BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI

(END SEMESTER EXAMINATION)

CLASS:	BE
BRANCH:	BIO-TECH

SEMESTER : III
SESSION : MO/18

SUBJECT: BT3029-CHEMICAL ENGINEERING I
TIME: 03:00 HRS.
FULL MARKS: 60

INSTRUCTIONS:

1. The question paper contains 7 questions each of 12 marks and total 84 marks.
2. Candidates may attempt any 5 questions maximum of 60 marks.
3. The missing data, if any, may be assumed suitably.
4. Before attempting the question paper, be sure that you have got the correct question paper.
5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall.
Q.1(a) How many grams of NaCl are required to make 1000 mL of a 2.0 M solution?
(b) A liquid mixture of $\mathrm{O}_{2}, \mathrm{CH}_{4}$ and CO has the composition $32 \% \mathrm{O}_{2}, 16 \% \mathrm{CH}_{4}$ and $52 \% \mathrm{CO}$, then what is the mole fraction of CH_{4} ?
(c) A solution of common salt in water is prepared by adding 20 kg of salt to 100 kg of water, to make a liquid of density $1323 \mathrm{~kg} / \mathrm{m}^{3}$. Calculate the concentration of salt in this solution as a (a) weight fraction, (b) weight/volume fraction, (c) mole fraction, (d) molal concentration
Q.2(a) Write about conversion and yield.
(b) Solution-1 containing 10% nitric acid flowing at the rate $10 \mathrm{Kg} / \mathrm{min}$ combines with Solution-2 containing 40% nitric acid flowing at the rate $5 \mathrm{Kg} / \mathrm{min}$, if their product contains 30% nitric acid, what is the flow rate of product?
(c) In the concentration of orange juice, a fresh extracted and strained juice containing $7.08 \mathrm{wt} \%$ solids is fed to a vacuum evaporator. In the evaporator, water is removed and the solids content increased to $58 \mathrm{wt} \%$ solids. For $1000 \mathrm{~kg} / \mathrm{h}$ entering, calculate the amounts of the outlet streams of concentrated juice and water.
Q.3(a) Write about recycle and purge.
(b) Methanol can be converted into ethylene $\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$ or propylene $\left(\mathrm{C}_{3} \mathrm{H}_{6}\right)$ by the reactions:
$2 \mathrm{CH}_{3} \mathrm{OH} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}+2 \mathrm{H}_{2} \mathrm{O}$ desired product (economical)
$3 \mathrm{CH}_{3} \mathrm{OH} \rightarrow \mathrm{C}_{3} \mathrm{H}_{6}+3 \mathrm{H}_{2} \mathrm{O}$ by-product
What is the selectivity of $\mathrm{C}_{2} \mathrm{H}_{4}$ relative to the $\mathrm{C}_{3} \mathrm{H}_{6}$ at 80% conversion of the $\mathrm{CH}_{3} \mathrm{OH}$?
(c) The oxidation of ethylene to produce ethylene oxide proceeds according to the equation $2 \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{O}_{2} \rightarrow 2 \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$
The feed to a reactor contains $100 \mathrm{kmol} \mathrm{C}_{2} \mathrm{H}_{4}$ and $100 \mathrm{kmol} \mathrm{O}_{2}$.
i) Which reactant is limiting? ii) What is the percentage excess of the other reactant? iii) If the reaction proceeds to completion, how much of the excess reactant will be left; how much $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$ will be formed; and what is the extent of reaction? iv) If the reaction proceeds to a point where the fractional conversion of the limiting reactant is 50%, how much of each reactant and product is present at the end, and what is the extent of reaction? v) If the reaction proceeds to a point where 60 kmol of O_{2} is left, what is the fractional conversion of $\mathrm{C}_{2} \mathrm{H}_{4}$, the fractional conversion of $\mathrm{O}_{2} \&$ the extent of reaction?
