

BIRLA INSTITUTE OF TECHNOLOGY MESRA RANCHI, INDIA

CHOICE BASED CURRICULUM

Computer Science and Engineering

P.G Programme

(M. Tech in Computer Science and Engineering)

Department of Computer Science & Engineering

Birla Institute of Technology, Mesra, Ranchi - 835215 (India)

Institute Vision

To become a Globally Recognized Academic Institution in consonance with the social, economic and ecological environment, striving continuously for excellence in education, research and technological service to the National needs.

Institute Mission

- To educate students at Undergraduate, Postgraduate Doctoral and Post-Doctoral levels to perform challenging engineering and managerial jobs in industry.
- To provide excellent research and development facilities to take up Ph.D. programmes and research projects.
- To develop effective teaching and learning skills and state of art research potential of the faculty.
- To build national capabilities in technology, education and research in emerging areas.
- To provide excellent technological services to satisfy the requirements of the industry and overall academic needs of society.

Department Vision

The department strives to be recognized for outstanding education and research, leading to excellent professionals and innovators in the field of Computer Science and Engineering, who can positively contribute to the society.

Department Mission

- To impart quality education and equip the students with strong foundation that could make them capable of handling challenges of the new century.
- To maintain state of the art research facilities and facilitate interaction with world's leading universities, industries and research organization for constant improvement in the quality of education and research.

Program Educational Objectives (PEOs) - Computer Science

PEO1:Students are trained in such a way that makes them capable of exploiting and enhancing theoretical and practical knowledge in various domains of Computer Science.

PEO2:Students are imparted with strong base of knowledge that makes them suitable for both industry teaching and research.

PEO3:Students are trained to develop practical and efficient solutions to the challenges in the growing field of software industry to gain leadership positions in their organization and/or teams.

PEO4:Students are inculcated with the sensitivity towards ethics, public policies and their responsibilities towards the society to gain trust and respect of others as ethical team members.

PROGRAM OUTCOMES (POs) M. Tech. in Computer Science and Engineering

PO1: An ability to independently carry out research /investigation and development work to solve practical problems.

PO2: An ability to write and present a substantial technical report/document.

PO3: Students should be able to demonstrate a degree of mastery over the area as per the specialization of the program. The mastery should be at a level higher than the requirements in the appropriate bachelor program.

PO4:In depth understanding of fundamental principles and concepts of various domains of Computer Science.

PO5:Ability for analytical and critical thinking in order to analyse, design and improve existing tools and techniques.

PO6:Knowledge of contemporary issues in the field of Computer Science and ability to engage in lifelong learning.

COURSE INFORMATION SHEET

Course code: CS501

Course title: MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE

Pre-requisite(s): Discrete Mathematics

Co- requisite(s):

Credits: 3 L: 3 T: 0 P: 0 Class schedule per week: 03

Class: M. Tech Semester / Level: I/5

Branch: Computer Science and Engineering

Name of Teacher:

Course Objectives

This course enables the students to:

1.	Present basic concepts and techniques of linear algebra, probability,			
	statistics and graph theory			
2.	Develop mathematical thinking and problem-solving skill			
3.	Provide the foundations of probabilistic and statistical analysis			
4.	Explain graphs to formulate computational problems			

Course Outcomes

After the completion of this course, students will be able to:

	inpletion of this course, students will be use to:		
CO1	Demonstrate skills in solving mathematical problems		
CO2	Apply knowledge of computing and mathematics appropriate to the		
	discipline		
CO3	Analyze problems and identify the computing requirements appropriate to		
	its solution		
CO4	Explain basic concepts in probability theory and statistical analysis		
CO5	Articulate the advanced courses in Computer science such as Coding		
	Theory, Artificial Intelligence, Numerical Computation, etc.		

Module I:

Linear Algebra

Introduction: Matrices and solving set of linear equations, Vector space, Subspace, Linear combination of vectors, Linear dependence and independence of vectors, Bases and dimensions.

(8L)

Module II:

Inner product spaces, Orthogonal vectors and dual vectors, Eigen values and Eigen vectors, Linear programming.

(8L)

Module III:

Probability and Statistics

Frequency distribution and measures of central tendency mean, median mode, quartiles, measures of dispersions and skewness, standard deviation, mean deviation, coefficient of variation, moments.

(8L)

Module IV:

Probability: definition, Distribution: discrete and continuous, Chi-square test, t-test.

(8L)

Module V:

Graph Theory

Introduction: Graphs and its types, Representation of graphs: Adjacency matrix, Incidence matrix, Adjacency list, Planar graph, Kuratowski's Graphs, Clique and maximum Clique finding algorithms.

(8L)

Books recommended:

TEXT BOOK

- 1. K. Haffman, and R. Kunze, "Linear Algebra", 2ndEdition, Pearson, 2015.(T1)
- 2. G. Williams, "Linear Algebra with Applications", 4thEdition, John & Bartlett.(**T2**)
- 3. W. Navidi, "Statistics for Engineers and Scientists", 2ndEdition, TMH, 2008.(T3)
- 4. J.K. Goyal, and J. N. Sharma, "Mathematical Statistics", Krishna Prakashan, 2017.(T4)
- 5. NarasinghDeo, "Graph Theory with Applications to engineering and Computer Science", Prentice Hall of India, 2001.(**T5**)
- 6. Douglas B. West, "Introduction to Graph theory", Pearson Education, 2002.(T6)

Course Evaluation:

Individual assignment, Theory (Quiz and End semester) examinations

Gaps in the syllabus (to meet Industry/Profession requirements):

POs met through Gaps in the Syllabus:

Topics beyond syllabus/Advanced topics/Design:

POs met through Topics beyond syllabus/Advanced topics/Design: Teaching through research papers.

COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS & EVALUATION PROCEDURE

Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Continuous Internal Assessment	50
Semester End Examination	50

Continuous Internal Assessment	% Distribution
3 Quizzes	30 % (3 × 10%)
Assignment (s)	10
Seminar before a committee	10

Assessment Components	CO1	CO2	CO3	CO4	CO5
Continuous Internal Assessment					
Semester End Examination					

Indirect Assessment –

- 1. Student Feedback on Faculty
- 2. Student Feedback on Course Outcome

Course Delivery Methods

CD1	Lecture by use of boards/LCD projectors/OHP projectors
CD2	Assignments/Seminars
CD3	Laboratory experiments/teaching aids
CD4	Industrial/guest lectures
CD5	Industrial visits/in-plant training
CD6	Self- learning such as use of NPTEL materials and internets
CD7	Simulation

MAPPING BETWEEN COURSE OUTCOMES AND PROGRAM OUTCOMES

CO	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	1	1	1	1
CO2	3	3	1	1	1	1
CO3	2	3	2	1	1	1
CO4	3	2	1	1	1	1
CO5	3	1	1	1	1	1

If satisfying and < 34% = L, 34-66% = M, > 66% = H

Course Outcomes	Course Delivery Method
CO1	CD1,CD6
CO2	CD1, CD6,CD7
CO3	CD1, CD2, CD3,CD6,CD7
CO4	CD1, CD3,CD6,CD7
CO5	CD1,CD2,CD3,CD4,CD5,CD7

COURSE INFORMATION SHEET

Course code: CS502

Course title: ADVANCED DATA STRUCTURES Pre-requisite(s): Data Structures, Algorithm Analysis

Co- requisite(s):

Credits: 3 L: 3 T:0 P:0 Class schedule per week: 03

Class: M. Tech Semester / Level: I/5

Branch: Computer Science and Engineering

Name of Teacher:

Course Objectives

This course enables the students:

1.	The student should be able to choose appropriate data structures, understand the ADT/libraries, and use it to design algorithms for a specific problem.
2.	Students should be able to understand the necessary mathematical
	abstraction to solve problems.
3.	To familiarize students with advanced paradigms and data structure used to
	solve algorithmic problems.
4.	Student should be able to come up with analysis of efficiency and proofs of
	correctness.

Course Outcomes

After the completion of this course, students are expected to:

CO1	Understand the implementation of symbol table using hashing techniques.	
CO2	Develop and analyze algorithms for red-black trees, B-trees and Splay	
	trees.	
CO3	Develop algorithms for text processing applications.	
CO4	Interpret the basic working of advanced heaps.	
CO5	Appraise the implementation of symbol table using hashing techniques.	

Module I:

Dictionaries: Definition, Dictionary Abstract Data Type, Implementation of Dictionaries. Hashing: Review of Hashing, Hash Function, Collision Resolution Techniques in Hashing, Separate Chaining, Open Addressing, Linear Probing, Quadratic Probing, Double Hashing, Rehashing, Extendible Hashing.

(8L)

Module II:

Skip Lists: Need for Randomizing Data Structures and Algorithms, Search and Update Operations on Skip Lists, Probabilistic Analysis of Skip Lists, Deterministic Skip Lists

(8L)

Module III:

Trees: Binary Search Trees, AVL Trees, Red Black Trees, 2-3 Trees, B-Trees, Splay Trees (8L)

Module IV:

Heaps: Balanced Search Trees as Heaps, Array-Based Heaps, Heap-Ordered Trees and Half-Ordered Trees, Leftist Heaps, Skew Heaps, Binomial Heaps, Changing Keys in Heaps, Fibonacci Heaps, Heaps of Optimal Complexity, Double-Ended Heap Structures and Multidimensional Heaps, Heap-Related Structures with Constant-Time Updates.

(8L)

Module V:

Text Processing: Sting Operations, Brute-Force Pattern Matching, The Boyer-Moore Algorithm, The Knuth-Morris-Pratt Algorithm, Standard Tries, Compressed Tries, Suffix Tries, The Huffman Coding Algorithm, The Longest Common Subsequence Problem (LCS), Applying Dynamic Programming to the LCS Problem.

(8L)

Books recommended:

TEXT BOOK

- 1. Mark Allen Weiss, "Data Structures and Algorithm Analysis in C++," 2ndEdition, Pearson, 2004.(**T1**)
- 2. Peter Brass, "Advanced Data Structures," Cambridge University Press, 1stEdition.(T2)
- 3. M T Goodrich, & Roberto Tamassia, "Algorithm Design," John Wiley, 2002.(T3)

Course Evaluation:

Individual assignment, Theory (Quiz and End semester) examinations

Gaps in the syllabus (to meet Industry/Profession requirements):

POs met through Gaps in the Syllabus:

Topics beyond syllabus/Advanced topics/Design:

POs met through Topics beyond syllabus/Advanced topics/Design: Teaching through research papers.

COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS & EVALUATION PROCEDURE

Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Continuous Internal Assessment	50
Semester End Examination	50

Continuous Internal Assessment	% Distribution
3 Quizzes	30 % (3 × 10%)
Assignment (s)	10
Seminar before a committee	10

Assessment Components	CO1	CO2	CO3	CO4	CO5
Continuous Internal Assessment					
Semester End Examination					

Indirect Assessment –

- 1. Student Feedback on Faculty
- 2. Student Feedback on Course Outcome

Course Delivery Methods

CD1	Lecture by use of boards/LCD projectors/OHP projectors
CD2	Assignments/Seminars
CD3	Laboratory experiments/teaching aids
CD4	Industrial/guest lectures
CD5	Industrial visits/in-plant training
CD6	Self- learning such as use of NPTEL materials and internets
CD7	Simulation

MAPPING BETWEEN COURSE OUTCOMES AND PROGRAM OUTCOMES

CO	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	1	1	1	1	1
CO2	2	3	3	1	1	1
CO3	2	3	3	2	1	1
CO4	3	1	1	1	1	1
CO5	3	1	1	1	1	1

If satisfying and < 34% = L, 34-66% = M, > 66% = H

Course Outcomes	Course Delivery Method
CO1	CD1,CD6
CO2	CD1, CD6,CD7
CO3	CD1, CD2, CD3,CD6,CD7
CO4	CD1, CD3,CD6,CD7
CO5	CD1,CD2,CD3,CD4,CD5,CD7

COURSE INFORMATION SHEET

Course code: CS504

Course title: DISTRIBUTED SYSTEMS

Pre-requisite(s): Data Structure, Operating system

Co- requisite(s):

Credits: 3 L:3 T:0 P:0 Class schedule per week: 03

Class: M. Tech

Semester / Level: I/5

Branch: Computer Science and Engineering

Name of Teacher: Course Objectives

The course objectives are to enable the students to learn:

1.	Role of distributed systems in day-to-day life
2.	Distributed system models and communication methods
3.	Concepts of distributed file systems and distributed transactions
4.	Resource management techniques in distributed environment
5.	Analysing the approaches for designing and supporting distributed systems

Course Outcomes

After the completion of this course, students will be able to:

CO1	Identify trends and challenges in distributed systems
CO2	Understand various distributed system models and communication methods
CO3	Learn the concepts of distributed file systems and distributed transactions
CO4	Learn approaches for resource management in distributed environment
CO5	Understand the requirements for designing and supporting distributed systems

Module 1:

Introduction: Examples of Distributed Systems, Trends in Distributed Systems, Resource sharing, Challenges. Case study: World Wide Web.

Networking and Internetworking: Types of network, Network principles, Internet protocols (8L)

Module 2:

Interprocess Communication: Client-server communication, Group communication, Network virtualization.

Remote Invocation: Request-reply protocols, Remote procedure call, Remote method invocation.

Indirect Communication: Publish subscribe system, Message queues, Shared memory approaches.

(8L)

Module 3:

Peer to Peer Systems: Introduction, Napster and its legacy, Middleware, Routing overlays.

Distributed File systems: Introduction, File service architecture, Case Study: NFS.

(8L)

Module 4:

Time and Global States: Clocks, events, and process states, Synchronizing physical clocks, Logical time and logical clocks, Global states, Distributed debugging

Coordination and Agreement – Distributed mutual exclusion, Elections, Coordination and agreement in group communication.

(8L)

Module 5:

Distributed Transactions: Flat and nested transactions, Atomic commit protocols, Concurrency Control, Distributed deadlocks, Transaction recovery.

Replication: Introduction, System model, Fault tolerant services, Transactions with replicated data.

(8L)

TEXT BOOK

1. G. Coulouris, J. Dollimore, T. Kindberg, Distributed Systems Concepts and Design, 5th Edition, Pearson Education, 2012.**(T1)**

REFERENCE BOOKS

- 1. A. S. Tanenbaum, M. Van Steen, Distributed Systems: Principles and Paradigms, Pearson Education, 2007. (R1)
- 2. P. K. Sinha, Distributed Systems: Concepts and Design, Prentice Hall, 2007. (R1)

Course Evaluation:

Individual assignment, Theory (Quiz and End semester) examinations

Gaps in the syllabus (to meet Industry/Profession requirements):

POs met through Gaps in the Syllabus:

COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS & EVALUATION PROCEDURE

Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Continuous Internal Assessment	50
Semester End Examination	50

Continuous Internal Assessment	% Distribution
3 Quizzes	30 % (3 × 10%)
Assignment (s)	10
Seminar before a committee	10

Assessment Components	CO1	CO2	CO3	CO4	CO5
Continuous Internal Assessment					
Semester End Examination					

Indirect Assessment -

- 1. Student Feedback on Faculty
- 2. Student Feedback on Course Outcome

Topics beyond syllabus/Advanced topics/Design:

POs met through Topics beyond syllabus/Advanced topics/Design: Teaching through research papers.

Course Delivery Methods

CD1	Lecture by use of boards/LCD projectors/OHP projectors
CD2	Assignments/Seminars
CD3	Laboratory experiments/teaching aids
CD4	Industrial/guest lectures
CD5	Industrial visits/in-plant training
CD6	Self- learning such as use of NPTEL materials and internets
CD7	Simulation

MAPPING BETWEEN COURSE OUTCOMES AND PROGRAM OUTCOMES

СО	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	2	2	1	2
CO2	3	3	3	1	3	1
CO3	2	3	3	3	2	1
CO4	3	3	3	3	1	1
CO5	2	2	3	2	1	1

If satisfying and < 34% = L, 34-66% = M, > 66% = H

Course Outcomes	Course Delivery Method
CO1	CD1,CD6
CO2	CD1, CD6,CD7
CO3	CD1, CD2, CD3,CD6,CD7
CO4	CD1, CD3,CD6,CD7
CO5	CD1,CD2,CD3,CD4,CD5,CD7

PROGRAM ELECTIVE I

COURSE INFORMATION SHEET

Course code: CS506

Course title: MACHINE LEARNING

Pre-requisite(s): Design of Algorithms, Mathematics II, Artificial Intelligence

Co- requisite(s):

Credits: 3 L: 3 T: 0 P: 0 Class schedule per week: 03

Class: M. Tech Semester / Level: I/5

Branch: Computer Science and Engineering

Course Objectives

This course enables the students:

1.	To formulate machine learning problems corresponding to different			
	applications.			
2.	To understand various supervised, semi-supervised and unsupervised machine			
	learning algorithms.			
3.	To familiarize various machine learning software libraries and data sets publicly			
	available.			
4.	To develop machine learning based system for various real-world problems.			
5.	To assess how the choice of a machine-learning algorithm impacts the accuracy			
	of a system.			

