BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BRANCI		(SEMESTER : III SESSION : MO/18	
TIME:	3.00 HOURS	SUBJECT: CE3001 STRENGTH OF MATERIALS	FULL MARKS: 60	
1. The 2. Canc 3. The 4. Befo	didates may attempt missing data, if any, pre attempting the qu	ains 7 questions each of 12 marks and total 84 marks. any 5 questions maximum of 60 marks. may be assumed suitably. lestion paper, be sure that you have got the correct of raph paper etc. to be supplied to the candidates in th	question paper.	
Q.1(a) Q.1(b) Q.1(c)	Differentiate betwe For the given state	esses for plane stress problems. en plane stress and plane strain problems. of stress, determine the normal and shearing stresses rough 25° clockwise.	after the element shown	[2] [4] [6]
		▲ 90 MPa		

Q.2(a) Describe neutral surface with neat sketch when a beam is subjected to pure bending. [4]

Q.2(b) Determine the largest couple M that can be applied to the beam shown, the allowable stress is 120 [8] MPa in tension and 150 MPa in compression.

[2]

[10]

- Q.3(a) Draw shear stress distribution for a thin walled C-Section.
- Q.3(b) Determine the depth h and the width b of the beam,

knowing that L = 2 m, P = 40 kN, $\tau_{max} = 960 kPa$, and $\sigma_{max} = 12 MPa$.

Figure 3:

- Q.4(a) Use the moment-area theorems to determine the slope at A and displacement at C for beam shown [6] in Figure 4. El is constant.
- Q.4(b) Use the conjugate-beam method to determine the slope at A and displacement at C for beam shown [6] in Figure 4. El is constant.

Figure 4:

[6]

Q.5(a) Draw SFD and BMD for the following beam:

R L/21.19

Figure 5: Q.5(b) Draw SFD and BMD for the following fixed beam:

Knowing that each of the shafts AB, BC, and CD consists of a solid circular rod, determine the shaft [2+4] Q.6(a) in which the maximum shearing stress occurs and the magnitude of that stress.

Q.6(b) A torque $T = 750 \text{ kN} \cdot m$ is applied to the hollow shaft shown that has a uniform 8-mm wall thickness. [6] Neglecting the effect of stress concentrations, determine the shearing stress at points a and b.

- Derive strain energy for axial loading. Q.7(a)
- [4] Q.7(b) Determine the critical load for a square and a circular column each having cross sectional area of [8] $1000mm^2$ and having length of 1.5m. Consider both ends hinged. Use E=200 GPa.

:::::26/11/2018:::::E

[6]