BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: B. Pharm. BRANCH: PHARMACY	SEMESTER: VI SESSION: SP2022
SUBJECT: BP604T- BIOPHARMACEUTICS AND PHARMACOKINETIC TIME: 3.00 Hours	S FULL MARK: 75
 The missing data, if any, may be assumed suitably. Before attempting the question paper, be sure that you have got the correct quest Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the ex This question paper consists of (03) three parts. Read the part wise instructions questions. 	tion paper. Camination hall. S before attempting the
PART-I Objective types questions (Instruction: Answer all question	s)
Q1.	(10 x 2 = 20 Marks)
 A. At Cmax, which of the following option is correct? i. dXa/dt > dXe/dt ii. dXa/dt < dXe/dt iii. dXa/dt = dXe/dt iv All above options are correct 	
 B. In zero order half-life is i. independent on concentration ii. directly dependent on concentration iii. Inversely dependent on concentration iv. All of the above 	
C. Half-life of a drug that follows first order kinetics is i. dependent on Initial Plasma Concentration ii. independent on initial Plasma concentration	
D. Total amount of drug in the body is equal to dose given plus amount of drug alre	ady in the body (T/F)
i. True ii. False	
E. The equation to estimate (Xn) _{max} when the drug is given intravenously at 'tau' ti	ne unit is
F. Write the final equation to calculate "average plasma drug concentration at stea is given intravenously at regular time intervals	ady state" when the drug
G. If the elimination process is saturated, amongst following which option is correct i. Drug concentrations in the blood can increase rapidly ii. Drug concentrations in the blood will decline rapidly	
H. When KE>Ka, the residual line slope is	
I. If there is no tissue-drug interaction, volume of distribution is likely to be	
J. When concentration of drug in plasma is relatively very less than drug concent law of diffusion reduces to	ration at GI tract, Fick's

PART-II Short Answers (Instruction: Answer seven out of nine questions)

(7 x 5 = 35 Marks)

Q2.	Discuss kinetics of protein binding i	n brief.			
Q3.	The bioavailability of a new investigational drug was studied in 12 volunteers. Each volunteer received either a single oral tablet containing 400 mg of the drug, 5 mL of a pure aqueous solution containing 400 mg of the drug, or a single IV bolus injection containing 100 mg of the drug. The average AUC values (0-				
	48 hours) are given in the table below. From these data, calculate (a) the relative bioavailability of the				
	drug from the tablet compared to the oral solution and (b) the absolute bioavailability of the drug from				
	the tablet.				
	Drug product	Dose (mg)	AUC (mcg.h/mL)		
	Oral Tablet	400	120.45		
	Oral Solution	400	126.54		
	IV Bolus Injection	100	62.14		
Q4.	Compare and discuss parallel and crossover design in Bioequivalence study.				
Q5.	Prove that amount of drug in the body remains constant throughout the time course of drug				
06	Derive a method to estimate Absorption rate constant using method of residuals				
07.	Derive and discuss a method to determine accumulation of drug in the body (accumulation factor) when				
	a drug given intravenously at regula	ar intervals.	, (
Q8.	Why IV loading dose is given in intra	avenous therapy. Derive an equatio	n to calculate Loading dose.		
Q9.	Discuss non-linear pharmacokinetic	s in brief.			
Q10.	Develop a method to estimate Vmax and Km in Non-linear pharmacokinetics.				

ΡΤΟ

PART-III Long Answers (Instruction: Answer two out of three questions)

(2 x 10 = 20 marks)

Q11.	Derive a method to estimate area under the curve for a drug given orally.
Q12.	Derive an equation to estimate $(Xn)_{max}$ when the drug is given multiple times intravenously at regular time intervals.
Q13.	A drug eliminated from the body by capacity-limited pharmacokinetics has a KM of 100 mg/L and a Vmax of 50 mg/h. Calculate and <i>discuss</i> the time for drug to be 50% eliminated in following four cases: Dose 1: 600 mg Dose 2: 300 mg Dose 3: 5 mg Dose 4: 2.5 mg

:::::28/04/2022:::::