BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BRANCI	BE H: CSE	SEMESTER : III SESSION : MO/18	
TIME:	SUBJECT: CS4101-DISCRETE MATHEMATICS STRUCTURE 03:00	FULL MARKS: 60	
INSTRU 1. The 2. Canc 3. The 4. Befo 5. Table	CTIONS: question paper contains 7 questions each of 12 marks and total 84 marks. lidates may attempt any 5 questions maximum of 60 marks. missing data, if any, may be assumed suitably. re attempting the question paper, be sure that you have got the correct ques es/Data hand book/Graph paper etc. to be supplied to the candidates in the e	tion paper. xamination hall.	
Q.1(a) (b)) Suppose the predicate F(x, y, t) is used to represent the statement that person x can fool person y at time t. Write the meaning of the formula ∀x∃y∃t(~F(x, y, t)) in words.) Write the following statements in symbolic form: (i) "If my computations are correct and I pay the electric bill, then I will run out of money. If I don't pay the electric bill, the power will be turned off. Therefore, if I don't run out of money and the power is still on, then my computations are incorrect." Convert this argument into logical notations using the variables c, b, r, p for propositions of computations, electric bills, out of money and the power respectively. 		[2] [4]
(c)	(ii) The sum of two positive integers is always positive. Prove or Disprove: $[(p \land q) \rightarrow r] \rightarrow [\sim r \rightarrow (\sim p \land \sim q)]$ is a tautology.		[6]
Q.2(a) (b)	Prove that, for any integers x, y, the product xy is even if and only if either x is even or y is even. Prove that the following expression is true for every natural numbers n, $1 \cdot n + 2 \cdot (n - 1) + 3 \cdot (n - 2) + \dots + (n - 1) \cdot 2 + n \cdot 1 = \frac{1}{6}n(n + 1)(n + 2)$		[4] [8]
Q.3(a) (b)	Prove that, if <i>f</i> is $o(g)$ (little-o) then <i>f</i> is $O(g)$ (Big-O). Prove that, if <i>a</i> and <i>r</i> are real numbers and $r \neq 0$, then $\sum_{i=0}^{n} ar^{i} = \begin{cases} \frac{ar^{n+1}-a}{r-1} & \text{if } r \neq 1\\ (n+1)a & \text{if } r = 1 \end{cases}$		[4] [4]
(c)	Show that $\log_a x \in o(x)$ where a is a positive number different from 1.		[4]
Q.4(a) (b)	Show that the "greater than or equal" relation (\geq) is a partial ordering on the s Find the reflexive, symmetric and transitive closures of the following relation $R = \{(1,1), (1,2), (2,2), (2,4), (3,2), (4,1)\}.$	et of integers.	[6] [6]
0.5(a)	\mathbf{p}_{k}		[2]

- Q.5(a) Prove that, if a (p,q) graph G is k-connected then $q \ge \frac{pk}{2}$ [2] (b) Draw the complements of the following two graphs. Are these complements isomorphic to each other? [4]

- (c) i) Is the complete bipartite graph $K_{7,10}$ Hamiltonian? Justify your answer.
 - ii) Show that weather the given graph is Hamiltonian or not. Justify your answer.

- Q.6(a) Find the no. of vertices of degree 1 in a binary tree.
- (b) Let the tree T has 50 edges: the removal of certain edges from T yields two disjoint trees T_1 and T_2 [4] such that the number of vertices in T_1 equals the number of edges of T_2 . Determine the number of edges and vertices of T_1 and T_2 .
 - (c) Using Kruskal's Algorithm find a minimal spanning tree of the weighted graph given below [6]

Q.7(a) Prove that order of the subgroup divides the order of the group. [4] (b) If $(G_1,*_1)$ and $(G_2,*_2)$ are groups, then show that $G = G_1 \times G_2$ i.e., (G,*) is a group with binary [8] operation * defined by $(a_1, b_1) * (a_2, b_2) = (a_1 *_1 b_1, a_2 *_2 b_2)$.

******26.11.18*****E

[6]

[2]