Course Outcomes

After the completion of this course, students will be able to:

CO1	Formulate machine learning problems corresponding to different
	applications: data, model selection, model complexity
CO2	Demonstrate understanding of a range of machine learning algorithms along
	with their strengths and weaknesses
CO3	Implement machine learning solutions to classification, regression, and
	clustering problems
CO4	Design and implement various machine learning algorithms in a range of
	real-world applications
CO5	Evaluate and analyse the performance of a machine-learning algorithm or a
	system based on machine learning algorithm.

Module I:

Introduction to Machine Learning

Machine Learning – what and why? Basics of Linear Algebra and Statistics, Overview of target function representations; Linear Regression.

(8L)

Module II:

Supervised Learning

Basics of Feature Selection and Evaluation, Decision Tree, Overfitting and Pruning, Logistic regression, Support Vector Machine and Kernel; Noise, bias-variance trade-off, under-fitting and over-fitting concepts.

(8L)

Module III:

Neural Networks

Perceptrons: representational limitation and gradient descent training. Multilayer networks and backpropagation. Hidden layers and constructing intermediate, distributed representations. Overfitting, learning network structure, recurrent networks.

(8L)

Module IV:

Unsupervised and Semi Supervised Learning

Learning from unclassified data. Clustering. Hierarchical Agglomerative Clustering. K-means partitional clustering. Expectation maximization (EM) for soft clustering. Semi-supervised learning with EM using labeled and unlabled data.

(8L)

Module V:

Ensemble

Committees of multiple hypotheses, bagging, boosting, active learning with ensembles.

(8L)

Books recommended:

TEXT BOOK

1. Tom Mitchell, "Machine Learning", Latest Edition, Mc-Graw Hill. (T1)

REFERENCE BOOK

- 1. Shai Shalev-Shwartz, and Shai Ben-David, "Understanding Machine Learning", Cambridge University Press, 2017. (R1)
- 2. Christopher Bishop, "Pattern Recognition and Machine Learning", Springer, 2006. (R2)

Course Evaluation:

Individual assignment, Theory (Quiz and End semester) examinations

Gaps in the syllabus (to meet Industry/Profession requirements):

POs met through Gaps in the Syllabus:

Topics beyond syllabus/Advanced topics/Design:

POs met through Topics beyond syllabus/Advanced topics/Design: Teaching through research papers.

COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS & EVALUATION PROCEDURE

Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Continuous Internal Assessment	50
Semester End Examination	50

Continuous Internal Assessment	% Distribution
3 Quizzes	30 % (3 × 10%)
Assignment (s)	10
Seminar before a committee	10

Assessment Components	CO1	CO2	CO3	CO4	CO5
Continuous Internal Assessment					
Semester End Examination					

Course Delivery Methods

CD1	Lecture by use of boards/LCD projectors/OHP projectors
CD2	Assignments/Seminars
CD3	Laboratory experiments/teaching aids
CD4	Industrial/guest lectures
CD5	Industrial visits/in-plant training
CD6	Self- learning such as use of NPTEL materials and internets
CD7	Simulation

MAPPING BETWEEN COURSE OUTCOMES AND PROGRAM OUTCOMES

CO	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	2	3	1	1
CO2	3	2	3	3	1	1
CO3	3	3	3	2	1	2
CO4	3	3	3	3	2	2
CO5	3	3	3	2	2	1

If satisfying and < 34% = L, 34-66% = M, > 66% = H

Course Outcomes	Course Delivery Method
CO1	CD1,CD6
CO2	CD1, CD6,CD7
CO3	CD1, CD2, CD3,CD6,CD7
CO4	CD1, CD3,CD6,CD7
CO5	CD1,CD2,CD3,CD4,CD5,CD7

COURSE INFORMATION SHEET

Course code: IT503

Course title: WIRELESS SENSOR NETWORKS Pre-requisite(s): Basic Networking Fundamentals

Co-requisite(s):

Credits: 3 L: 3 T: 0 P: 0 Class schedule per week: 03

Class: M. Tech Semester / Level: I/5

Branch: Computer Science and Engineering

Name of Teacher:

Course Objectives

This course enables the students to:

1.	Familiarize with the principles of sensor nodes, network deployment and
	architectures.
2.	Know the data transmission and routing protocols. Know the differences
	among different networks.
3.	Analyze or compare the performance of different routing and MAC protocol
4.	Evaluate the performance of different MAC protocols and clustering algorithm
5.	Compute the throughput and channel utilization for different network
	scenarios.

Course Outcomes

After the completion of this course, students will be able to:

CO1	Obtain a broad understanding about the network architecture of wireless
	sensor network.
CO2	Understand all basic characteristics of wireless sensor networks and sensor
	nodes.
CO3	Understand the principles of data transmission, clustering algorithm and
	routing protocols.
CO4	Analyze and evaluate different constraint of wireless sensor network, e.g.,
	coverage, power management, security and data collisions.
CO5	Design and development of new sensor network architecture.

Module I:

Fundamentals of Sensor Networks

Introduction to wireless sensor networks, Wireless Sensor nodes- Sensing and sensors-challenges and constraints - node architecture-sensing subsystem, processor subsystem communication interfaces- prototypes, Application of Wireless sensors.

(8L)

Module II:

Communication Characteristics and Deployment Mechanisms

Wireless Transmission Technology and Systems-Radio Technology Primer-Available Wireless Technologies - Hardware- Telosb, Micaz motes- Time Synchronization Clock and the Synchronization Problem - Basics of time Synchronization-Time synchronization protocols - Localization- Ranging Techniques- Range based Localization-Range Free Localization- Event driven Localization.

(8L)

Module III:

Mac Layer

Overview-Wireless Mac Protocols-Characteristics of MAC protocols in Sensor networks – Contention free MAC Protocols- characteristics- Traffic Adaptive Medium Access-Y-MAC, Low energy Adaptive Clustering - Contention based MAC Protocols, Power Aware Multi-Access with signalling, Sensor MAC-Timeout MAC-Data gathering MAC.

(8L)

Module IV:

Routing in Wireless Sensor Networks

Design Issues in WSN routing- Data Dissemination and Gathering-Routing Challenges in WSN - Flooding-Flat Based Routing - SAR, Directed Diffusion, Hierarchical Routing- LEACH, PEGASIS - Query Based Routing- Negotiation Based Routing Geographical Based Routing-Transport layer- Transport Protocol Design issues, Performance of Transport Control Protocols.

(8L)

Module V:

Middleware and Security Issues

WSN middleware Principles-Middleware Architecture-Existing middleware - operating systems for wireless sensor networks-performance and traffic management - Fundamentals of network security-challenges and attacks - Protocols and mechanisms for security.

(8L)

Books recommended:

TEXT BOOK

- 1. WaltenegusDargie, Christian Poellabauer, "Fundamentals of Wireless Sensor Networks, Theory and Practice", Wiley Series on wireless Communication and Mobile Computing, 2011. (T1)
- 2. KazemSohraby, Daniel manoli, "Wireless Sensor networks- Technology, Protocols and Applications", Wiley Inter Science Publications 2010. (T2)

REFERENCE BOOK

- 1. BhaskarKrishnamachari, "Networking Wireless Sensors", Cambridge University Press, 2005. (R1)
- 2. C.S Raghavendra, Krishna M.Sivalingam, Taiebznati, "Wireless Sensor Networks", Springer Science 2004. (R2)

Course Evaluation:

Individual assignment, Theory (Quiz and End semester) examinations

Gaps in the syllabus (to meet Industry/Profession requirements):

POs met through Gaps in the Syllabus:

Topics beyond syllabus/Advanced topics/Design:

POs met through Topics beyond syllabus/Advanced topics/Design: Teaching through research papers.

COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS & EVALUATION PROCEDURE

Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Continuous Internal Assessment	50
Semester End Examination	50

Continuous Internal Assessment	% Distribution
3 Quizzes	30 % (3 × 10%)
Assignment (s)	10
Seminar before a committee	10

Assessment Components	CO1	CO2	CO3	CO4	CO5
Continuous Internal Assessment					
Semester End Examination					

Indirect Assessment –

- 1. Student Feedback on Faculty
- 2. Student Feedback on Course Outcome

Course Delivery Methods

CD1	Lecture by use of boards/LCD projectors/OHP projectors
CD2	Assignments/Seminars
CD3	Laboratory experiments/teaching aids
CD4	Industrial/guest lectures
CD5	Industrial visits/in-plant training
CD6	Self- learning such as use of NPTEL materials and internets
CD7	Simulation

MAPPING BETWEEN COURSE OUTCOMES AND PROGRAM OUTCOMES

CO	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	1	1	1	1
CO2	3	2	1	1	1	1
CO3	3	3	1	1	1	1
CO4	2	3	2	1	1	1
CO5	2	3	3	2	1	1

If satisfying and < 34% = L, 34-66% = M, > 66% = H

Course Outcomes	Course Delivery Method
CO1	CD1,CD6
CO2	CD1, CD6,CD7
CO3	CD1, CD2, CD3,CD6,CD7
CO4	CD1, CD3,CD6,CD7
CO5	CD1,CD2,CD3,CD4,CD5,CD7

COURSE INFORMATION SHEET

Course code: CS507

Course title: COMPUTABILITY AND COMPLEXITY THEORY Pre-requisite(s): Automata Theory and Computer algorithms

Co-requisite(s):

Credits: 3 L: 3 T: 0 P: 0 Class schedule per week: 03

Class: M. Tech Semester / Level: I/5

Branch: Computer Science and Engineering

Name of Teacher:

Course Objectives

This course enables the students to:

1.	Give introduction to the mathematical foundations of computation including
	automata
2.	Learn about the issues in finite representations for languages and machines, as
	well as gain a more formal understanding of algorithms and procedures.
3.	Motivate and expose to the fundamental understanding of computation under
	resource constraints.
4.	Set a research level exposure to deeper topics in complexity theory.

Course Outcomes

After the completion of this course, students will be able to:

CO1	Relate formal languages and mathematical models of computation
CO2	Attain knowledge about different types of languages and the
	corresponding machines for computations
CO3	Understand the limitations on what computers can't do, and learn
	examples of unsolvable problems
CO4	Analyse P, NP, NP-C, NP-Hard, Tractable and Intractable problems
CO5	Explain reduction of problems for easy and hard problems

Module I:

Basic background on automata and languages, Types of automata and languages, Turing machines, Encoding and Enumeration of Turing Machines, k-tape Turing machines, non-deterministic Turing machines, Universal Turing machine, Resource bounded computation, Halting problem

(8L)

Module II:

Context Sensitive Language and Chomosky Hierarchy Recursive enumerable languages, Recursive languages, Decidable and recognizable language, Turing-decidable languages, Turing-recognizable languages, Kolmogorov Complexity

(8L)

Module III:

Primitive recursive function, partial recursive function, Recursive and recursive enumeration sets, Programming systems, Unsolvable problems, a non-recursive language and an unsolvable problem, Rice Theorem, More unsolvable problems, PCP

(8L)

Module IV:

Measuring complexity- Big Oh, small oh and other notations, Analysing algorithms, Time and space complexity of a Turing machine, Complexity analysis of multi-tape TM

(8L)

Module V:

Complexity classes: P, NP, NP-C, NP-Hard problem, PSPACE, NP-complete problems-clique, vertex cover, Hamiltonian cycle, graph colouring problem, graph isomorphism, Reduction from NP-C problem to another problem, Cook-Levin Theorem,Tractable and Intractable problems, Reducing one problem to another problem, Additional classes of problems- RP, ZPP

(8L)

Books recommended:

TEXT BOOK

1. Lewis H.R., Papadimitriou C.H., "Elements of the Theory of Computation", PHI Publ., 2nd edition, New Delhi. (**T1**)

REFERENCE BOOK

- 1. Hopcroft J.E., Motwani R. and Ullman J.D, "Introduction to Automata Theory, Languages and Computations", Second Edition, Pearson Education, 2008. (R1)
- 2. John Martin, "Introduction to Languages and the Theory of Computation", 3rd ed. McGraw Hill, New York, NY, 2003. (R2)
- 3. Dexter Kozen, "Theory of Computation", Springer publication. (R3)

Course Evaluation:

Individual assignment, Theory (Quiz and End semester) examinations

Gaps in the syllabus (to meet Industry/Profession requirements):

POs met through Gaps in the Syllabus:

Topics beyond syllabus/Advanced topics/Design:

POs met through Topics beyond syllabus/Advanced topics/Design: Teaching through research papers.

$\frac{\text{COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS \& EVALUATION}}{\text{PROCEDURE}}$

Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Continuous Internal Assessment	50
Semester End Examination	50

Continuous Internal Assessment	% Distribution
3 Quizzes	30 % (3 × 10%)
Assignment (s)	10
Seminar before a committee	10

Assessment Components	CO1	CO2	CO3	CO4	CO5
Continuous Internal Assessment					
Semester End Examination					

Indirect Assessment –

- 1. Student Feedback on Faculty
- 2. Student Feedback on Course Outcome

Course Delivery Methods

CD1	Lecture by use of boards/LCD projectors/OHP projectors
CD2	Assignments/Seminars
CD3	Laboratory experiments/teaching aids
CD4	Industrial/guest lectures
CD5	Industrial visits/in-plant training
CD6	Self- learning such as use of NPTEL materials and internets
CD7	Simulation

MAPPING BETWEEN COURSE OUTCOMES AND PROGRAM OUTCOMES

CO	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	1	1	1	1
CO2	3	2	1	1	1	1
CO3	3	3	1	1	1	1
CO4	2	3	2	1	1	1
CO5	2	3	3	2	1	1

If satisfying and < 34% = L, 34-66% = M, > 66% = H

Course Outcomes	Course Delivery Method
CO1	CD1,CD6
CO2	CD1, CD6,CD7
CO3	CD1, CD2, CD3,CD6,CD7
CO4	CD1, CD3,CD6,CD7
CO5	CD1,CD2,CD3,CD4,CD5,CD7

OPEN ELECTIVES I

COURSE INFORMATION SHEET

Course code: CS514

Course title: SOFTWARE METRICS

Pre-requisite(s): Software Engineering, Software Testing

Co- requisite(s):

Credits: 3 L:3 T:0 P: 0 Class schedule per week: 03

Class: M. Tech

Semester / Level: I/5

Branch: Computer Science and Engineering

Name of Teacher:

Course Objectives

After the completion of this course, students will be:

1.	Provide a basic understanding and knowledge of the software metrics.
2.	Understand the importance of Metrics data collection.
3.	Analysis and Metrics for object-oriented systems.
4.	Understand external product attributes, Dynamic Metrics and Resource measurement.

Course Outcomes

After the completion of this course, students will be:

CO1	Able to understand the importance of the software development process.
CO2	Analyze the importance of modelling and modelling language.
C03	Design and develop correct and robust software products.
CO4	Explain the business requirements pertaining to software development.
CO5	Design Metrics for object-oriented systems.

ModuleI:

Basics of measurement: Measurement in software engineering Scope of software metrics Representational theory of measurement Measurement and models Measurement scales Meaningfulness in measurement Goal-based framework for software measurement Classifying software measures Determining what to measure Software measurement validation Empirical investigation Types of investigation Planning and conducting investigations.

(8L)

ModuleII:

Measuring size, Aspects of software size Length, functionality and complexity Measuring structure Types of structural measures Control-flow structure Modularity and information flow attributes Data structures.

(8L)

ModuleIII:

Modeling software quality Measuring aspects of software quality Software reliability Basics of software reliability Software reliability problem Parametric reliability growth models Predictive accuracy Recalibration of software-reliability growth predictions Importance of operational environment Wider aspects of software reliability.

(8L)

ModuleIV:

The intent of object-oriented metrics Distinguishing characteristics of object-oriented metrics Various object-oriented metric suites LK suite CK suite and MOOD metrics Runtime Software Metrics Extent of Class Usage Dynamic Coupling Dynamic Cohesion and Data Structure Metrics.

(8L)

ModuleV:

The intent of component-based metrics, Distinguishing characteristics of comp. Measuring productivity, teams, tools, and methods.

(8L)

Books recommended:

Text Book

- 1. "Software Metrics: A rigorous and Practical Approach" by Norman E. Fenton and Shari Lawrence Pfleeger, International Thomson Computer Press, 2nd Edition, 1997. (**T1**)
- 2. "Applied Software Measurement" by Capers Jones, McGraw Hill, 2008. (T2)

Reference Book

- 1. "Object-Oriented Software Metrics" by Mark Lorenz, Jeff Kidd, Prentice Hall, 1994.(R1)
- 2. "Practical Software Metrics For Project Management And Process Improvement" by Robert B Grady, Hewlett Packard Professional Books, 1st Edition, 2004.(**R2**)

Course Evaluation:

Individual assignment, Theory (Quiz and End semester) examinations

Gaps in the syllabus (to meet Industry/Profession requirements):

POs met through Gaps in the Syllabus:

Topics beyond syllabus/Advanced topics/Design:

POs met through Topics beyond syllabus/Advanced topics/Design: Teaching through research papers.

COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS & EVALUATION PROCEDURE

Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Continuous Internal Assessment	50
Semester End Examination	50

Continuous Internal Assessment	% Distribution
3 Quizzes	30 % (3 × 10%)
Assignment (s)	10
Seminar before a committee	10

Assessment Components	CO1	CO2	CO3	CO4	CO5
Continuous Internal Assessment					
Semester End Examination					

Indirect Assessment –

- 1. Student Feedback on Faculty
- 2. Student Feedback on Course Outcome

Course Delivery Methods

CD1	Lecture by use of boards/LCD projectors/OHP projectors
CD2	Assignments/Seminars
CD3	Laboratory experiments/teaching aids
CD4	Industrial/guest lectures
CD5	Industrial visits/in-plant training
CD6	Self- learning such as use of NPTEL materials and internets
CD7	Simulation

MAPPING BETWEEN COURSE OUTCOMES AND PROGRAM OUTCOMES

CO	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	2	2	1	1
CO2	2	2	3	1	1	1
CO3	1	3	3	2	2	2
CO4	3	3	3	2	1	1
CO5	2	1	3	3	3	1

If satisfying and < 34% = L, 34-66% = M, > 66% = H

Course Outcomes	Course Delivery Method
CO1	CD1,CD6
CO2	CD1, CD6,CD7
CO3	CD1, CD2, CD3,CD6,CD7
CO4	CD1, CD3,CD6,CD7
CO5	CD1,CD2,CD3,CD4,CD5,CD7

COURSE INFORMATION SHEET

Course code: CS522

Course title: PATTERN RECOGNITION AND APPLICATION

Pre-requisite(s): Linear Algebra, Vector Calculus, Data Structure& Programming

Co- requisite(s):

Credits: 3 L: 3 T: 0 P: 0 Class schedule per week: 03

Class: M.Tech Semester / Level:I/5

Branch: Computer Science and Engineering

Name of Teacher:

Course Objectives

This course enables the students to:

1.	Be familiar with both the theoretical and practical aspects Pattern
	Recognition.
2.	Have described the foundation of pattern formation, measurement, and
	analysis.
3.	Understand the mathematical and computer aspects of while extracting
	features of an object.
4.	Learn the techniques of clustering and classification for various applications.

Course Outcomes

After the completion of this course, students will be able to:

	1
CO1	Apply their knowledge on Real World Problems while converting these
	problems to computer compatible problems for Pattern Recognition.
CO2	Solve Decision-making model using Statistical and Mathematical Decision
	Theory.
CO3	Design clusters for various Pattern using classical and Modern clustering
	techniques.
CO4	Analyzing various Techniques for Pattern Classification and Clustering.
CO5	Develop Model for Pattern classification through Probabilistic or fuzzy.

Module I:

Introduction: Feature Vectors, Classifiers, Supervised, Unsupervised, MATLAB Tools. Classifiers Based on Bayesian Theory, Linear Classifiers, Nonlinear Classifiers.

(8L)

ModuleII:

Feature Selection, Feature Generation I: Data Transformation and Dimensionality Reduction, Feature Generation II.

(8L)

Module III:

Template Matching, Context Dependent Classification, Super vised Learning.

(8L)

Module IV:

Clustering Basic Concepts, sequential Algorithms.

(8L)

ModuleV:

Hierarchical algorithms, Fuzzy clustering, probabilistic clustering, Hard Clustering, Optimization.

(8L)

Books recommended:

TEXT BOOK

- 1. "Pattern Recognition" by S Theodoridis, K Koutroumbas, Elsevier, 5thEdition, 2015.(**T1**)
- 2. "Pattern Recognition" by N NarshimaMurty, Springer, University press, 2nd Edition, 2015. (**T2**)

REFERENCE BOOK

1. R.O. Duda et.al, "Pattern Classification", 2ndEdition, John Wiley, New York, 2002. (R1)

Course Evaluation:

Individual assignment, Theory (Quiz and End semester) examinations

Gaps in the syllabus (to meet Industry/Profession requirements):

POs met through Gaps in the Syllabus:

Topics beyond syllabus/Advanced topics/Design:

POs met through Topics beyond syllabus/Advanced topics/Design: Teaching through research papers.

COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS & EVALUATION PROCEDURE

Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Continuous Internal Assessment	50
Semester End Examination	50

Continuous Internal Assessment	% Distribution
3 Quizzes	30 % (3 × 10%)
Assignment (s)	10
Seminar before a committee	10

Assessment Components	CO1	CO2	CO3	CO4	CO5
Continuous Internal Assessment					
Semester End Examination					

Indirect Assessment –

- 1. Student Feedback on Faculty
- 2. Student Feedback on Course Outcome

Course Delivery Methods

CD1	Lecture by use of boards/LCD projectors/OHP projectors
CD2	Assignments/Seminars
CD3	Laboratory experiments/teaching aids
CD4	Industrial/guest lectures
CD5	Industrial visits/in-plant training
CD6	Self- learning such as use of NPTEL materials and internets
CD7	Simulation

MAPPING BETWEEN COURSE OUTCOMES AND PROGRAM OUTCOMES

СО	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	3	3	2	1
CO2	3	3	3	2	1	1
CO3	3	2	2	3	1	1
CO4	3	3	2	1	3	1
CO5	2	1	2	2	1	1

If satisfying and < 34% = L, 34-66% = M, > 66% = H

Course Outcomes	Course Delivery Method
CO1	CD1,CD6
CO2	CD1, CD6,CD7
CO3	CD1, CD2, CD3,CD6,CD7
CO4	CD1, CD3,CD6,CD7
CO5	CD1,CD2,CD3,CD4,CD5,CD7

COURSE INFORMATION SHEET

Course code: IT518

Course title: INTERNET OF THINGS

Pre-requisite(s): Co-requisite(s):

Credits: 3 L:3 T:0 P:0 Class schedule per week: 03

Class: M. Tech

Semester / Level: I/5

Branch: Computer Science and Engineering

Name of Teacher:

Course Objectives

This course enables the students to:

1.	Understand the basic concept and the IoT Paradigm
2.	Know the state of art architecture for IoT applications
3.	Learn the available protocols used for IoT
4.	Design basic IoT Applications.
5.	Evaluate optimal IoT applications.

Course Outcomes

After the completion of this course, students will be able to:

CO1	Identify the IoT Components and its capabilities
CO2	Explain the architectural view of IoT under real world constraints
CO3	Analyse the different Network and link layer protocols
CO4	Evaluate and choose among the transport layer protocols
CO5	Design an IoT application

Module I:

IoT-An Architectural Overview

An Architectural Overview Building an architecture, Main design principles and needed capabilities, An IoT architecture outline, standards considerations. M2M and IoT Technology Fundamentals- Devices and gateways, Local and wide area networking, Data management, Business processes in IoT, Everything as a Service(XaaS), M2M and IoT Analytics, Knowledge Management.

(8L)

ModuleII:

IoT Architecture-State of the Art

State of the art, Reference Model and architecture, IoT Reference Architecture; Introduction, Functional View, Information View, Deployment and Operational View, Other Relevant architectural views.

(8L)

ModuleIII:

Sensor Technology, RFID Technology, WPAN Technologies for IoT/M2M, Cellular and Mobile Network Technologies for IoT/M2M CoAP, REST, Zigbee, Bluetooth

(8L)

ModuleIV:

Transport & Session Layer Protocols

Mobile IPv6 technology for IoT, 6LoWPAN, Transport Layer TCP, MPTCP, UDP, DCCP, Session Layer-HTTP, CoAP, XMPP, AMQP, MQTT

(8L)

ModuleV:

Layer Protocols & Security

Introduction, Technical Design constraints. Implementation Examples. Security and Interoperability.

(8L)

Books recommended:

TEXT BOOK

- 1. Jan Holler, VlasiosTsiatsis, Catherine Mulligan, Stefan Avesand, StamatisKarnouskos, David Boyle, "From Machine-to-Machine to the Internet of Things: Introduction to a New Age of Intelligence", 1stEdition, Academic Press, 2014.(**T1**)
- 2. Daniel Minoli, "Building the Internet of Things with IPv6 and MIPv6". (T2)

REFERENCE BOOK

- 1. Bernd Scholz-Reiter, Florian Michahelles, "Architecting the Internet of Things", ISBN 978-3-642-19156-5 e-ISBN 978-3-642-19157-2, Springer. (R1)
- 2. Peter Waher, "Learning Internet of Things", PACKT publishing, BIRMINGHAM MUMBAI. (R2)

Course Evaluation:

Individual assignment, Theory (Quiz and End semester) examinations

Gaps in the syllabus (to meet Industry/Profession requirements):

POs met through Gaps in the Syllabus:

Topics beyond syllabus/Advanced topics/Design:

POs met through Topics beyond syllabus/Advanced topics/Design: Teaching through research papers.

$\frac{\text{COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS \& EVALUATION}}{\text{PROCEDURE}}$

Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Continuous Internal Assessment	50
Semester End Examination	50

Continuous Internal Assessment	% Distribution
3 Quizzes	30 % (3 × 10%)
Assignment (s)	10
Seminar before a committee	10

Assessment Components	CO1	CO2	CO3	CO4	CO5
Continuous Internal Assessment					
Semester End Examination					

Indirect Assessment -

- 1. Student Feedback on Faculty
- 2. Student Feedback on Course Outcome

Course Delivery Methods

CD1	Lecture by use of boards/LCD projectors/OHP projectors
CD2	Assignments/Seminars
CD3	Laboratory experiments/teaching aids
CD4	Industrial/guest lectures
CD5	Industrial visits/in-plant training
CD6	Self- learning such as use of NPTEL materials and internets
CD7	Simulation

MAPPING BETWEEN COURSE OUTCOMES AND PROGRAM OUTCOMES

СО	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	3	3	2	1
CO2	3	3	3	2	1	1
CO3	3	2	2	3	1	1
CO4	3	3	2	1	3	1
CO5	2	1	2	2	1	1

If satisfying and < 34% = L, 34-66% = M, > 66% = H

MAPPING BETWEEN COURSE OUTCOMES AND COURSE DELIVERY METHOD

Course Outcomes	Course Delivery Method
CO1	CD1,CD6
CO2	CD1, CD6,CD7
CO3	CD1, CD2, CD3,CD6,CD7
CO4	CD1, CD3,CD6,CD7
CO5	CD1,CD2,CD3,CD4,CD5,CD7

Course code: IT522

Course title: CYBER SECURITY AND DIGITAL FORENSICS

Pre-requisite(s): Computer Basics, Programming and Problem solving

Co-requisite(s):

Credits: 3 L: 3 T: 0 P: 0 Class schedule per week: 03

Class: M. Tech. Semester / Level: I/5

Branch: Computer Science and Engineering

Name of Teacher:

Course Objectives

This course enables the students:

1.	Know about computer-based crime.
2.	Understand Technical and legal aspects of computer crime investigations
3.	Know the limitations of law and its enforcement agencies.
4.	Learn the procedures of recovering computer evidence and seize process.

Course Outcomes

CO1	Exposure on computer-based crime.
CO2	Technical and legal aspects of computer crime investigations
C03	Know the limitations of law and its enforcement agencies.
CO4	Learn the procedures of recovering computer evidence and seize process.
CO5	Apply techniques for finding, preserving, presenting, and extracting
	information from the digital devices.

Module I:

Introduction: Cyberspace and Criminal Behavior, Traditional problems associated with computer-based crime, e cash problems, Computer Technology and History: Computer Language, Hardware, software, operating system, Internet, Network language.

(8L)

ModuleII:

Early Hackers and Theft Components: Phreakers, Hacking, Commodities, Intellectual property. Contempory computer crime: web based criminal activity, money laundering,

(8L)

Module III:

Identity theft and identity fraud: Typologies of internet theft, virtual identity, credit identity. Prevalence and victimology, physical methods, of identity theft, phishing, spyware, trojans, insurance and loan fraud, immigration fraud. Terrorism and organized crime:Terror online, criminal activities, organized crime as cyber gangs., technology used in organized crime. Data piracy.

(8L)

Module IV:

Avenues for Prosecution and Government efforts: Act, Law enforcement agencies, International efforts, Cyber law and its amendments of current state, other legal considerations.

(8L)

ModuleV:

Forensic Terminologies and Developing forensic capabilities, Searching and seizing computer related evidence, Processing of evidence and report preparation.

(8L)

Books recommended:

TEXT BOOK

- 1. "Computer Forensics and Cyber Crime" by M.T.Britz, Pearson Education, First Impression, 2012.(T1)
- 2. "Computer Crime and investigation" by E Casey, Springer, 1stEdition, 2001. (T2)

REFERENCE BOOK

1. "Computer Crime Investigations and Law" by C Easttom& D.J.Taylor, Carenage Learning. (R1)

Course Evaluation:

Individual assignment, Theory (Quiz and End semester) examinations

Gaps in the syllabus (to meet Industry/Profession requirements):

POs met through Gaps in the Syllabus:

Topics beyond syllabus/Advanced topics/Design:

POs met through Topics beyond syllabus/Advanced topics/Design: Teaching through research papers.

COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS & EVALUATION PROCEDURE

Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Continuous Internal Assessment	50
Semester End Examination	50

Continuous Internal Assessment	% Distribution
3 Quizzes	30 % (3 × 10%)
Assignment (s)	10
Seminar before a committee	10

Assessment Components	CO1	CO2	CO3	CO4	CO5
Continuous Internal Assessment					
Semester End Examination					

Indirect Assessment -

- 1. Student Feedback on Faculty
- 2. Student Feedback on Course Outcome

Course Delivery Methods

CD1	Lecture by use of boards/LCD projectors/OHP projectors
CD2	Assignments/Seminars
CD3	Laboratory experiments/teaching aids
CD4	Industrial/guest lectures
CD5	Industrial visits/in-plant training
CD6	Self- learning such as use of NPTEL materials and internets
CD7	Simulation

MAPPING BETWEEN COURSE OUTCOMES AND PROGRAM OUTCOMES

CO	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	1	1	2	1
CO2	3	3	3	1	1	1
CO3	3	3	3	2	1	1
CO4	2	3	2	2	2	1
CO5	2	3	2	2	2	1

If satisfying and < 34% = L, 34-66% = M, > 66% = H

MAPPING BETWEEN COURSE OUTCOMES AND COURSE DELIVERY METHOD

Course Outcomes	Course Delivery Method
CO1	CD1,CD6
CO2	CD1, CD6,CD7
CO3	CD1, CD2, CD3,CD6,CD7
CO4	CD1, CD3,CD6,CD7
CO5	CD1,CD2,CD3,CD4,CD5,CD7

Course code: CS503

Course title: ADVANCED DATA STRUCTURES LAB

Pre-requisite(s):

Co- requisite(s): Advanced Data Structures

Credits: 2 L: 0 T: 0 P: 4 Class schedule per week: 04

Class: M. Tech Semester / Level: I/5

Branch: Computer Science and Engineering

Name of Teacher:

Course Objectives

This course enables the students to:

1.	The student should be able to choose appropriate data structures, understand the ADT/libraries, and use it to design algorithms for a specific problem.
2.	Students should be able to understand the necessary mathematical abstraction to solve problems.
3.	To familiarize students with advanced paradigms and data structure used to solve algorithmic problems.
4.	Student should be able to come up with analysis of efficiency and proofs of correctness.

Course Outcomes

	7
CO1	Understand to implement the symbol table using hashing techniques.
CO2	Develop program for AVL, Red-Black trees, B-trees and Splay trees
CO3	Develop program for text processing applications
CO4	Learn the basic working of advanced heaps
CO5	Understand the implementation of symbol table using hashing techniques

List of Programs as Assignments:

1. Lab Assignment No: 1

Write a program to implement a dictionary using the following ADTs. We assume all the entries in the dictionary to be distinct integers.

- a) Binary Search Tree (BST)
- b) Red Black Tree (RBT)

Each ADT should support five operations, void Insert(val), boolean Delete(val), boolean Search(val), void ClearADT() and void DisplayADT(). Both search and delete operations should respond with a boolean value indicating whether the search/delete was successful or not. The objective of this assignment is to compare the performance of BST and RBT ADTs. You have to compute the time taken for completion of operations and study how the running times of ADT operations will vary across the two ADT implementations.

2. Lab Assignment No: 2

Implement data structures to maintain a list of elements. In particular, implement the list as an array and as a linked list. Write a program to remove duplicates from the list. The code for remove duplicates functionality should remain the same across the two implementation of the list.

Implement the following sequence of operations on the skip list:

a) remove() b) insert() c) Search() d) Update()

Assume the coin flips for the first insertion yield two heads followed by tails, and those for the second insertion yield three heads followed by tails.

3. Lab Assignment No: 3

Implement different Hashing functions and Collision Resolution Techniques.

