BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (MID SEMESTER EXAMINATION)

	ASS: ANCH		EMESTER: IV ESSION : SP/2019	
SUBJECT : EE4209 ENGINEERING ELECTROMAGNETICS				
TIA	۸E:	1.5 HOURS F	ULL MARKS: 25	
 INSTRUCTIONS: 1. The total marks of the questions are 30. 2. Candidates may attempt for all 30 marks. 3. In those cases where the marks obtained exceed 25 marks, the excess will be ignored. 4. Before attempting the question paper, be sure that you have got the correct question paper. 5. The missing data, if any, may be assumed suitably. 				
Q1		Electrostatic field is conservative field. Justify? Two point charges Q_1 and Q_2 are located at (1,2,0) and (2,0,0) respectivel relation between Q_1 and Q_2 such that the total force on a test charge at the P(-1,1,0) will have no x component ?		
Q2	(a) (b)	Define Ampere's circuital law and write its equation in both differential a form for a static magnetic field? For a continuous charge distribution ρ derive the equation of electrostatic energy $w_e = \frac{1}{2} D.E$?		
Q3	(a) (b)	Define uniqueness theorem? Derive Poisson's equation in electrostatics and express the equation in coordinate system?	[2] n spherical [3]	
Q4	(a) (b)			
Q5		Calculate the skin depth of a Aluminium conductor at 1 MHz frequency if its c is 3.54 x 10 ⁷ ? The instantaneous expression for magnetic field intensity of a uniform p propagating in the positive y direction in air is given by $H = a_z 4 \times 10^{-6} \cos (10^7 \pi t - k_0 y + \frac{\pi}{4})$ Determine k ₀ and the location where H _z vanishes at t = 3 ms and write the inst expression for E ?	plane wave [3]	
Q6		Write the Helmholtz homogenous and Non homogenous equations for time var A plane wave with E = $a_x E_x$ propogates in a lossless simple medium ($\varepsilon_r = 4$, μ in the positive Z direction. Assume E_x is sinusoidal with a frequency 100 M maximum value of 10 ⁻⁴ V/m at t = 0 and Z = $\frac{1}{8}$. Write the instantaneous expression	ı _r =1, σ = 0) [3] Hz and has	

:::: 06/03//2019 E:::::