BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

		(END SEMESTER EXAMINATION)			
CLAS BRAN			STER : I		2
		SUBJECT: EC201 ELECTRONIC DEVICES			
TIME	:	3:00 Hours FULL MA			
1. Th 2. At	tempt	stion paper contains 5 questions each of 10 marks and total 50 marks. all questions.			
4. Be	efore a	sing data, if any, may be assumed suitably. ttempting the question paper, be sure that you have got the correct question paper. Data hand book/Graph paper etc. to be supplied to the candidates in the examination	hall.		
				со	BL
Q1 (b)	Find th	s difference between doping and alloying? ne concentration of holes in a p type silicon (pp) at 300 K assuming its resistivity in a p type	[2] De [3]	1 1	2 3
		as 0.02 Ω -cm, μ_p = 475 cm ² /V-sec, n _i = 10 ¹⁰ per cm3. blain Hall Effect with a suitable diagram. [2]	[5]	1	4
		ite the relation between Hall Voltage and Hall coefficient. [1] w you differentiate a n-type semiconductor and a metal using Hall Voltage? [2]			
	expose	ate the diffusion length of excess carriers generated in a n-type silicon sample when it is ad to light of energy > 1.1 eV, if the carrier lifetime of holes is 1 picosecond and diffusion cient of holes is 4 cm ² /s.	[2]	2	2
Q2 (b)	<u>ار</u>	b1. What do you understand by a diffusion and a drift transport? [1]	[3]	2	3
	T-	$n-ty \not\models si$ + $ _{1}$ - $diagram shown above assuming given n-type silicon is uniformly doped. [2]$			
•• / · ·				-	
	c2. Wh c3. A S	by the variation of extrinsic carrier concentration with temperature. [2] that is thermal generation and how it is different than impurity ionization. [2] dilicon sample is doped by 10 ¹⁶ /cm3 boron atoms. What will be the electrons and holes	[5]	2	4
concentration after complete ionization? [1] Q3 (a) Plot the profile for built-in-potential and electric field for case A of the above figure when the				3	2
Q3 (b)	device	is at thermal equilibrium. [2]	[3]	3	3
		$N_a = H_a = 10^{5} / cm^3$ Na = 10/cm ³ , Nd = 10/cm ³			
	(A)	PN (B) P+ N			
	,	-xieter			
	h1 In	figure given below, junction is shown at $x = 0$. Show the relative variation of depletion			
	region	edges $-x_p$ and x_n in both the cases as per the given doping levels. [1+1]			
Q3 (c)	c1. Ca	w the widths will change in case A for a small forward bias and reverse bias $[1/2+1/2]$ lculate the built-in-potential, and maximum electric field for the case B at 300 K ion layer width is 1 µm. Take ni = 1.5 X 10 ¹⁰ cm ⁻³ , dielectric constant for silicon as 11.7.		3	3
	c2. Wr	ite two possible mechanisms for breakdown in a PN Junction. Which takes place at low			
	c3. Do	e bias? [1/2+1/2] es the drop across the diode or more precisely the drop across the depletion region of			
	Justify	d biased PN junction needs to be larger than the built-in potential for current to flo your YES or NO. [2]			_
Q4 (b)	What a	happens in BJT if (a) base region is fully depleted (b) base region is too long. [1+1] are the four regions of operation for BJT? Explain the biasing conditions for cut-off and	[2] [3]	4 4	2 2
Q4 (c)	c1. Exp	tion region. [2+1/2+1/2] olain the phenomena of Early Effect in BJT with suitable diagrams. What are the biasing	[5]	4	4
		ions of E-B and C-B junctions resulting in early effect [2+1]			

c2. What is the other term used for Early Effect in BJTs. What do you understand by Punch Through in a BJT [1+1]

Q5 (a) What is threshold voltage is a MOSFET? Describe the sub threshold current and its effect in MOSFET operation? [1+1]	[2]	5	3	
Q5 (b) Show the variation of space-charge density, Qs, as a function of surface potential, $φ_s$ in p-type silicon.	[3]			
Q5 (c) c1. Draw the device structure of n-channel MOSFET (NMOS) showing approximate thickness of oxide, type and dimensions for the substrate. [2]	[5]	5	3	
c2. Draw the input-output and transfer curves for n-channel MOSFET. [1] c3. What are the voltage conditions at pinch-off point in I_{de} -V _{de} plots of a NMOS. What is the				

c3. What are the voltage conditions at pinch-off point in I_{ds} - V_{ds} plots of a NMOS. What is the reason the current is maintained constant even after pinch-off region? [2]

:::::22/11/2022::::E