4. <u>Lab Assignment No: 4</u>

Implement Kruskal's algorithm for finding the minimum spanning tree of a given (positively) weighted (undirected) graph G. You must use the Union-Find data structure that implements both "union by rank" and "path compression" heuristics.

5. Lab Assignment No: 5 &6

Implement the following priority queues:

a) Binary Heap b) Binomial Heap c) Fibonacci Heap

Your program should then create an appropriate priority queue object and perform makeHeap() method. After that, you should give the user menu options to insert(key), delete(key), extractMin(), findMin(), decrease(key), increase(key) updateKey(currentKey, newKey), and displayHeap(filename). You may assume that keys will be unique. For displayHeap(filename), you must output the tree structure of the priority queue (including linked list edges in Binomial Heap, etc) as a directed tree in the dot language format1 and store it in a file named filename (given as parameter).

6. Lab Assignment No: 7&8

Implement Text Processing using Huffman Coding.

Implement the compact representation of the suffix trie for the string "minimize minime".

Implement a standard trie for the following set of strings: {abab, baba, cccc, bbaaaa, caa, bbaacc, cbcc, cbca }.

7. Lab Assignment No: 9 & 10

One way to mask a message, M, using a version of *steganography*, is to insert random characters into M at pseudo-random locations so as to expand M into a larger string, C.

For instance, the message,
ILOVEMOM,
could be expanded into
AMIJLONDPVGEMRPIOM.

It is an example of hiding the string, M, in plain sight, since the characters in M and C are not encrypted. As long as someone knows where the random

Books recommended:

TEXT BOOK

- 1. Mark Allen Weiss, "Data Structures and Algorithm Analysis in C++," 2nd Edition, Pearson, 2004. (**T1**)
- 2. Peter Brass, "Advanced Data Structures," Cambridge University Press, 1st Edition. (T2)
- 3. M T Goodrich, & Roberto Tamassia, "Algorithm Design," John Wiley, 2002. (T3)

Course Evaluation:

Day to day progressive evaluation, Lab Quizzes, Surprise Tests, Online Lab performance and Viva Voce

Gaps in the syllabus (to meet Industry/Profession requirements):

Implementing of real world problems

POs met through Gaps in the Syllabus:

Topics beyond syllabus/Advanced topics/Design:

POs met through Topics beyond syllabus/Advanced topics/Design: Teaching through research papers.

COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS & EVALUATION PROCEDURE

Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Continuous Internal Assessment	60
Semester End Examination	40

Continuous Internal Assessment	% Distribution		
Day to day performance & Lab files	30		

Quiz (es)	10
Viva	20

Semester End Examination	% Distribution
Examination Experiment Performance	30
Quiz	10

Assessment Components	CO1	CO2	CO3	CO4	CO5
Continuous Internal Assessment					
Semester End Examination					

Indirect Assessment –

- 1. Student Feedback on Faculty
- 2. Student Feedback on Course Outcome

Course Delivery Methods

CD1	Lecture by use of boards/LCD projectors/OHP projectors
CD2	Assignments/Seminars
CD3	Laboratory experiments/teaching aids
CD4	Industrial/guest lectures
CD5	Industrial visits/in-plant training
CD6	Self- learning such as use of NPTEL materials and internets
CD7	Simulation

MAPPING BETWEEN COURSE OUTCOMES AND PROGRAM OUTCOMES

CO	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	1	1	1	1	1
CO2	3	2	2	1	1	1
CO3	2	3	3	2	1	1
CO4	3	1	1	1	1	1
CO5	3	1	1	1	1	1

If satisfying and < 34% = 1, 34-66% = 2, > 66% = 3

MAPPING BETWEEN COURSE OUTCOMES AND COURSE DELIVERY METHOD

Course Outcomes	Course Delivery Method
CO1	CD1,CD6
CO2	CD1, CD6,CD7
CO3	CD1, CD2, CD3,
CO4	CD1, CD3,CD6,CD7
CO5	CD1,CD2,CD7

Course code: IT509

Course title: MATLAB PROGRAMMING

Pre-requisite(s): Co- requisite(s):

Credits: 2 L: 0 T: 0 P: 4 Class schedule per week: 04

Class: M. Tech Semester / Level: I/5

Branch: Computer Science and Engineering

Name of Teacher:

Course Objectives

This course enables the students to:

1.	To familiarize the student in introducing and exploring MATLAB			
2.	Develop mathematical thinking and problem-solving skill			
3.	To enable the student on how to approach for solving Engineering problems using simulation tools.			
4.	To provide a foundation in use of this software for real time app			

Course Outcomes

1	the completion of this course, students will be able to.						
	CO1	Express programming & simulation for engineering problems.					
	CO2	Find importance of this software for Lab Experimentation.					
	CO3	Analyze problems and write basic mathematical ,electrical ,electronic problems in Matlab					
	CO4	Implement programming files with GUI Simulink.					
	CO5	Simulate basic Engineering problems					

List of Programs as Assignments:

1. Lab Assignment No: 1

Objective: To Understand and Implement Matrix Algebra

- 1. To create Sparse matrices using the function sparse.
- 2. To convert a sparse matrix to full matrix.

2. Lab Assignment No: 2

Objective: To Understand and Implement Data Analysis

- 1. To measure the daily high temperatures in three cities with different color.
- 2. To solve a different cities temperature do the filter.

3. Lab Assignment No: 3

Objective: To Understand and Implement Data Interpolation

- 1. To Draw 2-D random data.
- 2. To Draw Threshold of Human Hearing.

4. Lab Assignment No: 4

Objective: To Understand and Implement Cubic Splines

- 1. To design Spline differentiation and Integration.
- 2. To design interpolated Spiral Y=f(X).

5. Lab Assignment No: 5

Objective: To Understand and Implement Fourier Analysis

1.To solve the use of the FFT, consider the problem of estimating the continuous Fourier transform of the signal

 $f(t)=2e^{-3t}$ $t \ge 0$, where f(t) is given by

 $F(\omega)=2/(3+i\omega)$

2. To design sawtooth Waveform at arbitrary points.

6. Lab Assignment No: 6

Objective: To Understand and Implement Optimization

- 1. To solve 1-D minimization and maximization.
- 2. To design Rosenbrock's banana function.

7. Lab Assignment No: 7

Objective: To Understand and Implement Differential Equations

- 1. Design a van der Pol Solution.
- 2. To solve Jacobian matrix.

8. <u>Lab Assignment No: 8</u>

Objective: To Understand and Implement Two-Dimensional Graphics

- 1. To add new plots to an existing plot by using the hold command.
- 2. To create new Figure windows, use the figure command in the Command window or the **New Figure** selection from the **File** menu in the Command or Figure window.

9. Lab Assignment No: 9

Objective: To Understand and Implement Three- Dimensional Graphics

1. Plot = 2 with 0 5in polar coordinates.

2. Design a Surface plot using the surf function.

10. Lab Assignment No: 10

Objective: To Understand and Implement Images, Movies, and Sound

- 1. To display 8-bit intensity and RGB images.
- 2. To convert between indexed images and movie frames.

11. Lab Assignment No: 11

Objective: To Understand and Implement Graphical User Interfaces

- 1. Using uigetfile to find the startup.m file on the author's computer.
- 2. Write a program using the function **guidata**, which stores and retrieves data in the GUI figure 'ApplicationData' property.
- 3. How to put walls by clicking a mouse button to make an arbitrary maze.
- 4. Design a GUI System.

Books recommended:

TEXT BOOK

- 1. Duane Hanselman, bruce Littlefield, Mastering MATLAB 7, Reason edu., 2nd edition, 2008. **(T1)**
- 2. Sandeep Nagar, Introduction to MATLAB for Engineers and Scientists: Solutions for Numerical Computation and Modeling, APress, 2017.(T2)

REFERENCE BOOK

1. MATLAB Primer by MATHWORKS. (R1)

Course Evaluation:

Day to day progressive evaluation, Lab Quizzes, Surprise Tests, Online Lab performance and Viva Voce

Gaps in the syllabus (to meet Industry/Profession requirements):

Implementing of real world problems

POs met through Gaps in the Syllabus:

Topics beyond syllabus/Advanced topics/Design:

POs met through Topics beyond syllabus/Advanced topics/Design: Teaching through research papers.

COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS & EVALUATION PROCEDURE

Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Continuous Internal Assessment	60
Semester End Examination	40

Continuous Internal Assessment	% Distribution
Day to day performance & Lab files	30
Quiz (es)	10

Semester End Examination	% Distribution
Examination Experiment Performance	30
Quiz	10

Assessment Components	CO1	CO2	CO3	CO4	CO5
Continuous Internal Assessment					
Semester End Examination					

Indirect Assessment -

- 1. Student Feedback on Faculty
- 2. Student Feedback on Course Outcome

Course Delivery Methods

CD1	Lecture by use of boards/LCD projectors/OHP projectors
CD2	Assignments/Seminars
CD3	Laboratory experiments/teaching aids
CD4	Industrial/guest lectures
CD5	Industrial visits/in-plant training
CD6	Self- learning such as use of NPTEL materials and internets
CD7	Simulation

MAPPING BETWEEN COURSE OUTCOMES AND PROGRAM OUTCOMES

CO	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	2	2	1	1
CO2	3	3	2	2	1	1
CO3	2	3	2	1	2	1
CO4	3	3	2	2	1	1
CO5	3	2	1	1	1	1

If satisfying and < 34% = 1, 34-66% = 2, > 66% = 3

MAPPING BETWEEN COURSE OUTCOMES AND COURSE DELIVERY METHOD

Course Outcomes	Course Delivery Method
CO1	CD1,CD6
CO2	CD1, CD6,CD7
CO3	CD1, CD2, CD3,
CO4	CD1, CD3,CD6,CD7
CO5	CD1,CD2,CD7

Course code: IT510

Course title: JAVA PROGRAMMING

Pre-requisite(s):
Co- requisite(s): None

Credits: 2 L: 0 T: 0 P: 4 Class schedule per week: 04

Class: M. Tech Semester / Level: I/5

Branch: Computer Science and Engineering

Name of Teacher:

Course Objectives

This course enables the students to:

-		Tonwords and students to:					
	1.	To familiarize the student in introducing and exploring JAVA.					
	2.	Knowledge of the structure and model of the Java programming language.					
	3.	Use the Java programming language for various programming technologies.					
	4.	To provide a foundation for Java programming language to solve the given problems.					

Course Outcomes

CO1	Write, compile, and execute Java programs that may include basic data			
	types and control flow constructs using J2SE or other Integrated			
	Development Environments (IDEs)			
CO2	Write, compile, and execute Java programs manipulating Strings and text			
	documents.			
CO3	Write, compile, execute Java programs that include GUIs and event			
	driven programming			
CO4	Create Applets and GUI			
CO5	Executing Client server and socket programming			

List of Programs as Assignments:

1. Lab Assignment No: 1

Objective: To Understand and Implement COLLECTION FRAMEWORK

- 1. To create sparse matrices using the function sparse.
- 2. To convert a sparse matrix to full matrix.

2. Lab Assignment No: 2

Objective: To Understand and Implement Generic Programming

- 1. Write the tasks performed by type erasure?
- 2. Write a generic method to exchange the positions of two different elements in an array?

3. Lab Assignment No: 3

Objective: To Understand and Implement REFLECTION

- 1. Write a program that finds and displays inheritance hierarchy of a specified class?
- 2. Write a program that shows all public fields of a specified class?

4. Lab Assignment No: 4

Objective: GUI Development with Swing

- 1. Working with Text Fields
- 2. Working with Buttons
- 3. Working with Lists
- 4. Working with Scroll Panes

5. Lab Assignment No: 5

Objective: Implementing Robust Geometric Primitives

- 1. Java Program to Apply Above-Below-on Test to Find the Position of a Point with respect to a Line
- 2. Java Program to Compute the Area of a Triangle Using Determinants
- 3. Java Program to Compute the Volume of a Tetrahedron Using Determinants
- 4. Java Program to Find the Area of any Polygon Using Triangulation

6. Lab Assignment No: 6

Objective: To Understand and Implement examples on "Convex Hull"

- 1. Java Program to Implement Graham Scan Algorithm to Find the Convex Hull
- 2. Java Program to Implement Gift Wrapping Algorithm in Two Dimensions
- 3. Java Program to Implement Jarvis March to Find the Convex Hull

7. Lab Assignment No: 7

Objective: To Understand and Implement examples on "Nearest Neighbor Search"

- 1. Java Program to Find the Nearest Neighbour Using K-D Tree Search
- 2. Java Program to Find Nearest Neighbour Using Voronoi Diagram

8. <u>Lab Assignment No: 8</u>

Objective: To Understand and Implement Network Programming

- 1. Working with URLs
- 2. Socket Server Programming
- 3. Client Server Programming

9. Lab Assignment No: 9

Objective: To Understand and Implement SOCKET PROGRAMMING

- 1. Write a java socket program to get the resource http://www.google.com/index.html using HTTP protocol?
- 2. Write a program how do you get the IP address of a machine from its hostname?

10. Lab Assignment No: 10

Objective: To Understand and Implement Java Web Applications

- 1. Simple Servlet
- 2. Java Web Applications Get Request
- 3. Java Web Applications Post Request

11. Lab Assignment No: 11

Objective: To Understand and Implement Advanced Java Input/output (NIO)

- 1. File Copying With NIO
- 2. Working with Buffers
- 3. Working with File Data

Books recommended:

TEXT BOOKS

- **1.** Uttam K Roy, Advanced JAVA Programming, Oxford University Press, 1st Edition, 2015 (**T1**)
- 2. HeerbertSchildt, Java: A Beginner's Guide, SeventhEdition,Oracle Press, 2014 (T2)

Course Evaluation:

Day to day progressive evaluation, Lab Quizzes, Surprise Tests, Online Lab performance and Viva Voce

Gaps in the syllabus (to meet Industry/Profession requirements):

Implementing of real world problems

POs met through Gaps in the Syllabus

Topics beyond syllabus/Advanced topics/Design:

POs met through Topics beyond syllabus/Advanced topics/Design: Teaching through research papers.

$\frac{\text{COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS \& EVALUATION}}{\text{PROCEDURE}}$

Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Continuous Internal Assessment	60
Semester End Examination	40

Continuous Internal Assessment	% Distribution
Day to day performance & Lab files	30
Quiz (es)	10
Viva	20

Semester End Examination	% Distribution
Examination Experiment Performance	30
Quiz	10

Assessment Components	CO1	CO2	CO3	CO4	CO5
Continuous Internal Assessment					
Semester End Examination					

Indirect Assessment -

- 1. Student Feedback on Faculty
- 2. Student Feedback on Course Outcome

Course Delivery Methods

CD1	Lecture by use of boards/LCD projectors/OHP projectors
CD2	Assignments/Seminars
CD3	Laboratory experiments/teaching aids
CD4	Industrial/guest lectures
CD5	Industrial visits/in-plant training
CD6	Self- learning such as use of NPTEL materials and internets
CD7	Simulation

MAPPING BETWEEN COURSE OUTCOMES AND PROGRAM OUTCOMES

CO	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	2	2	1	1
CO2	3	3	2	2	1	1
CO3	3	2	2	2	2	1
CO4	3	2	3	2	1	1
CO5	3	2	1	1	1	1

If satisfying and < 34% = 1, 34-66% = 2, > 66% = 3

MAPPING BETWEEN COURSE OUTCOMES AND COURSE DELIVERY METHOD

Course Outcomes	Course Delivery Method
CO1	CD1,CD6
CO2	CD1, CD6,CD7
CO3	CD1, CD2, CD3,
CO4	CD1, CD3,CD6,CD7
CO5	CD1,CD2,CD7

Course code: IT511

Course title: R PROGRAMMING

Pre-requisite(s):

Co- requisite(s): None

Credits: 2 L: 0 T: 0 P: 4 Class schedule per week: 04

Class: M. Tech Semester / Level: I/5

Branch: Computer Science and Engineering

Name of Teacher:

Course Objectives

This course enables the students to:

1.	To familiarize the student in introducing and exploring R
2.	Develop basic thinking for data analysis.
3.	To enable the student on how to approach for statistical Analysis
4.	To provide a foundation in use of this software

Course Outcomes

CO1	Manipulate data within R
CO2	Perform basic data analysis procedures
CO3	Create plots
CO4	Implement programming features like accessing R packages, writing R
	functions
CO5	Simulation & Profiling with R

List of Programs as Assignments:

1. Lab Assignment No: 1

Objective: To Understand and Implement Data Types

- 1. Data Types R Objects and Attributes
- 2. Data Types Vectors and Lists
- 3. Data Types Matrices
- 4. Data Types Factors
- 5. Data Types Missing Values
- 6. Data Types Data Frames
- 7. Data Types Names Attribute
- 8. Data Types Summary

2. Lab Assignment No: 2

Objective: To Understand and Implement Data Analysis

- 1. Reading Tabular Data
- 2. Reading Large Tables
- 3. Textual Data Formats
- 4. Connections: Interfaces to the Outside World
- 5. Subsetting Basics
- 6. Subsetting Lists
- 7. Subsetting Matrices
- 8. Subsetting Partial Matching
- 9. Subsetting Removing Missing Values
- 10. Vectorized Operations

3. Lab Assignment No: 3

Objective: To Understand and Implement Swirl

- 1. Workspace and Files
- 2. Sequences of Numbers
- 3. Vectors

4. <u>Lab Assignment No: 4</u>

Objective: To Understand and Implement Cubic Splines

- 1. To design Spline differentiation and Integration.
- 2. To design interpolated Spiral Y=f(X).

