BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BRANCI	BE H: CHEMICAL/CHEMICAL P&P	SEMESTER : V SESSION : MO/18	
TIME:	SUBJECT: CL5001 MASS TRANSFER OPERATIONS 3.00 HOURS	FULL MARKS: 60	
INSTRU 1. The 2. Cano 3. The 4. Befo 5. Tabl	CTIONS: question paper contains 7 questions each of 12 marks and total 84 marks. didates may attempt any 5 questions maximum of 60 marks. missing data, if any, may be assumed suitably. re attempting the question paper, be sure that you have got the correct ques/Data hand book/Graph paper etc. to be supplied to the candidates in the	estion paper. e examination hall.	
Q.1(a) Q.1(b)	What is film theory? Write the assumptions of film theory. Calculate the rate of diffusion of acetic acid (A) across a film of non-diffusing water (B) 0.001 m thick at 290 K if the concentrations of acetic acid on the opposite sides of the film are 9 wt.% and 3 wt.%, respectively. The densities of 9 wt.% and 3 wt.% solutions are 1012 kg/m ³ and 1003 kg/m ³ , respectively. The diffusivity of acetic acid in water is $0.95 \times 10^{-9} m^2/s$.		
Q.2	 An air (B) - water-vapor (A) sample has a dry bulb temperature 55°C and an kg water/kg dry air at 1 atm (101325 N/m²). Calculate the following quantiti (a) Molar humidity (b) Saturation humidity (c) Relative humidity (d) Humid volume (e) Humid heat (f) Enthalpy 	absolute humidity 0.030 es of the mixture.	[12]
	Given: Vapor pressure of water at 55° C = 15730 N/m ²		

Given: Vapor pressure of water at 55°C = 15730 N/m² Heat capacity of water vapor = 1884 J/(kg.°C) Heat capacity of dry air = 1005 J/(kg.°C) Latent heat of vaporization = 2502300 J/kg

- Q.3(a) A mixture of A and B containing 50 mole% A is to be separated in a continuous fractionating column to [4] give a product of 95 mole% of A at a top and a bottom product contains 1 mole% of A. Using an average relative volatility (α_{AB}) of 2.4, calculate the minimum number of plates required at total reflux condition.
- Q.3(b) An equimolar mixture of n-heptane (A) and n-octane (B) were subjected to differential distillation at [8] atmospheric pressure such that bottoms contains 34 mole% of n-heptane (A). Calculate the composition of distillate.

The equilibrium data are given below:

х	0.50	0.46	0.42	0.38	0.34
у*	0.689	0.648	0.608	0.567	0.523

Q.4(a) Define selectivity of a solvent in an extraction operation.

- Q.4(b) It is desired to extract acetone (C) from an equimolar mixture containing acetone (C) and water (A), [10] using chloroform (B) as solvent, in two cross current extraction stages. The amount of solvent in each stage is equal. In first stage 60 mole% acetone is extracted. Assuming that water (A) and chloroform (B) are completely immiscible, Determine the following quantities:
 - (i) amount of solvent used in each stage per mole of feed
 - (ii) mole fraction of acetone in final product (raffinate phase)

Equilibrium condition is given by y' = 0.5x'

where, x' = moles of acetone (C)/moles of water (A), and y' = moles of acetone (C)/moles of chloroform (B)

[2]

Q.5(a) Q.5(b) Q.5(c)	State Mccabe's ΔL law of crystallization. Explain Mier's supersaturation theory of crystallization. A wet solid is to be dried from 35% to 10% moisture under constant drying conditions in 5 h. If the equilibrium moisture content is 4% and the critical moisture content is 14%. Assuming falling rate is linear, calculate time required to dry the solids to 6% moisture under the same conditions? Given moisture contents are on the wet basis.	[2] [4] [6]
Q.6(a)	Adsorption on activated carbon is to be used for reducing phenol concentration in waste water from 0.004 g/g of water to 0.0008 g/g of water. The adsorption isotherm at the operating temperature can be expressed as $X = 5.386 Y^{1/3}$, where X is the phenol concentration in solid (g of phenol/g of solid) and Y is phenol concentration in water (g of phenol/g of water). Calculate the minimum amount of adsorbent needed per kg of water.	[4]
Q.6(b)	An aqueous solution contains a valuable solute is to be recovered by adsorption on carbon. It is desired to reduce the solute from its original value 9.6 unit/kg of solution to 10 % of its original value. The equilibrium relation is given by $Y^* = 8.91 \times 10^{-5} X^{1.66}$, where Y is unit solute/kg of solution, and X is unit solute/kg of carbon. Calculate the minimum requirement of the carbon per 1000 kg of solution for a single-stage operation and for a two-stage crosscurrent operation.	[8]

- Q.7(a) Sketch various separator arrangements for membrane separation process in an industry.
 Q.7(b) Write short notes on (i) Knudsen diffusivity and (ii) membrane structure
 Q.7(c) Classify membrane separation processes and write a short note on each process. [2] [4] [6]

:::::26/11/2018:::::E