BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BRANCH	BE 1: BIOENGINEERING	SEMESTER : V SESSION : MO/18	
TIME:	SUBJECT: BT5023-CHEMICAL ENGINEERING-III 03:00	FULL MARKS: 60	
INSTRU 1. The o 2. Cand 3. The o 4. Befor 5. Table	CTIONS: question paper contains 7 questions each of 12 marks and total 84 marks idates may attempt any 5 questions maximum of 60 marks. missing data, if any, may be assumed suitably. re attempting the question paper, be sure that you have got the correct es/Data hand book/Graph paper etc. to be supplied to the candidates in t	question paper. he examination hall.	
Q.1(a) (b) (c)	Define Fick's first law of diffusion. Identify the analogy between heat, mass and momentum transfer with equ A mixture of benzene and toluene of 50 mole % each is flash distillate at 1 heated to a temperature to flash 40% of it. What will be the composition of the flash chamber? Relative volatility is 2.45.	ations. atm pressure. The feed is of vapor and liquid leaving	[2] [4] [6]
Q.2(a) (b)	What type of distillation you use to obtain >90% ethanol from water. Calculate the minimum number of plates required in a distillation column to separate an binary mixture of components A and B into an overhead fraction containing 99 mol % A and a bottoms fraction containing 98 mol % B2 Given $\alpha = 2$		[2] [4]
(c)	A continuous fractionating column is to be designed for separating 10,000 kg per hour of a liquid mixture containing 40 mole percent methanol and 60 mole percent water into an overhead product containing 97 mole percent methanol and a bottom product having 98 mole percent water. A reflux ratio of 3 is used. Calculate number of ideal plates and location of the feed plate if the feed is at its bubble point. α = 3.32.		[6]
Q.3(a) (b)	Draw a ternary diagram and indicate a point which represents a mixture of A clarified fermentation beer (H) containing 260 mg/L of antibiotic is to acetate (L). K = 57. We plan to use H = 450 L/h and L = 37 L/h to recover stages are required for this separation?	30% A, 40% B and 30% C. be extracted using butyl 99% antibiotics. How many	[2] [4]
(c)	For the batch extraction of an amino acid, the equilibrium relation between is $x^2 = 0.001y$. We plan to add 4.7 L of toluene containing 0.006 M amino acid determine the fraction of amino acid extracted.	en toluene and pure water with 1L water. Graphically	[6]
Q.4(a) (b)	Define leaching. In a pilot scale test sing a vessel of 1 m ³ volume, a solute was leached from was saturated 75% in 10 sec. In a full scale unit, 500 kg of inert solid cont component is agitated with 100 m ³ of water. How long will it take for Assuming the same condition as pilot plant. Water is saturated with the scale 5.5 kg/m ³	n an inert solid. The water aining 28% w/w of soluble all the solute to dissolve? Ilute at a concentration of	[2] [4]
(c)	Seeds containing 20% oil are extracted in a counter current extractor. The the seeds are extracted in fresh solvent and 1 kg solution (containing 5% oil which is associated with 2 kg of insoluble matters, graphically determine t required. Consider 90% efficiency.	extract contains 50% oil. If) is removed in underflow, he number of ideal stages	[6]
Q.5(a) (b)	Write the applications of adsorption in biological process. Adsorption of enzyme on cellulose follows Langmuir model. The maxiadsorbent. Half of this maximum achieve at 50 mg/L of enzyme. We have 1	mum uptake is 70 mg/g .5 L of feed containing 220	[2] [4]
(c)	A moving bed column of 4 cm diameter and 0.8 cm ³ resin/ cm ³ porosity is 1.3 g/cm ³ . Feed solution (S ₀) is 5 g/L, v is 1.5 m/h, K _a is 15 h ⁻¹ , S' is 0.2 g/L height of the bed.	filled with resin of density and S* is 0.16 s ² . Calculate	[6]
Q.6(a) (b)	Define sphericity for an irregular particle with formula. Determine the power required to crush 100 ton/h of limestone if 80% of fee and product in 3.2 mm screen. Work index for limestone is 12.74.	d passes a 50.8 mm screen	[2] [4]
(c)	From screen analysis of particles the data obtained was Σ (xi/Dpi) = 0.82 Density is 2650 kg/m ³ and sphericity is 0.571. Calculate Aw, Dv and Ds. Ign	84 and Σ (xi/Dpi ³) = 8.83. ore pan fraction.	[6]

- Q.7(a) Write two differences between concentration polarization and membrane fouling.
 - (b) Write a short note on isopycnic gradient centrifugations.
 - (c) In a cross flow UF system used for filtration of proteins from a fermentation broth, gel resistance [6] increases with protein concentration according to the following equation: $R_G = 0.5 + 0.01 \times C$ where C is in mg/L. Pressure at the entrance of the system $P_1 = 6$ atm. and at the exit $P_0 = 2$ atm. The shell side of the filter is opened to the atmosphere. The membrane resistance is $R_m = 0.5$ atm/(mg/m².h) and the protein concentration in the broth is C = 100 mg/L. Determine (a) The pressure drop across the membrane, (b) The filtration flux and (c) The rejection coefficient of the membrane for effluent protein concentration of $C_f = 5mg/L$.

******28.11.18*****E

[2] [4]