5. <u>Lab Assignment No: 5</u>

Objective: To Understand and Implement Control Structures

- 1. If-else
- 2. Control Structures For loops
- 3. Control Structures While loops
- 4. Control Structures Repeat, Next, Break

6. Lab Assignment No: 6

Objective: To Understand and Implement Functions

- 1. Functions (part 2)
- 2. Scoping Rules Symbol Binding
- 3. Scoping Rules R Scoping Rules

4. Scoping Rules - Optimization Example (OPTIONAL)

7. Lab Assignment No: 7 &8

Objective: To Understand and Implement Loop Functions and Debugging

- 1. Loop Functions lapply
- 2. Loop Functions apply
- 3. Loop Functions mapply
- 4. Loop Functions tapply
- 5. Loop Functions split

8. Lab Assignment No: 9 & 10

Objective: To Understand and Implement Two-Dimensional Graphics

- 1. Generating Random Numbers
- 2. Simulation Simulating a Linear Model
- 3. Simulation Random Sampling

Books recommended:

TEXT BOOKS

- 1. Norman Matloff, The Art of R Programming, A Tour of Statistical Software Design 1st Edition, (T1)
- 2. Hadley Wickham, Garrett Grolemund, R for Data Science: Import, Tidy, Transform, Visualize, and Model Data, Orielly, 1st Edition. (**T2**)

Course Evaluation:

Day to day progressive evaluation, Lab Quizzes, Surprise Tests, Online Lab performance and Viva Voce

Gaps in the syllabus (to meet Industry/Profession requirements):

Implementing of real world problems

POs met through Gaps in the Syllabus

Topics beyond syllabus/Advanced topics/Design:

POs met through Topics beyond syllabus/Advanced topics/Design: Teaching through research papers.

COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS & EVALUATION PROCEDURE

Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Continuous Internal Assessment	60
Semester End Examination	40

Continuous Internal Assessment	% Distribution
Day to day performance & Lab files	30
Quiz (es)	10

Viva	20
VIVa	20

Semester End Examination	% Distribution
Examination Experiment Performance	30
Quiz	10

Assessment Components	CO1	CO2	CO3	CO4	CO5
Continuous Internal Assessment					
Semester End Examination					

Indirect Assessment –

- 1. Student Feedback on Faculty
- 2. Student Feedback on Course Outcome

Course Delivery Methods

CD1	Lecture by use of boards/LCD projectors/OHP projectors
CD2	Assignments/Seminars
CD3	Laboratory experiments/teaching aids
CD4	Industrial/guest lectures
CD5	Industrial visits/in-plant training
CD6	Self- learning such as use of NPTEL materials and internets
CD7	Simulation

MAPPING BETWEEN COURSE OUTCOMES AND PROGRAM OUTCOMES

CO	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	2	2	1	1
CO2	3	3	2	2	1	1
CO3	2	2	2	1	1	1
CO4	3	1	1	1	1	1
CO5	3	2	1	1	1	1

If satisfying and < 34% = 1, 34-66% = 2, > 66% = 3

MAPPING BETWEEN COURSE OUTCOMES AND COURSE DELIVERY METHOD

Course Outcomes	Course Delivery Method
CO1	CD1,CD6
CO2	CD1, CD6,CD7
CO3	CD1, CD2, CD3,
CO4	CD1, CD3,CD6,CD7
CO5	CD1,CD2,CD7

Course Code: CS509

Course title: ADVANCED COMPUTER ALGORITHM

Pre-requisite(s): Design and Analysis of Algorithms, Data Structures

Co- requisite(s): None

Credits: 3 L:3 T:0 P: 0 Class schedule per week: 03

Class: M. Tech

Semester / Level: II/5

Branch: Computer Science and Engineering

Course Objectives

After the completion of this course, students will be able to:

- 1. Able to create a requirements model using UML class notations and use-cases based on statements of user requirements, and to analyze requirements models given to them for correctness and quality.
- 2. Able to create the OO design of a system from the requirements model in terms of a high-level architecture description, and low-level models of structural organization and dynamic behaviour using UML class, object, and sequence diagrams.
- 3. Able to comprehend enough Java to see how to create software the implements the OO designs modelled using UML.
- 4. Able to comprehend the nature of design patterns by understanding a small number of examples from different pattern categories, and to be able to apply these patterns in creating an OO design.
- 5. Given OO design heuristics, patterns or published guidance, evaluate a design for applicability, reasonableness, and relation to other design criteria.

Course Outcomes

CO1	Analyse and compare different approaches of computer algorithm for different practical
	application.
CO2	Student should understand the concept of NP-hard and NP-complete and reducibility.
CO3	Student should develop basic knowledge of a wide range of advanced algorithm design
	techniques, approximation algorithms, randomized algorithms and parallel algorithm.
CO4	Student should develop basic advanced algorithm analysis skills for analysing the
	approximation ratio of approximation algorithms and the probability of randomized
	algorithms.
CO5	Students should gain a good understanding on a wide range of advanced algorithmic
	problems, their relations and variants, and application to real-world problems.

Module I:

Design Paradigms

Overview of Divide and Conquer, Greedy and Dynamic Programming strategies. Basic search and traversal techniques for graphs, Backtracking, Branch and Bound.

(8L)

Module II:

Theory of NP- Hard and NP-Complete Problems

P, NP and NP-Complete complexity classes; A few NP-Completeness proofs; Other complexity classes.

(8L)

Module III:

ApproximationAlgorithms

Introduction,

Combinatorial Optimization, approximation factor, PTAS, FPTAS, Approximation algorithms for vertex cover, set cover, TSP, knapsack, bin packing, subset-sum problem etc. Analysis of the expected time complexity of the algorithms.

(8L)

Module IV:

Parallel Algorithms

Introduction, Models, speedup and efficiency, Some basic techniques, Examples from graph theory, sorting, Parallel sorting networks. Parallel algorithms and their parallel time and processors complexity.

(8L)

Module V:

Probabilistic Algorithms & Randomized Algorithms

Numerical probabilistic algorithms, Las Vegas and Monte Carlo algorithms, Game-theoretic techniques, Applications on graph problems

(8L)

Text Books:

- 1. T.H. Cormen, C.E.Leiserson, and R.L. Rivest, "Introduction to Algorithms".
- 2. G.Brassard, and P.Bratley, "Fundamentals of Algorithmics".
- 3. Vijay V. Vazirani, "Approximation Algorithms".

Reference Books:

- 1. D.Harel, "Algorithmics: The spirit of computing".
- 2. R. Motwani& P. Raghavan, "Randomized Algorithms," Cambridge University Press, 1995.

Course Evaluation:

Individual assignment, Theory (Quiz and End semester) examinations

Gaps in the syllabus (to meet Industry/Profession requirements):

POs met through Gaps in the Syllabus:

Topics beyond syllabus/Advanced topics/Design:

POs met through Topics beyond syllabus/Advanced topics/Design: Teaching through research papers.

COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS & EVALUATION PROCEDURE

Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Continuous Internal Assessment	50
Semester End Examination	50

Continuous Internal Assessment	% Distribution
3 Quizzes	30 % (3 × 10%)
Assignment (s)	10
Seminar before a committee	10

Assessment Components	CO1	CO2	CO3	CO4	CO5
Continuous Internal Assessment					
Semester End Examination					

Indirect Assessment –

- 1. Student Feedback on Faculty
- 2. Student Feedback on Course Outcome

CD#	Course Delivery methods
CD1	Lecture by use of boards/LCD projectors/OHP projectors
CD2	Assignments/Seminars
CD3	Laboratory experiments/teaching aids
CD4	Industrial/guest lectures
CD5	Industrial visits/in-plant training
CD6	Self- learning such as use of NPTEL materials and internets
CD7	Simulation

Mapping between Objectives and Outcomes

Mapping of Course Outcomes onto Program Outcome

Course Outcome	Program Outcomes					
	PO1 PO2 PO3 PO4 PO5 PO					PO6
CO1	3	2	2	2	1	2
CO2	3	3	3	1	3	1
CO3	2	3	3	3	2	1
CO4	3	3	3	3	1	1
CO5	2	2	3	2	1	1

Mapping Between COs and Course Delivery (CD) methods					
CD	Course Delivery methods	Course Outcome	Course Delivery Method		
CD1	Lecture by use of boards/LCD projectors/OHP projectors	CO1, CO2, CO3, CO4, CO5	CD1		
CD2	Laboratory experiments/teaching aids				
CD3	Industrial/guest lectures				
CD4	Industrial visits/in-plant training				
CD5	Self- learning such as use of NPTEL materials and internets	CO5	CD5		

Course Code: CS511

Course title: ADVANCED DATABASE MANAGEMENT SYSTEM Pre-requisite(s): UG level concepts of Database management systems

Co- requisite(s): None

Credits: 3 L:3 T:0 P: 0 Class schedule per week: 03

Class: M. Tech

Semester / Level: II/5

Branch: Computer Science and Engineering

Course Objectives

This course enables the students to:

1.	Understand transaction control and concurrency issues in databases.
2.	Have knowledge of locking mechanisms in a database management system
3.	Have idea of the backend activities involved in recovering data from databases
4.	Have knowledge of data warehousing and features of centralized and distributed database
5.	Obtain an insight into Open Issues in Data Warehouses, Mobile Databases Multimedia
	Databases Geographic Information Systems Genome Data Management

Course Outcomes

	r					
CO1	To understand the fundamental and advanced concepts required for modeling and					
	designing the database					
CO2	To understand the advanced database technologies.					
CO3	To effectively model and design the complex database systems					
CO4	To effectively map the well-designed database to the level of implementation.					
CO5	To understand the concepts of distributed database and various access and allocation					
	methods.					

Module I:

Review of basic concepts, Transaction and System Concepts, Desirable Properties of Transactions, Characterizing Schedules Based on Recoverability, Characterizing Schedules Based on Serializability, Transaction Support in SQL.

(8L)

Module II:

Concurrency Control Techniques, Two-Phase Locking Techniques for Concurrency Control, Concurrency Control Based on Timestamp Ordering, Multiversion Concurrency Control Techniques, Validation (Optimistic) Concurrency Control Techniques, Granularity of Data Items and Multiple Granularity Locking.

(8L)

Module III:

Recovery Concepts, Recovery Techniques Based on Deferred Update, Recovery Techniques Based on Immediate Update, Shadow Paging, The ARIES Recovery Algorithm, Recovery in Multidatabase Systems, Database Backup and Recovery from Catastrophic Failures.

(8L)

Module IV:

Distributed Databases and Client-Server Architectures, Distributed Database Concepts, Data Fragmentation, Replication and Allocation Techniques for Distributed Database Design, Types of Distributed Database Systems, Query Processing in Distributed Databases, Overview of Concurrency Control and Recovery in Distributed Databases, An Overview of 3-Tier Client-Server Architecture.

(8L)

Module V:

Data Modeling for Data Warehouses, Characteristics of Data Warehouses, Introduction, Definitions, and Terminology Building a Data Warehouse, Typical Functionality of a Data Warehouse, Data Warehouse Versus Views Problems and Open Issues in Data Warehouses, Mobile Databases, Multimedia Databases, Geographic Information Systems, Genome Data Management.

(8L)

Text Books:

1. Elmasri R., Navathe S.B., "Fundamentals of Database Systems", 5th Edition, Pearson Education/Addison Wesley, 2007.(T1)

Reference Books:

- 1. C.J. Date, "An introduction to Database Systems", 7th Edition., Pearson Education, New Delhi, 2004. (**R1**)
- 2. H. Korth et al., "Database Management System Concepts", 3rd Edition, TMH, New Delhi, 2002. (**R2**)
- 3. B.Desai, "Database Management Systems", Galgotia Publications, New Delhi, 1998. (R3)

Course Evaluation:

Individual assignment, Theory (Quiz and End semester) examinations Gaps in the syllabus (to meet Industry/Profession requirements): POs met through Gaps in the Syllabus:

Topics beyond syllabus/Advanced topics/Design:

POs met through Topics beyond syllabus/Advanced topics/Design: Teaching through research papers.

COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS & EVALUATION PROCEDURE

Direct Assessment

Assessment Tool	% Contribution during CO Assessment			
Continuous Internal Assessment	50			
Semester End Examination	50			

Continuous Internal Assessment	% Distribution
3 Quizzes	30 % (3 × 10%)
Assignment (s)	10
Seminar before a committee	10

Assessment Components	CO1	CO2	CO3	CO4	CO5
Continuous Internal Assessment					
Semester End Examination					

Indirect Assessment -

- 1. Student Feedback on Faculty
- 2. Student Feedback on Course Outcome

CD#	Course Delivery methods
CD1	Lecture by use of boards/LCD projectors/OHP projectors
CD2	Assignments/Seminars
CD3	Laboratory experiments/teaching aids
CD4	Industrial/guest lectures
CD5	Industrial visits/in-plant training
CD6	Self- learning such as use of NPTEL materials and internets
CD7	Simulation

Mapping between Objectives and Outcomes

Mapping of Course Outcomes onto Program Outcome

Course Outcome	Program Outcomes					
	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	2	2	1	2
CO2	3	3	3	1	3	1
CO3	2	3	3	3	2	1
CO4	3	3	3	3	1	1
CO5	2	2	3	2	1	1

If satisfying and < 34% = L, 34-66% = M, > 66% = H

Mappi	Mapping Between COs and Course Delivery (CD) methods						
CD	Course Delivery methods	Course Outcome	Course Delivery Method				
CD1	Lecture by use of boards/LCD projectors/OHP projectors	CO1, CO2, CO3, CO4, CO5	CD1				
CD2	Laboratory experiments/teaching aids						
CD3	Industrial/guest lectures						
CD4	Industrial visits/in-plant training						
CD5	Self- learning such as use of NPTEL materials and internets						

Course Code: CS512

Course title: ARTIFICIAL INTELLIGENCE

Pre-requisite(s): Design and Analysis of Algorithms, Data Structures

Co- requisite(s): None

Credits: 3 L:3 T:0 P: 0 Class schedule per week: 03

Class: M. Tech

Semester / Level: II/5

Branch: Computer Science and Engineering

Course Objectives

After the completion of this course, students will be able to:

- 1. An ability to apply knowledge of mathematics, science and engineering to both software and hardware design problems.
- 2. An ability to design and conduct experiments and to analyze and interpret data related to software and hardware design solutions.
- 3. An ability to design a system, component or process to meet desired needs within realistic constraints.
- 4. An ability to function on multidisciplinary teams using current computer engineering tools and technologies.
- 5. An ability to identify, formulate and solve engineering problems based on a fundamental understanding of concepts of computer engineering topics.

Course Outcomes

	1 '					
CO1	Recall the principles and approaches of artificial intelligence and understand different					
	aspects of Intelligent agent.					
CO2	Apply different search techniques for solving real world problems and select the most					
	appropriate solution by comparative evaluation.					
CO3	Understanding the various concepts of knowledge representations and demonstrate					
	working. knowledge of reasoning in the presence of incomplete and/or uncertain					
	information.					
CO4	To develop a basic understanding of some of the more advanced topics of AI such as					
	learning, natural language processing, Robotics etc.					
CO5	Write various types of LISP and PROLOG programs and explore more sophisticated					
	LISP and PROLOG code.					

Module I:

Introduction: Overview of Artificial Intelligence- Problems of AI, AI Technique, Tic - Tac - Toe Problem.

Intelligent Agents: Agents & Environment, Nature of Environment, Structure of Agents, Goal Based Agents, Utility Based Agents, Learning Agents.

Problem Solving: Problems, Problem Space & Search: Defining The Problem as State Space Search, Production System, Problem Characteristics, Issues in The Design of Search Programs.

(8L)

Module II:

Search Techniques: Solving Problems by Searching, Problem Solving Agents, Searching for Solutions; Uniform Search Strategies: Breadth First Search, Depth First Search, Depth Limited Search, Bi-directional Search, Comparing Uniform Search Strategies.

Heuristic Search Strategies: Greedy Best-First Search, A* Search, Memory Bounded Heuristic Search: Local Search Algorithms & Optimization Problems: Hill Climbing Search, Simulated Annealing Search, Local Beam Search, Genetic Algorithms; Constraint Satisfaction Problems, Local Search for Constraint Satisfaction Problems.

Adversarial Search: Games, Optimal Decisions & Strategies in Games, The Minimax Search Procedure, Alpha-Beta Pruning, Additional Refinements, Iterative Deepening.

