BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: MTECH SEMESTER: I
BRANCH: BIOTECHNOLOGY SESSION: MO/18

SUBJECT: BE501-ADVANCED BIOPROCESS ENGINEERING

TIME: 03:00 HRS. FULL MARKS: 50

INSTRUCTIONS:

- 1. The question paper contains 5 questions each of 10 marks and total 50 marks.
- 2. Attempt all questions.
- 3. The missing data, if any, may be assumed suitably.
- 4. Before attempting the question paper, be sure that you have got the correct question paper.
- 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall.

- Q.1(a) Propose assumption associated with mechanistic model of enzyme kinetics. Derive the simple [5] expressions for hydrolysis of cellulose.
- Q.2(a) Following initial data were obtained for production of gluconic acid by a bacterial isolate. Design the [5] steps for optimization of Carbon and Nitrogen components of medium.

[5]

Name of Components of medium	Starch	NaNO ₃	Yeast Extract	FeSO ₄ .7H ₂ O	K ₂ HPO ₄
Components of medium (g/l)	6	1.2	1	0.008	0.2

- (b) Yeast grown on glucose is described by $C_6H_{12} O_6 + 0.48NH_3 + 3 O_2 = 0.48 C_6H_{10}O_3N + 3.12CO_2 + 4.32H_2O$ Calculate total oxygen required and Yx/s for a design requiring 50 g/L of yeast in a batch reactor of 100,000L.
- Q.3(a) Examine the factors affecting *in situ* sterilization of fermentation medium in a batch bioreactor. [5]
 - (b) Calculate K_La by using following data. When this process initiated CSTR was maintained at 55% of O₂ [5] saturation.

Equilibrium	Aeration					Aeration			
DO level	Stopped					resumed			
Time (min)	55	37	29	22	23	32	40	47	51
DO (%)	0	1.5	3	4.5	6	7.5	9	10.5	12

- Q.4(a) Calculate the rpm of an impellor for a CSTR scaled to 5000L from 50L. Medium and other geometrical [5] ratio were kept constant. Tank diameter to impellor diameter ratio was 3 in 50L fermenter.
 - (b) Describe in detail about steps involved in scale up based on maintaining constant tip speed. Geometrical [5] similarity at two level could be assumed.
- Q.5(a) Describe in detail about process of costing of a bioprocess. [5]
 - (b) How will you justify that "the role of net profit on cash flow over the full life cycle of an industrial [5] operation is critical".

*****28.11.18*****M