Q.4(a) Define Compressibility factor (Z).
(b) A 1000 -liter tank is filled to a pressure of 10 atm at 298 K requires 11.5 kg of gas. How many moles of gas are required? What is the molecular weight of the gas? As the gas to be pure element, can you identify it?
(c) Compare the pressure given by Ideal gas law and Vander Waals equation for 1 mole of CO_{2} occupying a volume of $381 \times 10^{5} \mathrm{~m}^{3}$ at $40^{\circ} \mathrm{C}$. Given $\mathrm{a}=0.3646 \mathrm{~m}^{6} \mathrm{~N} / \mathrm{m}^{2} \mathrm{~mole}^{2}$ and $\mathrm{b}=4.28 \times 10^{-5} \mathrm{~m}^{3} / \mathrm{mole}$.
Q.5(a) Define: Relative Humidity and Percentage Humidity.
(b) A binary liquid mixture of benzene and toluene contains $20 \mathrm{~mol} \%$ of benzene. At 350 K the vapour pressures of pure benzene and pure toluene are 92 kPa and 35 kPa , respectively. The mixture follows Raoult's law. Calculate the equilibrium vapour phase mole fraction (rounded off to the second decimal place) of benzene in contact with this liquid mixture at 350 K .
(c) An equimolar liquid mixture of species 1 and 2 is in equilibrium with its vapour ar 400K. At this temperature the vapour pressures of the species are $P_{1}=180 \mathrm{kPa}$ and $\mathrm{P}_{2}=120 \mathrm{kPa}$. Assuming Raoults law is valid the value of y_{1} is?
Q.6(a) Write about latent heat of vaporization, latent heat of fusion and latent heat of sublimation?
(b) Calculate the heat required (in kJ , up to 1 digit after the decimal point) to raise the temperature of 1 mole of a solid material from $100{ }^{\circ} \mathrm{C}$ to $1000^{\circ} \mathrm{C}$. The specific heat (Cp) of the material (in $\mathrm{J} / \mathrm{mol}-\mathrm{K}$) is expressed as $\mathrm{C}=20+0.005 \mathrm{~T}$, where T is in ${ }^{\circ} \mathrm{C}$. Assume no phase change.
(c) Liquid water at $25^{\circ} \mathrm{C}$ enters an open heating tank at a rate of $20 \mathrm{~kg} \mathrm{~h}^{-1}$. Liquid water leaves the tank at $88^{\circ} \mathrm{C}$ at a rate of $18 \mathrm{kgh}^{-1} .2 \mathrm{kgh}^{-1}$ water vapour is lost from the system through evaporation. At steady state what is the rate of heat input to the system?
$\mathrm{h}\left(\right.$ Liquid water at $88{ }^{\circ} \mathrm{C}$) $=368.5 \mathrm{kJkg}^{-1}$
h (Saturated steam at $88{ }^{\circ} \mathrm{C}$) $=2656.9 \mathrm{kJkg}^{-1}$
$\mathrm{h}\left(\right.$ Liquid water at $25^{\circ} \mathrm{C}$) $=104.8 \mathrm{kJkg}^{-1}$
Q.7(a) Write about integral heat of solution or integral heat of mixing.
(b) Fumaric acid is produced from malic acid using enzyme fumarase. Calculate the standard heat of reaction for the reaction. The standard heat of combustion for malic acid and fumaric acids are $-1328.8 \mathrm{~kJ} \mathrm{gmol}^{-1}$ and $-1334.0 \mathrm{~kJ} \mathrm{gmol}^{-1}$.
(c) Citric acid is manufactured using submerged culture of Aspergillus niger in a batch reactor operated at $30^{\circ} \mathrm{C}$. Over a period of two days, 2500 kg glucose and 860 kg oxygen are consumed to produce 1500 kg citric acid, 500 kg biomass and other products. Ammonia is used as nitrogen source. Power input to the system by mechanical agitation of the broth is about 15 Kw ; Approximately 100 kg water is evaporated over the culture period. Estimate the cooling requirements.
Heat of reaction at $30^{\circ} \mathrm{C}$ is $-460 \mathrm{kJgmol}^{-1}$ oxygen consumed and Latent heat of vaporization of water at $30^{\circ} \mathrm{C}$ is $2430.7 \mathrm{kJkg}^{-1}$.
