BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (MID SEMESTER EXAMINATION)

CLASS: BE BRANCH: CHEM. ENGG.

SEMESTER: V SESSION: MO/2018

SUBJECT : CL5007 COMPUTER AIDED PROCESS ENGINEERING

TIME: 1.5 HOURS FULL MARKS: 25

INSTRUCTIONS:

- 1. The total marks of the questions are 30.
- 2. Candidates may attempt for all 30 marks.
- 3. In those cases where the marks obtained exceed 25 marks, the excess will be ignored.
- 4. Before attempting the question paper, be sure that you have got the correct question paper.
- 5. The missing data, if any, may be assumed suitably.

O1 (a) In figure below, steady state operation of two successive liquid separation columns (and [2] with no reaction taking place) is presented. Write down the all independent material balance equations for the system with degree of freedom analysis.

- (b) Briefly formulate suitable numerical method for the solution of the above-mentioned [3] unit, with initial guess and convergence.
- Q2 (a) A catalytic reactor undergoes following reversible reactions at 977°C and 1 atm pressure [4] from 100 mol of ethane C_2H_6 feed: 1) $C_2H_6 \Leftrightarrow C_2H_4 + H_2$; 2) $C_2H_6 \Leftrightarrow C_2H_2 + 2H_2$. The reactions obey following chemical reaction equilibria: $\frac{Y_{C_2H_4}Y_{H_2}}{Y_{C_2H_6}} = 3.75; \frac{Y_{C_2H_2}Y_{H_2}^2}{Y_{C_2H_6}} = 0.135.$ Find out extent of reactions ζ_1 and ζ_2 of 1) and 2) reactions, respectively. [1]

(b) Write the Matlab solver function with a routine to solve the system above.

- Water is pumped between two reservoirs (A and B) in a single pipe with the value of Q3 [5] $R=100 \text{ s}^2/\text{m}^5$. Pump characteristics curve is given by $H_P=20+10Q-100Q^2$. Compute the discharge Q and pump head H_p for $H_B-H_A=20$. Where, H_B and H_A are height of reservoir B and A, respectively from a reference plane. Assume the top reservoir is closely connected to the supply pipe.
- Q4 Write algorithm to solve dew point temperature of a vapor mixture contains 50% pentane [5] (1), 30% hexane (2) and 20% cyclohexane (3) (all in mol-%) at 5 bar pressure. Where, $log_{10}P_{sat}(bar) = A - \frac{B}{T(K)+C}$. Assume ideal mixtures.

Components	Α	В	С
pentane	3.97786	1064.840	-41.136
hexane	4.00139	1170.875	-48.833
cyclohexane	3.93002	1182.774	-52.532

- Q5 (a) Derive Rachford-Rice flash equation for flashing of ternary liquid mixture.
- [2] [3] (b) Write different types of method for computing activity coefficient of nonideal liquid mixture with their parameter and valid molecules.
- For a mixture (100 mol) of propane, n-butane, n-pentene, and n-octane, phase equilibrium K-values and inlet compositions $\{z_i\}$ are given in the table below. Write the Q6 [5] method of constructing EXCEL Goal Seek function to compute vapor split V/F and consequently, vapor $\{y_i\}$ and liquid $\{x_i\}$ phase compositions, vapor product V and liquid product L in a flash chamber using Rachford-Rice equation. Use following table:

Components, i	{Z _i }	Phase Equilibrium K-value
propane	0.1	6.8
n-butane	0.3	2.2
n-pentene	0.4	0.8
n-octane	0.2	0.052

:::: 13/09/2018 E ::::::