(8L)

Module III:

Knowledge & Reasoning: Knowledge Representation Issues, Representation & Mapping, Approaches to Knowledge Representation, Issues in Knowledge Representation.

Using Predicate Logic: Representing Simple Fact in Logic, Representing Instant & ISA Relationship, Computable Functions & Predicates, Resolution, Natural Deduction.

Representing Knowledge Using Rules: Procedural Versus Declarative Knowledge, Logic Programming, Forward Versus Backward Reasoning, Matching, Control Knowledge.

(8L)

Module IV:

Probabilistic Reasoning: Representing Knowledge in an Uncertain Domain, Bayesian Networks, Dempster -Shafer Theory.

Planning: Overview, Components of A Planning System, Goal Stack Planning, Hierarchical Planning.

Learning: Forms of Learning, Inductive Learning, Explanation Based Learning, Neural Net Learning & Genetic Learning.

(8L)

Module V:

Natural Language Processing: Brief introduction to Syntactic Processing, Semantic Analysis, Discourse & Pragmatic Processing.

Robotics: Introduction, Robot hardware, robotic perception, planning to move, planning uncertain movements, robotic software architecture, application domains.

(8L)

TEXT BOOKS:

- 1. S. Russel and P. Norvig, "Artificial Intelligence: A Modern Approach", 3rd Edition, Pearson Education. (**T1**)
- 2. E. Rich & K. Knight, "Artificial Intelligence", 2/e, TMH, New Delhi, 3rd Edition, TMH. (**T2**)

REFERENCE BOOKS:

- 1. Dan W. Patterson, "Introduction to Artificial Intelligence and Expert Systems", PHI, New Delhi, 2006. (R1)
- 2. D.W. Rolston, "Principles of AI & Expert System Development", TMH, New Delhi. (R2)

Course Evaluation:

Individual assignment, Theory (Quiz and End semester) examinations

Gaps in the syllabus (to meet Industry/Profession requirements):

POs met through Gaps in the Syllabus:

Topics beyond syllabus/Advanced topics/Design:

POs met through Topics beyond syllabus/Advanced topics/Design: Teaching through research papers.

COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS & EVALUATION PROCEDURE

Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Continuous Internal Assessment	50
Semester End Examination	50

Continuous Internal Assessment	% Distribution
3 Quizzes	30 % (3 × 10%)
Assignment (s)	10
Seminar before a committee	10

Assessment Components	CO1	CO2	CO3	CO4	CO5
Continuous Internal Assessment					
Semester End Examination					

Indirect Assessment -

- 1. Student Feedback on Faculty
- 2. Student Feedback on Course Outcome

CD#	Course Delivery methods
CD1	Lecture by use of boards/LCD projectors/OHP projectors
CD2	Assignments/Seminars
CD3	Laboratory experiments/teaching aids
CD4	Industrial/guest lectures
CD5	Industrial visits/in-plant training
CD6	Self- learning such as use of NPTEL materials and internets
CD7	Simulation

Mapping between Objectives and Outcomes

Mapping of Course Outcomes onto Program Outcome

Course Outcome	Program Outcomes					
	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	3	3	3	2
CO2	3	3	3	3	3	3
CO3	3	3	3	2	2	3
CO4	3	3	3	2	1	1
CO5	2	2	2	3	1	1

If satisfying and < 34% = L, 34-66% = M, > 66% = H

Mapping	Mapping Between COs and Course Delivery (CD) methods						
CD	Course Delivery methods	Course Outcome	Course Delivery				
			Method				
CD1	Lecture by use of boards/LCD	CO1, CO2, CO3,	CD1				
	projectors/OHP projectors	CO4, CO5					
CD2	Laboratory experiments/teaching						
	aids						
CD3	Industrial/guest lectures						
CD4	Industrial visits/in-plant training						
CD5	Self- learning such as use of						
	NPTEL materials and internets						

Program Elective II

COURSE INFORMATION SHEET

Course code: CS515

Course title: ADVANCED OPERATING SYSTEM

Pre-requisite(s): C/C++/Java Programming, Data Structure, Operating system

Co- requisite(s): None

Credits: 3 L: 3 T: 0 P:0 Class schedule per week: 03

Class: M. Tech

Semester / Level: II/5

Branch: Computer Science and Engg.

Name of Teacher:

Course Objectives

This course enables the students to:

1.	Introducing the advance concepts of modern operating systems
2.	Illustrating various design issues in different environments
3.	Evaluating design choices with performance analysis
4.	Identifying thrust areas in research in operating systems

Course Outcomes

CO1	Understand and implement basic services and functionalities of the operating system using system calls.
CO2	Use modern operating system calls and synchronization libraries in software/ hardware interfaces.
CO3	Understand the benefits of thread over process and implement synchronized programs using multithreading concepts.
CO4	Analyze and simulate CPU Scheduling Algorithms like FCFS, Round Robin, SJF, and Priority.
CO5	Implement memory management schemes and page replacement schemes.

Module I:

Introduction: History, Hardware Review, Types of Operating Systems, Operating System Concepts, System Calls, Operating System Structure, Research on Operating systems

(8L)

Module II:

Virtualization and Clouds: Requirements, Hypervisors, Techniques, Memory Virtualization, I/O Virtualization, Multicore CPUs, Clouds.

(8L)

Module III:

Multiple Processor Systems: Multiprocessors, Multicomputers, Distributed Systems, Research on Multiple Processor Systems

(8L)

Module IV:

Security: Security Problems, /controlling Access to Resources, Formal Models, Cryptography, Authentication, Exploiting Software, Attacks, Malwares, Defenses

(8L)

Module V:

Operating system Design: Design Problem, Interface Design, Implementation, Performance, Trends

(8L)

TEXT BOOKS:

1. Andrew S. Tanenbaum, Modern Operating Systems, 4th Edition, Pearson Education, 2014. (**T2**)

REFERENCE BOOKS:

- 2. William Stalling, Operating System: Internal and Design Principles, 8th Edition, Pearson International, 2014. (R1)
- 3. Silberschatz, Galvin, Gagne, Operating System Concepts, 10th Edition, Wiley, 2017. (R2)
- 4. D. M. Dhamdhare, Operating Systems, Tata McGraw Hill India, 2012. (R3)

Course Evaluation:

Individual assignment, Theory (Quiz and End semester) examinations

Gaps in the syllabus (to meet Industry/Profession requirements):

POs met through Gaps in the Syllabus:

Topics beyond syllabus/Advanced topics/Design:

POs met through Topics beyond syllabus/Advanced topics/Design: Teaching through research papers.

COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS & EVALUATION PROCEDURE

Direct Assessment

Assessment Tool	% Contribution during CO Assessment

Continuous Internal Assessment	50
Semester End Examination	50

Continuous Internal Assessment	% Distribution
3 Quizzes	30 % (3 × 10%)
Assignment (s)	10
Seminar before a committee	10

Assessment Components	CO1	CO2	CO3	CO4	CO5
Continuous Internal Assessment					
Semester End Examination					

Indirect Assessment -

- 1. Student Feedback on Faculty
- 2. Student Feedback on Course Outcome

CD#	Course Delivery methods
CD1	Lecture by use of boards/LCD projectors/OHP projectors
CD2	Assignments/Seminars
CD3	Laboratory experiments/teaching aids
CD4	Industrial/guest lectures
CD5	Industrial visits/in-plant training
CD6	Self- learning such as use of NPTEL materials and internets
CD7	Simulation

Mapping between Objectives and Outcomes

Mapping of Course Outcomes onto Program Outcome

Course Outcome	Program Outcomes					
	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	3	3	3	2
CO2	3	3	3	3	3	3
CO3	3	3	3	2	2	3
CO4	3	3	3	2	1	1
CO5	2	2	2	3	1	1

If satisfying and < 34% = L, 34-66% = M, > 66% = H

Mappin	Mapping Between COs and Course Delivery (CD) methods					
CD	Course Delivery methods	Course Delivery methods Course Outcome				
			Method			
CD1	Lecture by use of boards/LCD	CO1, CO2, CO3,	CD1			
	projectors/OHP projectors	CO4, CO5				
CD2	Laboratory experiments/teaching					
	aids					
CD3	Industrial/guest lectures					
CD4	Industrial visits/in-plant training					
CD5	Self- learning such as use of					
	NPTEL materials and internets					

Course code:IT516

Course title: DATA MINING AND DATA ANALYSIS

Pre-requisite(s):

Co- requisite(s): None

Credits: 3 L: 3 T: 0 P: 0 Class schedule per week: 03

Class: M. Tech

Semester / Level: II/5

Branch: Computer Science & Engg.

Name of Teacher:

Course Objectives

This course enables the students to:

1.	Explain about the necessity of preprocessing and its procedure.
2.	Generate and evaluate Association patterns
3.	Solve problems using various Classifiers
4.	Learn the principles of Data mining techniques and various mining algorithms.
5.	Learn about traditional and modern data driven approach and problem solving techniques for various datasets

Course Outcomes

After the completion of this course, students will be able to:

CO1	Understand Data Warehousing and Data Mining and its applications and challenges and Create mini data warehouse.
CO2	Apply the association rules for mining applications .
CO3	Identify appropriate Classification techniques for various problems with high dimensional data.
CO4	Implement appropriate Clustering techniques for various problems with high dimensional data sets.
CO5	Implement various mining techniques on complex data objects.

Module I:

Data Analysis foundation, Numeric and Categorical attributes, Dimensionality reduction.

(8L)

Module II:

Data Warehouse: Introduction, A Multidimensional Data Model, Data Warehouse Architecture, Data Warehouse Implementation, Data Cube Technology, From Data Warehousing to Data Mining. Data Cube Computation and Data Generalization.

(8L)

Module III:

Frequent Pattern Mining, Summarizing Itemsets, Itemset Mining, Sequence Mining.

(8L)

Module IV:

Classification: Naïve Bayes, KNN, Decision Tree, Classification Performance measures, Classifier evaluation.

(8L)

Module V:

Clustering: K-Means, Agglomerative, Hierarchical, DBSCAN, Spectral and Graph Clustering. Anomaly detection, Statistical, distance and density-based approaches.

(8L)

Text Books:

- 1. Mohammed J. Zaki, and Wagner Meira Jr., "Data Mining and Analysis: Fundamental Concepts and Algorithms", Cambridge University Press, 2016. (T1)
- 2. Pang-Ning Tan, Michael Steinbach, and Vipin Kumar, "Introduction to Data Mining", Pearson, 2014. (**T2**)
- 3. Jiawei Han, and Micheline Kamber, "Data Mining Concepts & Techniques", 3rd Edition, Publisher Elsevier India Private Limited, 2015. (**T3**)

Course Evaluation:

Individual assignment, Theory (Quiz and End semester) examinations

Gaps in the syllabus (to meet Industry/Profession requirements):

POs met through Gaps in the Syllabus:

Topics beyond syllabus/Advanced topics/Design:

POs met through Topics beyond syllabus/Advanced topics/Design: Teaching through research papers.

COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS & EVALUATION PROCEDURE

Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Continuous Internal Assessment	50
Semester End Examination	50

Continuous Internal Assessment	% Distribution
3 Quizzes	30 % (3 × 10%)
Assignment (s)	10

Assessment Components	CO1	CO2	CO3	CO4	CO5
Continuous Internal Assessment					
Semester End Examination					

Indirect Assessment –

- Student Feedback on Faculty
 Student Feedback on Course Outcome

CD#	Course Delivery methods	
CD1	Lecture by use of boards/LCD projectors/OHP projectors	
CD2	Assignments/Seminars	
CD3	Laboratory experiments/teaching aids	
CD4	Industrial/guest lectures	
CD5	Industrial visits/in-plant training	
CD6	Self- learning such as use of NPTEL materials and internets	
CD7	Simulation	

Mapping between Objectives and Outcomes

Mapping of Course Outcomes onto Program Outcome

Course Outcome	Program Outcomes					
	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	1	2		3	2
CO2	3	3		2	2	
CO3	2	3	3	2	3	1
CO4		2	3		2	3
CO5	1	2	3	3	2	3

If satisfying and < 34% = L, 34-66% = M, > 66% = H

Mapping Between COs and Course Delivery (CD) methods				
CD	Course Delivery methods	Course Outcome	Course Delivery	
			Method	
CD1	Lecture by use of boards/LCD	CO1, CO2, CO3,	CD1	
	projectors/OHP projectors	CO4, CO5		
CD2	Laboratory experiments/teaching			
	aids			
CD3	Industrial/guest lectures			
CD4	Industrial visits/in-plant training			
CD5	Self- learning such as use of			
	NPTEL materials and internets			

Course code: CS517

Course title: DESIGN AND ANALYSIS OF PARALLEL ALGORITHMS

Pre-requisite(s): Data Structure, Operating system

Co- requisite(s): None

Credits:3 L:3 T:0 P:0 Class schedule per week: 03

Class: M.Tech

Semester / Level:II/5

Branch: Computer Science & Engg.

Course Objectives

1.	An implementation oriented introduction to programming paradigms for parallel
	computers.
2.	Modelling, analysis and measurement of program performance.
3.	Description, implementation and use of parallel programming.
4.	Understanding parallel communication operations and use of library routines and
	applications.

Course Outcomes

After the completion of this course, students will:

CO1	Understand principles of parallel algorithms and describe the developments in the
	field of parallel computing.
CO2	Develop ability to compare the performance of different methods
C03	Demonstrate advanced knowledge of the elements of parallel programming
CO4	Analyse performance of parallel algorithms
CO5	Design and implement parallel algorithms

ModuleI:

Introduction to Parallel Computing: Scope of Parallel Computing, Implicit Parallelism: Trends in Microprocessor Architectures, Limitations of Memory System Performance, Dichotomy of Parallel Computing Platforms, Physical Organization of Parallel Platforms, Communication Costs in Parallel Machines, Routing Mechanisms for Interconnection Networks, Impact of Process-Processor Mapping and Mapping Techniques.

(8L)

Module II:

Principles of Parallel Algorithm Design: Preliminaries, Decomposition Techniques, Characteristics of Tasks and Interactions, Mapping Techniques for Load Balancing, Methods for Containing Interaction Overheads, Parallel Algorithm Models.

(8L)

Module III:

Basic Communication Operations: One-to-All Broadcast and All-to-One Reduction, All-to-All Broadcast and Reduction, All-Reduce and Prefix-Sum Operations, Scatter and Gather, All-to-All Personalized Communication, Circular Shift, Improving the Speed of Some Communication Operations.

(8L)

Module IV:

Analytical Modelling of Parallel Programs: Sources of Overhead in Parallel Programs, Performance Metrics for Parallel Systems, The Effect of Granularity on Performance, Scalability of Parallel Systems, Minimum Execution Time and Minimum Cost-Optimal Execution Time, Asymptotic Analysis of Parallel Programs, Other Scalability Metrics.

(8L)

Module V:

Programming Using the Message-Passing Paradigm: Principles of Message-Passing Programming, The Building Blocks: Send and Receive Operations, MPI: the Message Passing Interface, Topologies and Embedding, Overlapping Communication with Computation, Collective Communication and Computation Operations, Groups and Communicators.

(8L)

Text Books:

1. Ananth Grama, Anshul Gupta, Gorge Karypis, Vipin Kumar, Introduction to Parallel Computing, 2nd Edition, Pearson Education, 2004. (**T1**)

Reference Book:

- 1. Michael J. Quinn, Parallel Computing: Theory and Practice, 2nd Edition, McGraw Higher Education, 2002. (R1)
- 2. Zbinieu J Czech, Introduction to Parallel Computing, 1st Edition, Cambridge University Press, 2017. (**R2**)
- 3. An Introduction to Parallel Programming, Peter Pacheco, 1st Edition, Morgan Kaufmann, 2011. (**R3**)

Gaps in the syllabus (to meet Industry/Profession requirements):

POs met through Gaps in the Syllabus:

Topics beyond syllabus/Advanced topics/Design:

Course Evaluation:

Individual assignment, Theory (Quiz and End semester) examinations

POs met through Topics beyond syllabus/Advanced topics/Design: Teaching through research papers.

COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS & EVALUATION PROCEDURE

Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Continuous Internal Assessment	50
Semester End Examination	50

Continuous Internal Assessment	% Distribution
3 Quizzes	30 % (3 × 10%)
Assignment (s)	10
Seminar before a committee	10

Assessment Components	CO1	CO2	CO3	CO4	CO5
Continuous Internal Assessment					
Semester End Examination					

Indirect Assessment –

- 1. Student Feedback on Faculty
- 2. Student Feedback on Course Outcome

Course Delivery Methods

CD1	Lecture by use of boards/LCD projectors/OHP projectors
CD2	Assignments/Seminars
CD3	Laboratory experiments/teaching aids
CD4	Industrial/guest lectures
CD5	Industrial visits/in-plant training
CD6	Self- learning such as use of NPTEL materials and internets
CD7	Simulation

Mapping between Objectives and Outcomes

Mapping of Course Outcomes onto Program Outcomes

Course Outcome #	Program Outcomes						
	PO1	PO2	PO3	PO4	PO5	PO6	
1	3	3	3	3	2	1	
2	3	3	3	2	1	1	
3	3	2	2	3	1	1	
4	3	3	2	1	3	1	
5	2	1	3	2	1	1	

If satisfying and < 34% = 1, 34-66% = 2, > 66% = 3

MAPPING BETWEEN COURSE OUTCOMES AND COURSE DELIVERY METHOD

Course Outcomes	Course Delivery Method
CO1	CD1,CD6
CO2	CD1, CD6,CD7
CO3	CD1, CD2, CD3,
CO4	CD1, CD3,CD6,CD7
CO5	CD1,CD2, ,CD5,CD7

Course code: IT523

Course title: BIOMETRIC SECURITY

Pre-requisite(s): Co- requisite(s):

Credits:3 L:3 T:0 P:0 Class schedule per week: 03

Class: M. Tech

Semester / Level: II/5

Branch: Computer Science & Engg.

Course Objectives

This course enables the students to:

1.	To understand the brief functioning of biometric system.
2.	To know the different types of biometric and their accuracy.
3.	To increase the likelihood that biometric technologies, when deployed, will be as protective of personal and informational privacy as possible.
4.	To raise awareness of privacy issues for end users and for students.
5.	To increase security of the system as well as data.

Course Outcomes

After the completion of this course, students will be able to:

	1
1.	Demonstrate knowledge of the basic physical and biological science and engineering
	principles underlying biometric systems.
2.	Identify the sociological and acceptance issues associated with the design and
	implementation of biometric systems.
3.	Developing new advanced authentication algorithms.
4.	Analyze the accurate discrimination between individuals.
5.	Illustrate the two factor authentication system.

Module I:

Biometrics- Introduction- benefits of biometrics over traditional authentication systems - benefits of biometrics in identification systems-selecting a biometric for a system –Applications - Key biometric terms and processes - biometric matching methods -Accuracy in biometric systems.

(8L)

Module II:

Physiological Biometric Technologies: Fingerprints - Technical description -characteristics - Competing technologies - strengths - weaknesses - deployment - Facial scan - Technical description - characteristics - weaknesses-deployment - Iris scan - Technical description - characteristics - strengths - weaknesses - deployment - Retina vascular pattern.

(8L)

Module III:

Technical description – characteristics - strengths – weaknesses – deployment - Hand scan - Technical description-characteristics - strengths – weaknesses deployment – DNA biometrics. Behavioral Biometric Technologies: Handprint Biometrics - DNA Biometrics.

(8L)

Module IV:

signature and handwriting technology - Technical description - classification - keyboard / keystroke dynamics- Voice - data acquisition - feature extraction - characteristics - strengths - weaknesses-deployment.

(8L)

Module V:

Multi biometrics and multi factor biometrics - two-factor authentication with passwords - tickets and tokens – executive decision - implementation plan.

(8L)

TEXT BOOKS:

- 1. Samir Nanavathi, Michel Thieme, and Raj Nanavathi: "Biometrics -Identity verification in a network", 1st Edition, Wiley Eastern, 2002. (T1)
- 2. John Chirillo and Scott Blaul: "Implementing Biometric Security", 1st Edition, Wiley Eastern Publication, 2005. (T2)

REFERENCE BOOKS:

1. John Berger: "Biometrics for Network Security", 1st Edition, Prentice Hall, 2004. (R1)

 ${\bf Gaps\ in\ the\ syllabus\ (to\ meet\ Industry/Profession\ requirements):}$

POs met through Gaps in the Syllabus:

Topics beyond syllabus/Advanced topics/Design:

Course Evaluation:

Individual assignment, Theory (Quiz and End semester) examinations

POs met through Topics beyond syllabus/Advanced topics/Design: Teaching through research papers.

COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS & EVALUATION PROCEDURE

Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Continuous Internal Assessment	50
Semester End Examination	50

Continuous Internal Assessment	% Distribution
3 Quizzes	30 % (3 × 10%)
Assignment (s)	10
Seminar before a committee	10

Assessment Components	CO1	CO2	CO3	CO4	CO5
Continuous Internal Assessment					
Semester End Examination					

Indirect Assessment -

- 1. Student Feedback on Faculty
- 2. Student Feedback on Course Outcome

Course Delivery Methods

CD1	Lecture by use of boards/LCD projectors/OHP projectors
CD2	Assignments/Seminars
CD3	Laboratory experiments/teaching aids
CD4	Industrial/guest lectures
CD5	Industrial visits/in-plant training
CD6	Self- learning such as use of NPTEL materials and internets
CD7	Simulation

Mapping between Objectives and Outcomes

Mapping of Course Outcomes onto Program Outcomes

Course Outcome #	Program Outcomes					
	PO1	PO2	PO3	PO4	PO5	PO6
1	3	3	3	3	2	1
2	3	3	3	2	1	1
3	3	2	2	3	1	1
4	3	3	2	1	3	1
5	2	1	3	2	1	1

If satisfying and < 34% = 1, 34-66% = 2, > 66% = 3

MAPPING BETWEEN COURSE OUTCOMES AND COURSE DELIVERY METHOD

ſ	Course Outcomes	Course Delivery Method
ſ	CO1	CD1,CD6
ſ	CO2	CD1, CD6,CD7
ſ	CO3	CD1, CD2, CD3,
ſ	CO4	CD1, CD3,CD6,CD7
Ī	CO5	CD1,CD2, ,CD5,CD7

Course code: IT504

Course title: APPLIED CRYPTOGRAPHY

Pre-requisite(s): Co- requisite(s):

Credits:3 L:3 T:0 P:0 Class schedule per week: 03

Class: M. Tech

Semester / Level: II/5

Branch: Computer Science & Engineering

Course Objectives

This course enables the students:

1.	To understand the foundations of cryptographic attacks.
2.	To gain knowledge of encrypting data, and to choose between different algorithms.
3.	Prepare students for research in the area of cryptography and enhance students communication and problem solving skills
4.	To differentiate between the encryption techniques and know their suitability to an application.
5.	To effectively apply their knowledge to the construction of secure cryptosystems.

Course Outcomes

After the completion of this course, students will be able to:

CO1	Understand the various types of cryptographic protocols and the mathematics behind cryptography.
CO2	Describe the various types of ciphers and hash functions.
CO3	Apply the different cryptographic techniques to solve real life problems.
CO4	Evaluate different techniques as to their suitability to various applications.
CO5	Develop a cryptosystem keeping in view social issues and societal impacts.

Module I:

Foundations – Protocol Building Blocks - Basic Protocols - Intermediate Protocols - Advanced Protocols - Zero-Knowledge Proofs - Zero-Knowledge Proofs of Identity -Blind Signatures - Identity-Based Public-Key Cryptography.

(8L)

Module II:

Key Length - Key Management – Public Key Cryptography versus Symmetric Cryptography - Encrypting Communications Channels - Encrypting Data for Storage - Hardware Encryption versus Software Encryption - Compression, Encoding, and Encryption - Detecting Encryption – Hiding and Destroying Information.

(8L)

Module III:

Information Theory - Complexity Theory - Number Theory - Factoring - Prime Number Generation - Discrete Logarithms in a Finite Field - Data Encryption Standard (DES) – Lucifer - Madryga - NewDES - GOST – 3 Way – Crab – RC5 - Double Encryption - Triple Encryption - CDMF Key Shortening - Whitening.

(8L)

Module IV:

Pseudo-Random-Sequence Generators and Stream Ciphers – RC4 - SEAL - Feedback with Carry Shift Registers - Stream Ciphers Using FCSRs - Nonlinear-Feedback Shift Registers - System-Theoretic Approach to Stream-Cipher Design - Complexity-Theoretic Approach to Stream-Cipher Design - N- Hash - MD4 - MD5 - MD2 - Secure Hash Algorithm (SHA) - OneWay Hash Functions Using Symmetric Block Algorithms - Using Public-Key Algorithms - Message Authentication Codes

(8L)

Module V:

RSA - Pohlig-Hellman - McEliece - Elliptic Curve Cryptosystems -Digital Signature Algorithm (DSA) - Gost Digital Signature Algorithm - Discrete Logarithm Signature Schemes - Ongchnorr-Shamir -Cellular Automata - Feige-Fiat-Shamir -Guillou-Quisquater - Diffie-Hellman - Station-to-Station Protocol -Shamir's Three-Pass Protocol - IBM Secret-Key Management Protocol - MITRENET - Kerberos - IBM Common Cryptographic Architecture.

(8L)

TEXT BOOKS:

- 1. Bruce Schneier, "Applied Cryptography: Protocols, Algorithms, and Source Code in C" John Wiley & Sons, Inc, 2nd Edition, 1996. (**T1**)
- 2. 2. Wenbo Mao, "Modern Cryptography Theory and Practice", Pearson Education, 2004. (**T2**)
- 3. Atul Kahate, "Cryptography and Network Security", Tata McGrew Hill, 2003. (T3)

REFERENCE BOOKS:

1. William Stallings- Cryptography & Network Security Principles and Practice, Pearson Education. (**R1**)

Gaps in the syllabus (to meet Industry/Profession requirements):

POs met through Gaps in the Syllabus:

Topics beyond syllabus/Advanced topics/Design:

Course Evaluation:

Individual assignment, Theory (Quiz and End semester) examinations

POs met through Topics beyond syllabus/Advanced topics/Design: Teaching through research papers.

$\frac{\text{COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS \& EVALUATION}}{\text{PROCEDURE}}$

Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Continuous Internal Assessment	50
Semester End Examination	50

Continuous Internal Assessment	% Distribution
3 Quizzes	30 % (3 × 10%)
Assignment (s)	10
Seminar before a committee	10

Assessment Components	CO1	CO2	CO3	CO4	CO5
Continuous Internal Assessment					
Semester End Examination					

Indirect Assessment -

- 1. Student Feedback on Faculty
- 2. Student Feedback on Course Outcome

Course Delivery Methods

CD1	Lecture by use of boards/LCD projectors/OHP projectors
CD2	Assignments/Seminars
CD3	Laboratory experiments/teaching aids
CD4	Industrial/guest lectures
CD5	Industrial visits/in-plant training
CD6	Self- learning such as use of NPTEL materials and internets
CD7	Simulation

Mapping between Objectives and Outcomes

Mapping of Course Outcomes onto Program Outcomes

Course Outcome #						
	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3		3	1	2	
CO2	3	3	3		2	
C03		3	2		1	
CO4			3	2		2
CO5		3		1		1

If satisfying and < 34% = 1, 34-66% = 2, > 66% = 3

MAPPING BETWEEN COURSE OUTCOMES AND COURSE DELIVERY METHOD

Course Outcomes	Course Delivery Method
CO1	CD1,CD6
CO2	CD1, CD6, CD7
CO3	CD1, CD2, CD3,
CO4	CD1, CD3,CD6,CD7
CO5	CD1,CD2, ,CD5,CD7

Course code: CS605

Course title: HIGH PERFORMANCE COMPUTER ARCHITECTURE

 $\label{lem:computer} \textbf{Pre-requisite}(s) \textbf{: Computer Architecture/Organization, Operating System, Parallel}$

Computing Co-requisite(s):

Credits:3 L:3 T:0 P:0

Class: M. Tech

Semester / Level: II/6

Branch: Computer Science & Engineering

Course Objectives

This course enables the students to:

1.	To Explain different terminologies in High Performance Computer Architecture.	
2.	To introduce basic concepts of High Performance Computer Architecture	
3.	Hands on the different parallel architectures in terms of various parameters.	
4.	Evaluate performance metrics and scalability and selection criteria for parallelism	
	and different parallel systems and able to modify it.	
5.	Provide the students with practice on running complex problem in high performance	
	computing machines.	

Course Outcomes

After the completion of this course, students will be:

CO1	Describe different terminologies in High Performance Computer Architecture.		
CO2	Demonstrate and Implement the concepts of High Performance Computer Architecture		
C03	Compare and differentiate the different parallel architectures in terms of various parameters.		
CO4	Evaluate performance metrics and scalability and selection criteria for parallelism and different parallel systems and able to modify it.		
CO5	Design effective high-performance systems as per users' criteria with proper justification by self or in a group.		

Module I:

Parallel Computer Models : The State of Computing, Multiprocessors and Multicomputers, Multivector and SIMD Computers, PRAM and VLSI Models, Architectural Development Tracks.

Program and Network Properties : Conditions for Parallelism, Program Partitioning and Scheduling, Program Flow Mechanism, System Interconnect Architectures.

(8L)

Module II:

Program and Network Properties : Conditions for Parallelism, Program Partitioning and Scheduling, Program Flow Mechanism, System Interconnect Architectures.

Principles of Scalable Performance: Performance Metrics and Measures, Parallel Processing Applications, Speedup Performance Laws, Scalability Analysis and Approaches.

(8L)

Module III:

Processors and Memory Hierarchy: Advanced Processor Technology, Super Scaler and Vector Processors, Memory Hierarchy Technology, Virtual Memory Technology.

Bus, Cache, and Shared Memory: Bus Systems, Cache Memory Organizations, Shared-Memory Organizations, Sequential and Weak Consistency Models, Weak Consistency Models.

(8L)

Module IV:

Pipelining and Superscalar Techniques: Linear Pipeline Processors, Non Linear Pipeline Processor, Instruction Pipeline Design, Arithmetic Pipeline Design, Superscalar Pipeline Design

Multiprocessors and Multicomputers: Multiprocessor System Interconnects, Cache Coherence Synchronization Mechanism, Three Generations of Multicomputers, Message-Passing Mechanisms.

(8L)

Module V:

Multivector and SIMD Computers: Vector Processing Principles, Multivector Multiprocessor, Compound Vector Processing, SIMD Computer Organizations, The Connection Machine CM-5

Scalable, Multithreaded and Data Flow Architecture: Latency-Hiding Techniques, Principle of Multithreading, Fine-Grain Multicomputers, Scalable and Multithreaded Architectures, Data Flow and Hybrid Architectures.

(8L)

TEXT BOOK:

1. Hwang K., Jotwani N., Advanced Computer Architecture, 2nd Edition, Tata McGraw Hill, India, 2010. (**T1**)

REFERENCE BOOK:

1. Stone, H. S., High Performance Computer Architecture, 3rd Edition, Addison Wesley Publishing Company, USA. (**R1**)

Gaps in the syllabus (to meet Industry/Profession requirements):

POs met through Gaps in the Syllabus:

Topics beyond syllabus/Advanced topics/Design:

Course Evaluation:

Individual assignment, Theory (Quiz and End semester) examinations

POs met through Topics beyond syllabus/Advanced topics/Design: Teaching through research papers.

COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS & EVALUATION PROCEDURE

Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Continuous Internal Assessment	50
Semester End Examination	50

Continuous Internal Assessment	% Distribution
3 Quizzes	30 % (3 × 10%)
Assignment (s)	10
Seminar before a committee	10

Assessment Components	CO1	CO2	CO3	CO4	CO5
Continuous Internal Assessment					
Semester End Examination					

Course Delivery Methods

CD1	Lecture by use of boards/LCD projectors/OHP projectors
CD2	Assignments/Seminars
CD3	Laboratory experiments/teaching aids
CD4	Industrial/guest lectures
CD5	Industrial visits/in-plant training
CD6	Self- learning such as use of NPTEL materials and internets
CD7	Simulation

Mapping between Objectives and Outcomes

Mapping of Course Outcomes onto Program Outcomes

Course Outcome #						
	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3			1	2	1
CO2	3	3		1	1	1
C03	3	3	3			1
CO4	2	3			2	1
CO5	2	3	2			1

If satisfying and < 34% = 1, 34-66% = 2, > 66% = 3

MAPPING BETWEEN COURSE OUTCOMES AND COURSE DELIVERY METHOD

Course Outcomes	Course Delivery Method
CO1	CD1,CD6
CO2	CD1, CD6, CD7
CO3	CD1, CD2, CD3,
CO4	CD1, CD3,CD6,CD7
CO5	CD1,CD2, ,CD5,CD7

Course code: IT524

Course title: IMAGE PROCESSING TECHNIQUES

Pre-requisite(s): Co- requisite(s):

Credits:3 L:3 T:0 P:0 Class schedule per week: 3

Class: M. Tech Semester / Level: II/5

Branch: Computer Science & Engineering

Course Objectives

This course enables the students:

1.	Understand the basic concept of Digital Image Processing
2.	To Learn the Fourier Transform & its application
3.	Understand the basic components of filters
4.	Understand the basic concept of Image Compression Fundamentals
5.	Understand the basic concept of Image Segmentation.

