BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BE

BRANCH: CHEMICAL & POLYMER/CHEMICAL

SUBJECT: CL5005 REACTION ENGINEERING

TIME: **3.00 HOURS**

FULL MARKS: 60

SESSION: MO/18

SEMESTER: V

INSTRUCTIONS:

- 1. The question paper contains 7 questions each of 12 marks and total 84 marks.
- 2. Candidates may attempt any 5 questions maximum of 60 marks.
- 3. The missing data, if any, may be assumed suitably.
- 4. Before attempting the question paper, be sure that you have got the correct question paper.
- 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall.
- _____
- Q.1(a) What type of reactor (PFR or MFR) is more suitable for exothermic gas phase reaction and why?
- Q.1(b) What is the difference between Arrhenius theory and Collision theory in terms of reaction kinetics?
- [4] Q.1(c) For an irreversible liquid phase reaction, the following data is obtained from a laboratory batch [6]
 - experiment.

t, min	0	50	100	150	200	250	300			
C _{A,} mol/lit	0.05	0.038	0.0306	0.0256	0.0222	0.0195	0.0174			
Find the rate expression for the reaction.										

- Q.2(a) Define space time and space velocity.
- Q.2(b) Why Mixed flow reactor is called an ideal reactor?
- Q.2(c) Enzyme E catalyses the fermentation of substrate A (the reactant) to product R. Find the size of mixed [6] flow reactor needed for 95% conversion of reactant in a feed stream (25 liter/min) of reactant (2 mol/liter) and enzyme. The kinetics of the fermentation at this enzyme concentration are given by

$$A \xrightarrow{Enzyme} R \qquad -r_A = \frac{0.1 c_A}{1 + 0.5 c_A} \frac{mot}{liter.min}$$

- Q.3(a) Recycle reactor are most suitable for what type of reactions and why?
- Q.3(b) Consider the following parallel reaction system where $C_{A0} = 2 \text{ mol/liter}$.

 $A \rightarrow R + S$ (desired) + T

$$\frac{dC_R}{dt} = 1 \frac{mol}{liter.min}$$
$$\frac{dC_S}{dt} = 2C_A \frac{mol}{liter.min}$$
$$\frac{dC_T}{dt} = C_A^2 \frac{mol}{liter.min}$$

What will be the best reactor combination for this reaction system.

- Q.3(c) Find the concentration of S under the best operating condition for the above parallel reaction system. [6]
- Q.4(a) Write down different form of rate expressions used in heterogeneous reactor design. How are they [2] related to each other?
- Q.4(b) Explain surface kinetic steps involved in a catalytic reaction system.
- Q.4(c) An irreversible first order gas phase reaction is taking place on the outer surface of a nonporous catalyst [6] pellet. Derive the rate expression for such catalytic reaction and explain the limiting cases of reaction and mass transfer control with diagram.
- What is exit age distribution function? Explain its significance in non-ideal reactor design. Q.5(a)
- Q.5(b) Explain the RTD behavior of an ideal CSRT subjected to pulse tracer input.
- Q.5(c) A pulse of tracer was injected into a reactor, and the effluent concentration as function of time is [6] obtained as below.

t, min	0	5	10	15	20	25	30	35	
C(t), g/lit	0	3	5	5	4	2	1	0	
Calculate the mean residence time of the fluid in the reactor									

Calculate the mean residence time of the fluid in the reactor.

PTO

[4]

[2] [4]

[2]

[2]

[2]

[4]

[4]

- Q.6(a) How Peclet number is defined? Explain its physical significance.
- [2] [4] Q.6(b) Explain the residence time distribution curve obtained for Tank-in-Series model as the number of tanks in the model varies from 1(one) to infinity.
- Q.6(c) A first order reaction is carried out in a 10 cm diameter and 6.36m in length tubular reactor. The specific [6] reaction rate is 0.25 min⁻¹. Calculate the fractional conversion in the reactor using Tank-in-Series model. The results of the tracer test carried out in the reactor is as given below.

t, min	0	1	2	3	4	5	6	7	8	9	10	12	14
E(t)	0	0.02	0.1	0.16	0.2	0.16	0.12	0.08	0.06	0.044	0.03	0.012	0

- Q.7(a) Define average functionality of stoichiometric and non-stoichiometric mixture. [2]
- Q.7(b) Calculate the extent of reaction when phthalic anhydride and glycerol react in stoichiometric amounts [4]
- Q.7(c) Derive the kinetic expressions for auto catalytic and catalytic step polymerization with assumptions. [6]

:::::30/11/2018:::::E