BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS:	B.TECH	SEMESTER : V	
BRANCH	I: BIOTECHNOLOGY	SESSION : MO/18	
TIME:	SUBJECT: BT5021 BIOPROCESS ENGINEERING 3.00 HOURS	FULL MARKS: 60	
INSTRUC 1. The c 2. Cand 3. The r 4. Befor 5. Table	CTIONS: question paper contains 7 questions each of 12 marks and total 84 marks. idates may attempt any 5 questions maximum of 60 marks. nissing data, if any, may be assumed suitably. re attempting the question paper, be sure that you have got the correct qu es/Data hand book/Graph paper etc. to be supplied to the candidates in the	estion paper. examination hall.	
Q.1(a)	Analyze the growth patterns of a microorganism in a limited medium.		[6]
Q.1(b)	Evaluate the different types of microbial products with respect to their kinetics.		[6]
Q.2(a)	Analyze the different means of transfer of heat in a bioreactor.		[2]
Q.2(b)	What do you understand by degree of reduction? Find out degree of reduction of propane?		[4]
Q.2(c)	Derive an equation for enzyme catalysis for single substrate. Define Michaelis-Menten constant.		[6]
Q.3(a) Q.3(b) Q.3(c)	Explain the role of one factor a time (OFAT) in medium optimization. Calculate the stoichiometric coefficients for following equations. $C_6H_{12}O_6 + aO_2 + bNH_3 = c(C_{4.4}H_{7.3}O_{1.2}N_{0.86}) + dH_2O + eCO_2$ Mention various physicochemical conditions on enhanced production of micro	bial enzyme.	[2] [4] [6]
Q.4(a)	Evaluate the role of del factor on sterilization process.		[2]
Q.4(b)	Explain the significance of air filter sterilization.		[4]
Q.4(c)	Analyze the significance of different types of impeller.		[6]
Q.5(a)	Explain the various factors involved in regulation of OTR.		[4]
Q.5(b)	Describe the dynamic method of Kla determination.		[4]
Q.5(c)	What is relationship between Np and NRe?		[4]
Q.6(a)	Evaluate the criteria considered for designing a bioreactor.		[2]
Q.6(b)	Explain the significance air-lift reactor.		[4]
Q.6(c)	Derive the material balance in batch mode of cultivation system.		[6]
Q.7(a) Q.7(b)	What is the significance of Damkohler Number? Estimate the theoretical growth and product yield for ethanol production as g $C_6H_{12}O_6 \longrightarrow 2 C_2H_5OH+2CO_2+2ATP$ (Given; $Y_{ATP} = 10.5 \text{ gdw/mol ATP}$).	given in the equation-	[2] [4]
Q.7(c)	Describe the mass balance of biomass accumulation and substrate used in a C	STR.	[6]

:::::26/11/2018:::::E