BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (MID SEMESTER EXAMINATION)

CLASS: BE BRANCH: CE/C&P

SUBJECT: CL7017 COMPUTATIONAL FLUID DYNAMICS

SEMESTER: VII

SESSION: MO/2018

TIN	\E:	1.5 HOURS	FULL MARKS: 2	5
 INSTRUCTIONS: 1. The total marks of the questions are 30. 2. Candidates may attempt for all 30 marks. 3. In those cases where the marks obtained exceed 25 marks, the excess will be ignored. 4. Before attempting the question paper, be sure that you have got the correct question paper. 5. The missing data, if any, may be assumed suitably. 				
Q1		Define CFD? Write the importance of CFD in Chemical Engineering. List out the assumptions made while deriving the Navier-Stokes (N-S) equations for square duct by CFD approach in the form of $A\phi = b$ coefficient matrix and b is the constant matrix.		[2] [3]
Q2	(a) (b)	Assuming SI units, verify that units of each term of continuity & N-identical. Show that: $y_i^{"} = \frac{y_{i+2} - 2y_{i+1} + y_i}{h^2} + 0$ (h)	S equations are	[2] [3]
Q3		Write a short note on equivalence theorem of Lax. Write the generalized Governing equation for transport phenomen continuity equation, momentum equation and energy equation from Governing equation.		[2] [3]
Q4		Define the following terms: Stability, Consistency, Advection and Courar What are various errors encounter in discretization techniques? How the the solution of the problem?		[2] [3]
Q5		Write short note on Gaussian elimination method and tridiagonal matrix What are the disadvantages of Jacobi method? What is the convergen Gauss-Siedel (G-S) method?		[2] [3]
Q6		Why does diagonal dominance ensure convergence in G-S iterative meth Describe the implicit and explicit approach for one-dimensional diffusion less flow.		[2] [3]

Given: Equation of Continuity: $\frac{\partial \rho}{\partial t} + (\nabla, \rho v) = 0$ Equation of Motion for a Newtonian Fluid with Constant ρ and μ :

$$\rho \frac{D\boldsymbol{v}}{Dt} = -\nabla p + \mu \nabla^2 \boldsymbol{v} + \rho \boldsymbol{g}$$

:::: 13/09/2018 M ::::::