exactly 3 accidents there this year.
 ii) A random sample of 10 boys had the following IQ's 70,120,110,101,88,83,95,98,107,100. Do these data support the assumption of a population mean IQ of 100? Find the reasonable range in which most of the mean IQ values of samples of 10 boys lie? [Tabulated Value = 2.26 (at 5% level of significance with 9 degrees of freedom)].

- Q.5(a) Give some applications of planar graph. Discuss the limitations of Adjacency matrix representation [5] and adjacency list representation of graph.
- Q.5(b) Does the graph shown below is regular? Find the *cut-vertices* and the *cut-edges* of the following graph [5] (if exist). Define *clique*. Also, give some applications of clique.

:::::28/11/2018:::::M