BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI
 (MID SEMESTER EXAMINATION)

CLASS:	BE
BRANCH:	BIOTECHNOLOGY

SEMESTER: III
SESSION : MO/2018

SUBJECT : BT3029 CHEMICAL ENGINEERING I

TIME: 1.5 HOURS
FULL MARKS: 25

INSTRUCTIONS

1. The total marks of the questions are 30.
2. Candidates may attempt for all 30 marks.
3. In those cases where the marks obtained exceed 25 marks, the excess will be ignored.
4. Before attempting the question paper, be sure that you have got the correct question paper.
5. The missing data, if any, may be assumed suitably.

Q1 (a) What is the weight of 10 moles of a mixture with composition $15 \% \mathrm{O}_{2}, 25 \% \mathrm{SO}_{2}, 30 \% \mathrm{COCl}_{2}$, $25 \% \mathrm{SO}_{3}$ and $5 \% \mathrm{~N}_{2}$?
(b) A gaseous mixture is composed of $20 \% \mathrm{CO}_{2}, 40 \% \mathrm{O}_{2}$ and $40 \% \mathrm{~N}_{2}$. What is the mass fraction of N_{2} ?

Q2 (a) A compound contains 12\% of carbon, 16\% of oxygen, 28% of nitrogen, 4% of hydrogen and 40% calcium by weight, then what can be the possible molecular formula of the compound?
(b) At $25^{\circ} \mathrm{C}$, an aqueous solution containing $35 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ has a specific gravity of 1.2563. A quantity of $35 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ solution that contains 195.5 kg of $\mathrm{H}_{2} \mathrm{SO}_{4}$ is needed.
i. Calculate the required volume of the solution in liters.
ii. Estimate the percentage error that would have resulted if pure component specific gravities (SG for $\mathrm{H}_{2} \mathrm{SO}_{4}=1.8255$) were used instead of the specific gravity of the aqueous solution.

Q3 A gaseous mixture (F) consists of $16 \mathrm{~mol} \% \mathrm{CS}_{2}$ and $84 \mathrm{~mol} \%$ air are fed to the absorption column at a rate of $1000 \mathrm{lbmole} / \mathrm{hr}$. Most of the CS_{2} input are absorbed by liquid benzene (L) which is fed to the top of the column. 1% of benzene input are evaporated and out with the exit gas stream which consists of $96 \mathrm{~mol} \%$ air, $2 \mathrm{~mol} \% \mathrm{CS}_{2}$ and $2 \mathrm{~mol} \%$ benzene. The product liquid stream (P) consists of benzene and CS_{2}. Calculate the mole flow rates of (G), (L) and (P) and the compositions.

Q4 Mixing of battery (Sulfuric) Acid :
You are asked to prepare a batch of 18.63% battery acid as follows. A tank of old weak battery acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$ solution contains $12.43 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ (the remainder is pure water). If 200 kg of $77.7 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ is added to the tank, and the final solution is to be $18.63 \% \mathrm{H}_{2} \mathrm{SO}_{4}$, how many kilograms of battery acid have been made?

Q5 Two reactions take place in a continuous reactor operating at steady state, $\mathrm{C}_{2} \mathrm{H}_{6} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H}_{2}$ $\mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{H}_{2} \rightarrow 2 \mathrm{CH}_{4}$
The feed stream contains 85.0 mole \% ethane $\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)$ and 15 mole \% inert (i.e. unreactive) components. The fractional conversion of ethane is 0.501 , and the fractional yield of ethylene $\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$ is 0.471 . What is the molar composition of the product gas?

Q6 (a) If you feed 10 grams of N_{2} gas and 10 grams of H_{2} gas into a reactor: The chemical reaction takes place in the reactor is
$\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$ What is the maximum number of grams of NH_{3} that can be produced?
(b) For the problem mentioned above What is the limiting reactant? What is the excess reactant?

