SUBJECT: CE3001 STRENGTH OF MATERIALS
TIME: \quad 3.00 HOURS
FULL MARKS: 60

INSTRUCTIONS:

1. The question paper contains 7 questions each of 12 marks and total 84 marks.
2. Candidates may attempt any 5 questions maximum of 60 marks.
3. The missing data, if any, may be assumed suitably.
4. Before attempting the question paper, be sure that you have got the correct question paper.
5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall.
Q.1(a) Explain principal stresses for plane stress problems.
Q.1(b) Differentiate between plane stress and plane strain problems.
Q.1(c) For the given state of stress, determine the normal and shearing stresses after the element shown has been rotated through 25° clockwise.

Figure 1:

Q.2(a) Describe neutral surface with neat sketch when a beam is subjected to pure bending.
Q.2(b) Determine the largest couple M that can be applied to the beam shown, the allowable stress is 120 MPa in tension and 150 MPa in compression.

Figure 2
Q.3(a) Draw shear stress distribution for a thin walled C-Section.
Q.3(b) Determine the depth h and the width b of the beam, knowing that $L=2 \mathrm{~m}, P=40 \mathrm{kN}, \tau_{\max }=960 \mathrm{kPa}$, and $\sigma_{\max }=12 \mathrm{MPa}$.

Figure 3:

Q.4(a) Use the moment-area theorems to determine the slope at A and displacement at Cor beam shown in Figure 4. El is constant.
Q.4(b) Use the conjugate-beam method to determine the slope at A and displacement at C for beam shown in Figure 4. El is constant.

Figure 4:

Q.5(a) Draw SFD and BMD for the following beam:

Figure 5:

Q.5(b) Draw SFD and BMD for the following fixed beam:

Figure 6:

Q.6(a) Knowing that each of the shafts $A B, B C$, and $C D$ consists of a solid circular rod, determine the shaft in which the maximum shearing stress occurs and the magnitude of that stress.

Q.6(b) A torque $T=750 \mathrm{kN} . \mathrm{m}$ is applied to the hollow shaft shown that has a uniform $8-\mathrm{mm}$ wall thickness. Neglecting the effect of stress concentrations, determine the shearing stress at points a and b.

Q.7(a) Derive strain energy for axial loading.
Q.7(b) Determine the critical load for a square and a circular column each having cross sectional area of

