BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

	(END SEMESTER EXAMINATION)				
	CLASS: BRANCH	IMSC : CHEMISTRY	SEMESTER : I SESSION : MO/18		
	TIME:	SUBJECT: CH104 PHYSICAL CHEMISTRY - I 3 HOURS	FULL MARKS: 50		
 INSTRUCTIONS: 1. The question paper contains 5 questions each of 10 marks and total 50 marks. 2. Attempt all questions. 3. The missing data, if any, may be assumed suitably. 4. Before attempting the question paper, be sure that you have got the correct question paper. 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall. 					
	Q.1(a)	What is collision frequency, $Z_{1(1)}$? Derive the expression for $Z_{1(1)}$ and show its relat free path (λ) for an ideal gas.	ionship with mean	[5]	
	Q.1(b)	The mean free path of the molecule of a certain gas at 300 K is 2.6 X 10 ⁻⁵ m. The collision diameter [5] of the molecule is 0.26 nm. Calculate (a) pressure of the gas, and (b) number of collisions per unit volume of the gas.			
	Q.2(a)	What is Boyle temperature (T_B) ? Derive the Boyle temperature (T_B) from compressibility factor (Z) of a van der Waals gas.	the expression of	[5]	
	Q.2(b)	Van der Waals constant 'b' for a certain gas is 4.42×10^{-2} litre/mole. What is the minimum distance of approach between the centres of two molecules?			
	Q.3(a)	Explain why the formation and maintenance of smaller bubbles will need greater values of excess pressure compared to the larger one.		[5]	
	Q.3(b)			[5]	
	Q.4(a)	Describe the combination of symmetry elements required to describe the point synlattice.	nmetry in a crystal	[5]	
	Q.4(b)	Derive <i>Bragg's equation</i> for diffraction of X rays by crystals.		[5]	
	Q.5(a)	What is indicator constant and its significance? Explain why the titration of a we base is not carried out using an acid-base indicator.	ak acid with weak	[5]	
		base is not carried out using an acid-base indicator.			

Q.5(b) Calculate the pH value of 0.04 M solution of anilinium chloride. $[K_b^{\circ} \text{ for aniline is 4 X } 10^{-10}]$ [5]

:::::06/12/2018:::::M