BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS:	BE		SEMESTER : V
BRANCH:	CHEM		SESSION : MO/18
TIME:		SUBJECT: CL5007 COMPUTER AIDED PROCESS ENGINEERING	FULL MARKS: 60

INSTRUCTIONS:

- 1. The question paper contains 7 questions each of 12 marks and total 84 marks.
- 2. Candidates may attempt any 5 questions maximum of 60 marks.
- 3. The missing data, if any, may be assumed suitably.
- 4. Before attempting the question paper, be sure that you have got the correct question paper.
- 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall.
- Q.1(a) Formulate independent material balance equations in a bio-system with three multiple unit operation [8] at steady state. Organize the system with degree of freedom analysis.

Note: The system has four components W (Water), G (Glucose), L (Lactobacillus) and V (Vitamin).

The mass compositions of each stream are as follows: 1) Water (W): 100%; 2) Glucose (G): 100%; 3) W and G, mass fractions: $x_w = ?$ and $x_G = ?$; 4) Lactobacillus (L): 100%; 5) W, G, and L, mass fractions: x_w = 0.769, x_G = 0.192, x_L = 0.0385; 6) Vitamin (V): 100%; 7)W and V, mass fraction sx_W = ?, x_V = ?; 8) W and L mass fractions: $x_G = 0.833$, $x_L = 0.167$. The flowrates of all the streams are unknown.

- Q.1(b) Apply a numerical method with solution methodology and algorithm for the bio-system of multiple [4] units mentioned above.
- Q.2(a) Formulate unsteady composition and energy balance equations of a CSTR with cooling jacket for the [6] following second order exothermic reaction: $A+B \rightarrow C+\Delta H$, with reaction rate $-r_A = -r_B = kc_Ac_B$.
- Q.2(b) Demonstrate Matlab function required to solve the CSTR-system mentioned. [4] [2]
- Q.2(c) Show the components of Matlab function 'fsolve'.
- 0.3(a) Define liquid-liquid equilibria with its application in chemical engineering.

[2] Q.3(b) Solve the bubble point temperature from a saturated liquid mixture of benzene and toluene containing [10] 45 mole percent benzene and 55 mole percent toluene at 200 kPa. Benzene and toluene mixture are aidarad an idaal I. DSat $P(T \mid C)$ Digit in kDa and T is in K. Note: Sh Λ.

considered as ideal. $m^{pow} = A - B/(T + C)$, P^{ow} in KPa and T is in K. Note: show two iterations.						
Compound	Α	В	с			
Benzene (1)	14.1603	2948.78	- 44.5633			
Toluene (2)	14.2515	3242.38	- 47.1806			

Q.4(a) Formulate Excel-VBA spread-sheet calculation find steady state molar flow rate of H₂recycle streams [8] for 60% conversion; complete a mass balance for this process using Excel. Take basis F=400 mol (300 mol H_2 and 100 mol N_2).

Q.4(b) Explain vapor-liquid equilibria of nonideal binary mixture using Wilson equation.

- Q.5(a) What is transient analysis of a chemical process?
- Q.5(b) Derive material balance equations of a mixing tank to mix two inlet streams each of different [4] composition of components A and B (compositions of stream 1: x_{1A} & x_{1B} and stream 2: x_{2A} & x_{2B}).
- Q.5(c) Derive unsteady state material and energy balance equations of a tubular plug flow reactor with axial [6] dispersion (Diffusion coefficient D) for 1^{st} order irreversible reaction, $A \rightarrow B$.
- Q.6(a) Explain the components and specifications of following units in ASPEN plus: i) RadFrac, ii) RStoic [6]
- Q.6(b) Build ASPEN plus flow sheet of the ethyl chloride production process presented below. The required [6] intermediate units are not presented here. Assume all the suitable units in the intermediate and actual

places where these are required. $C_2H_4 + HCl \xrightarrow{Catalyst} C_2H_5Cl$

- Q.7(a) Classify different types of probability density functions in engineering applications with example and [6] mathematical formula?
- Q.7(b) An air filter has been designed to remove particulate matter. A test calls for 40specimens of air to be [6] tested. Of 40 specimens, the number of specimens with their particle number are listed below.

- Specimen frequency 10 15 8 5 2
- a) Evaluate experimental probability distribution.
- b) Estimate the mean of the frequency distribution from the given data.
- c) Evaluate Poisson probability distribution from the experimental data.

:::::03/12/2018:::::E

[2]