BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

		(E	ND SEMESTER	EXAMINATION)		
CLASS: BE BRANCH: BIOTECHNOL		JGY				SEMESTER : V SESSION : MO/18	
TIME:	SUBJECT: BT5027 REACTION ENGINEERING 3 HOURS FULL MARK						D
1. The 2. Cand 3. The 4. Befo	CTIONS: question paper cont lidates may attempt missing data, if any, re attempting the qu es/Data hand book/G	any 5 questio may be assur Jestion paper	ns maximum oned suitably. , be sure that	of 60 marks. you have got t	he correct que		
Q.1(a) Q.1(b)							[2] [2+2=4]
Q.1(c)	A certain reaction has a rate given by $-r_A = 0.005C_A^2$, mol / (cm ³ .min). If the concentration is [6] expressed in mol / l and time in hours, what would be the value and units of rate constant?						
Q.2(a) Q.2(b)	What is activation energy? At 25° C, the rate constant for the hydrolysis of ethyl acetate by NaOH is 6.5 <i>l</i> mol.min ⁻¹ starting with concentration of base and ester of 0.03 mol / <i>l</i> of each. What proportion of ester will be hydrolyzed in 10 min?						[2] [4]
Q.2(c)	The half life periods	for decompo	1			e given below:	[6]
		p, torr t _{1/2} , min	707 84	79 84	37.5 84		
	Confirm order of the				1		
Q.3(a) Q.3(b)	Define Half life of the reaction. For an irreversible gas phase reaction $2A \rightarrow 3R$, determine the value of ϵ_A if the feed is a mixture of 50% A and 50% inert.						[2] [1+3=4]
Q.3(c)	(ii) What are ideal reactors? What are the different factors to be considered for reactor design? In an isothermal batch reactor the conversion of a liquid reactant A is 70% in 13 min. Find the space time and space velocity necessary to effect this conversion in a plug flow reactor and in mixed flow reactor. Consider first order kinetics.						[6]
Q.4(a)	What is a mixed flow reactor? What is a plug flow reactor? Is a plug flow reactor different from a tubular flow reactor?						[2]
Q.4(b)	(i) Which reactors performance is identical for constant density systems?(ii) Distinguish between Holding time and Space time for flow reactors.						[2+2=4]
Q.4(c)	A homogeneous gas reaction $A \rightarrow 2R$ proceeds with $-r_A = 10^{-1} C_A \text{ mol} / l \text{ s at } 200 ^{\circ}\text{C}$. Find the space time required to achieve 70% conversion of a 40% A and 60% inerts feed to plug flow reactor operating at 200°C and 5 atm pressure. The initial concentration of A is 0.0625 mol / l						[6]
Q.5(a) Q.5(b) Q.5(c)	What is the basis of modelling non-ideal behaviour in reactor? Explain the reasons for non-ideality of reactors? Write short notes on: Residence time distribution studies						[2] [4] [6]
Q.6(a)	Explain the various steps involved in the transport of reactant to active site of catalysts and						[2]
Q.6(b)	desorption of products Consider a porous catalyst particle catalysing the reactant of A to product B. What are the factors [4						
Q.6(c)	affecting the rates of reactant A in the presence of the porous catalyst? Analyse the intra-particle (assume spherical particles) diffusion and biochemical reaction [6 simultaneously with the help of law of conservation of mass.						[6]
Q.7(a)	What is the Michaelis - Menten kinetic scheme and how does this explain generally the observed kinetics?						[2]

kinetics?

ΡΤΟ

Q.7(b) (i) What is meant by saturation kinetics?

 (i) What is meant by saturation kinetics:
(ii) Why is the rate of an enzyme-catalyzed reaction proportional to the amount of ES complex?
Q.7(c) The isomerisation of 5 x 10⁻² mol.dm⁻¹ bulk concentration of glucose to fructose is conducted at [6] 313K in a batch reactor using immobilised glucose isomerase. The reaction exhibits reversible M-M kinetics and is characterised by K_m value of 2x10⁻³ mol.dm⁻¹. The determined effectiveness factor η of 0.7 reveals an appreciable contribution of mass transport to the measured reaction rate. Calculate the substrate concentration at the solid-liquid interface under these conditions. (you may neglect internal mass transfer).

:::::03/12/2018:::::E

[2+2=4]