Course Outcomes

After the completion of this course, students will be:

1.	Understand the concept of image formation, digitization, and role human visual system plays in perception of image data and spatial filtering techniques for enhancing the appearance of an image.
2.	Acquire an appreciation for various frequency based filtering techniques for enhancing the appearance of an image, duly applying them in different applications.
3.	Discern the difference between noise models, gain an insight into assessing the degradation function and realize different spatial and frequency based filtering techniques for reduction and removal of noise.
4.	Synthesize a solution to image compression using the concept of information theory and lossless and lossy compression techniques.
5.	Design and create practical solutions using morphological and image segmentation operators for common image processing problems and assess the results.

Syllabus

Module I:

Introduction to Digital Image Processing, Elements of Visual Perception, Image Sensing & Acquisition, Sampling and Quantization, Basic Relationships between Pixels, Intensity Transformations, Histogram Processing, Spatial Convolution & Correlation, Smoothing Spatial Filters, Sharpening Spatial Filters.

(8L)

Module II:

Introduction to the Fourier Transform, Discrete Fourier Transform, Properties of the Two-Dimensional Fourier Transform, Image Smoothing using Frequency Domain filters, Image Sharpening using Frequency Domain filters, Selective Filtering, Basics of Fast Fourier Transform, Basics of: Walsh- Hadamard Transform; K-L Transform; Discrete Cosine Transform.

(8L)

Module III:

Model of Image Degradation/Restoration Process, Noise Probability Density Functions, Restoration in presence of Noise only, Periodic Noise Reduction using Frequency Domain filtering, Circulant Matrices, Block Circulant Matrices, Unconstrained Restoration, Constrained Restoration, Basics of Inverse Filtering

(8L)

Module IV:

Image Compression Fundamentals – Coding Redundancy, Interpixel Redundancy, Psychovisual Redundancy, Fidelity Criteria, Image Compression Models– Source Encoder and Decoder, Channel Encoder and Decoder, Elements of Information Theory, Error-Free Compression – Variable-Length Coding, Bit-Plane Coding, Lossless Predictive Coding. Lossy Compression – Lossy Predictive Coding, Transform Coding.Color Fundamentals, Color Models, Basics of Full Color Image Processing.

(8L)

Module V:

Morphological Image Processing- Preliminaries, Dilation and Erosion, Opening and Closing, Hit-or-Miss Transformation, Boundary Extraction, Hole Filling, Connected Components, Convex Hull, Thinning, Thickening, Skeletons, Pruning

Image Segmentation- Fundamentals, Point, Line and Edge Detection, Thresholding, Region Based Segmentation, Segmentation based on color.

(8L)

Text books:

1. Rafael. C. Gonzalez & Richard E. Woods- Digital Image Processing, 3/e Pearson Education, New Delhi – 2009. (T1)

Reference books:

- 1. W.K.Pratt-Digital Image Processing, 4/e, John Wiley & sons, Inc. 2006. (R1)
- 2. M. Sonka et al. Image Processing, Analysis and Machine Vision, 2/e, Thomson, Learning, India Edition, 2007. (R2)
- 3. Jayaraman, Digital Image Processing, Tata McGraw-Hill Education, 2011. (R3)

Gaps in the syllabus (to meet Industry/Profession requirements):

POs met through Gaps in the Syllabus:

Topics beyond syllabus/Advanced topics/Design:

Course Evaluation:

Individual assignment, Theory (Quiz and End semester) examinations

POs met through Topics beyond syllabus/Advanced topics/Design: Teaching through research papers.

COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS & EVALUATION PROCEDURE

Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Continuous Internal Assessment	50
Semester End Examination	50

Continuous Internal Assessment	% Distribution
3 Quizzes	30 % (3 × 10%)
Assignment (s)	10
Seminar before a committee	10

Assessment Components	CO1	CO2	CO3	CO4	CO5
Continuous Internal Assessment					
Semester End Examination					

Course Delivery Methods

CD1	Lecture by use of boards/LCD projectors/OHP projectors
CD2	Assignments/Seminars
CD3	Laboratory experiments/teaching aids
CD4	Industrial/guest lectures
CD5	Industrial visits/in-plant training
CD6	Self- learning such as use of NPTEL materials and internets
CD7	Simulation

Mapping between Objectives and Outcomes

Mapping of Course Outcomes onto Program Outcomes

Course Outcome #						
	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3			1	2	1
CO2	3	3		1	1	1
C03	3	3	3			1
CO4	2	3			2	1
CO5	2	3	2			1

If satisfying and < 34% = 1, 34-66% = 2, > 66% = 3

MAPPING BETWEEN COURSE OUTCOMES AND COURSE DELIVERY METHOD

Course Outcomes	Course Delivery Method
CO1	CD1,CD6
CO2	CD1, CD6, CD7
CO3	CD1, CD2, CD3,
CO4	CD1, CD3,CD6,CD7
CO5	CD1,CD2, ,CD5,CD7

Course code: CS524

Course title: SOFT COMPUTING

Pre-requisite(s): Co- requisite(s):

Credits:3 L:3 T:0 P:0 Class schedule per week: 3

Class: M. Tech

Semester / Level: II/5

Branch: Computer Science & Engineering

Course Objectives

After the completion of this course, students will be:

	1 '
1.	To understand the concepts of soft computing
2.	To introduce the ideas of fuzzy sets, fuzzy logic and use of heuristics based on human experience.
3.	To become familiar with neural networks that can learn from available examples and generalize to form appropriate rules for inference systems.
4.	To provide the mathematical background for carrying out the optimization and familiarizing genetic algorithm for seeking global optimum in self-learning situation.
5.	To develop neural network models.

Course Outcomes

After the completion of this course, students will be able to:

CO1	Solve numericals on Fuzzy sets and Fuzzy Reasoning.
CO2	Develop Fuzzy Inference System (FIS).
C03	Solve problems on Genetic Algorithms
CO4	Explain concepts of neural networks
CO5	Develop neural networks models for various applications.

Module I:

Introduction:Soft Computing vs. hard computing, soft computing paradigms, Basic mathematics of soft computing, learning and statistical approaches to classification and regression.

Fuzzy Logic: Introduction, Fuzzy set theory and operations, Fuzzy set versus crisp set, Crisp relation & fuzzy relations, Membership functions, fuzzification and defuzzification.

(8L)

Module II:

Fuzzy Rule Base System: Fuzzy propositions, formation, decomposition & aggregation of fuzzy rules, fuzzy reasoning, fuzzy inference systems, fuzzy decision making. **Applications**: Fuzzy logic in modeling and control, image processing

(8L)

Module III:

Neural Networks: Introduction, Biological neural network, learning paradigms. Artificial Neural Network (ANN): Evolution of Basic neuron modeling, Difference between ANN and human brain, McCulloch-Pitts neuron models, Learning paradigms, activation function, Single layer Perceptron, Perceptron learning, Windrow-Hoff/ Delta learning rule, Multilayer Perceptron, Adaline, Madaline, different activation functions, Back propagation network, momentum, limitation, FBFN, Convolution Networks, Kohonen SOM, Hopfield Networks, HebbNet.

(8L)

Module IV:

Genetic Algorithms:Introduction, working principle, Basic operators and Terminologies like individual, gene, encoding, fitness function and reproduction, Genetic modeling: Significance of Genetic operators, Inheritance operator, cross over, inversion & deletion, mutation operator, Bitwise operator, GA optimization problems such as TSP (Travelling salesman problem), Applications:Genetic Algorithm based Back propagation Networks.

(8L)

Module V:

Particle Swarm Optimization: Background, Operations of Particle Swarm Optimization, Basic Flow of Particle Swarm Optimization, Comparison between GA and PSO, Applications of PSO.

Ant Colony Optimization: Ant Colony Optimization Algorithm, Ant System, Ant Colony System, Basic Flow of Ant colony Optimization, Applications of ACO.

(8L)

TEXT BOOKS:

- 1. S.N. Sivanandam, Principle of Soft Computing, Wiley India. (T1)
- 2. Simon Haykins, "Neural Networks : A Comprehensive Foundation, Pearson Education, 2002. (T2)

3. Timothy J. Ross, "Fuzzy Logic with Engineering Applications." TMH, New York, 1997. (T3)

REFERENCE BOOKS

- 1. K.S.Ray, "Soft Computing and Its application", Vol 1, Apple Academic Press.2015. (R1)
- 2. K.H.Lee, "First Course on Fuzzy Theory and App.", Adv in Soft Computing Spinger.2005. (**R2**)
- 3. H.Z.Zimmermann, "Fuzzy Set Theory and its App", 4thEd.Spinger Science,2001. (R3)

Gaps in the syllabus (to meet Industry/Profession requirements):

POs met through Gaps in the Syllabus:

Topics beyond syllabus/Advanced topics/Design:

Course Evaluation:

Individual assignment, Theory (Quiz and End semester) examinations

POs met through Topics beyond syllabus/Advanced topics/Design: Teaching through research papers.

COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS & EVALUATION PROCEDURE

Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Continuous Internal Assessment	50
Semester End Examination	50

Continuous Internal Assessment	% Distribution
3 Quizzes	30 % (3 × 10%)
Assignment (s)	10
Seminar before a committee	10

Assessment Components	CO1	CO2	CO3	CO4	CO5
Continuous Internal Assessment					
Semester End Examination					

Course Delivery Methods

CD1	Lecture by use of boards/LCD projectors/OHP projectors
CD2	Assignments/Seminars
CD3	Laboratory experiments/teaching aids
CD4	Industrial/guest lectures
CD5	Industrial visits/in-plant training
CD6	Self- learning such as use of NPTEL materials and internets
CD7	Simulation

Mapping between Objectives and Outcomes

Mapping of Course Outcomes onto Program Outcomes

Course Outcome #						
	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	2	3	1	1
CO2	3	2	3	3	1	1
C03	3	3	3	2	1	3
CO4	2	2	3	3	1	2
CO5	2	3	3	2	1	1

If satisfying and < 34% = 1, 34-66% = 2, > 66% = 3

MAPPING BETWEEN COURSE OUTCOMES AND COURSE DELIVERY METHOD

Course Outcomes	Course Delivery Method
CO1	CD1,CD6
CO2	CD1, CD6
CO3	CD1, CD2,
CO4	CD1,CD7
CO5	CD1,CD2,

Course Code: CS512

Course title: ARTIFICIAL INTELLIGENCE

Pre-requisite(s): Design and Analysis of Algorithms, Data Structures

Co- requisite(s): None

Credits:3 L:3 T:0 P: 0 Class schedule per week: 03

Class: M. Tech

Semester / Level: II/5

Branch: Computer Science and Engineering

Course Objectives

After the completion of this course, students will be able to:

1.	An ability to apply knowledge of mathematics, science and engineering to both software and hardware design problems.
2.	An ability to design and conduct experiments and to analyze and interpret data related to software and hardware design solutions.
3.	An ability to design a system, component or process to meet desired needs within realistic constraints.
4.	An ability to function on multidisciplinary teams using current computer engineering tools and technologies.
5.	An ability to identify, formulate and solve engineering problems based on a fundamental understanding of concepts of computer engineering topics.

Course Outcomes

After the completion of this course, students will be able to:

	1 ,
CO1	
	different aspects of Intelligent agent.
CO2	
	most appropriate solution by comparative evaluation.
CO3	
	working. knowledge of reasoning in the presence of incomplete and/or uncertain
	information.
CO4	
	as learning, natural language processing, Robotics etc.
CO5	Write various types of LISP and PROLOG programs and explore more sophisticated
	LISP and PROLOG code.

Module I:

Introduction: Overview of Artificial Intelligence- Problems of AI, AI Technique, Tic - Tac - Toe Problem

Intelligent Agents: Agents & Environment, Nature of Environment, Structure of Agents, Goal Based Agents, Utility Based Agents, Learning Agents.

Problem Solving: Problems, Problem Space & Search: Defining The Problem as State Space Search, Production System, Problem Characteristics, Issues in The Design of Search Programs.

(8L)

Module II:

Search Techniques: Solving Problems by Searching, Problem Solving Agents, Searching for Solutions; Uniform Search Strategies: Breadth First Search, Depth First Search, Depth Limited Search, Bi-directional Search, Comparing Uniform Search Strategies.

Heuristic Search Strategies: Greedy Best-First Search, A* Search, Memory Bounded Heuristic Search: Local Search Algorithms & Optimization Problems: Hill Climbing Search, Simulated Annealing Search, Local Beam Search, Genetic Algorithms; Constraint Satisfaction Problems, Local Search for Constraint Satisfaction Problems.

Adversarial Search: Games, Optimal Decisions & Strategies in Games, The Minimax Search Procedure, Alpha-Beta Pruning, Additional Refinements, Iterative Deepening.

(8L)

Module III:

Knowledge & Reasoning: Knowledge Representation Issues, Representation & Mapping, Approaches to Knowledge Representation, Issues in Knowledge Representation.

Using Predicate Logic: Representing Simple Fact in Logic, Representing Instant & ISA Relationship, Computable Functions & Predicates, Resolution, Natural Deduction. **Representing Knowledge Using Rules:** Procedural Versus Declarative Knowledge, Logic Programming, Forward Versus Backward Reasoning, Matching, Control Knowledge.

(8L)

Module IV:

Probabilistic Reasoning: Representing Knowledge in an Uncertain Domain, Bayesian Networks, Dempster -Shafer Theory.

Planning: Overview, Components of A Planning System, Goal Stack Planning, Hierarchical Planning.

Learning: Forms of Learning, Inductive Learning, Explanation Based Learning, Neural Net Learning & Genetic Learning.

(8L)

Module V:

Natural Language Processing: Brief introduction to Syntactic Processing, Semantic Analysis, Discourse & Pragmatic Processing.

Robotics: Introduction, Robot hardware, robotic perception, planning to move, planning uncertain movements, robotic software architecture, application domains.

(8L)

TEXT BOOKS:

- 1. S. Russel and P. Norvig, "Artificial Intelligence: A Modern Approach", 3rd Edition, Pearson Education. (**T1**)
- 2. E. Rich & K. Knight, "Artificial Intelligence", 2/e, TMH, New Delhi, 3rd Edition, TMH. (T2)

REFERENCE BOOKS:

- 1. Dan W. Patterson, "Introduction to Artificial Intelligence and Expert Systems", PHI, New Delhi, 2006. (R1)
- 2. D.W. Rolston, "Principles of AI & Expert System Development", TMH, New Delhi. (R2)

Course Evaluation:

Individual assignment, Theory (Quiz and End semester) examinations

Gaps in the syllabus (to meet Industry/Profession requirements):

POs met through Gaps in the Syllabus:

Topics beyond syllabus/Advanced topics/Design:

POs met through Topics beyond syllabus/Advanced topics/Design: Teaching through research papers.

$\frac{\text{COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS \& EVALUATION}}{\text{PROCEDURE}}$

Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Continuous Internal Assessment	50
Semester End Examination	50

Continuous Internal Assessment	% Distribution
3 Quizzes	30 % (3 × 10%)
Assignment (s)	10
Seminar before a committee	10

Assessment Components	CO1	CO2	CO3	CO4	CO5
Continuous Internal Assessment					
Semester End Examination					

CD#	Course Delivery methods
CD1	Lecture by use of boards/LCD projectors/OHP projectors
CD2	Assignments/Seminars
CD3	Laboratory experiments/teaching aids
CD4	Industrial/guest lectures
CD5	Industrial visits/in-plant training
CD6	Self- learning such as use of NPTEL materials and internets
CD7	Simulation

Mapping between Objectives and Outcomes

Mapping of Course Outcomes onto Program Outcome

Course Outcome	Program Outcomes					
	PO1 PO2 PO3 PO4 PO5 P					
CO1	3	3	3	3	3	2
CO2	3	3	3	3	3	3
CO3	3	3	3	2	2	3
CO4	3	3	3	2	1	1
CO5	2	2	2	3	1	1

If satisfying and < 34% = 1, 34-66% = 2, > 66% = 3

MAPPING BETWEEN COURSE OUTCOMES AND COURSE DELIVERY METHOD

Course Outcomes	Course Delivery Method
CO1	CD1,CD6
CO2	CD1,
CO3	CD1, CD2, CD3,
CO4	CD1, CD3
CO5	CD1,CD2, CD7

Course code:IT516

Course title: DATA MINING AND DATA ANALYSIS

Pre-requisite(s):
Co- requisite(s): None

Credits: 3 L: 3 T: 0 P: 0 Class schedule per week: 03

Class: M. Tech

Semester / Level: II/5

Branch: Computer Science & Engg.

Name of Teacher:

Course Objectives

This course enables the students to:

1.	Explain about the necessity of preprocessing and its procedure.
2.	Generate and evaluate Association patterns
3.	Solve problems using various Classifiers
4.	Learn the principles of Data mining techniques and various mining algorithms.
5.	Learn about traditional and modern data driven approach and problem solving techniques for various datasets

Course Outcomes

After the completion of this course, students will be able to:

CO1	Understand Data Warehousing and Data Mining and its applications and challenges and Create mini data warehouse.
CO2	Apply the association rules for mining applications .
CO3	Identify appropriate Classification techniques for various problems with high dimensional data.
CO4	Implement appropriate Clustering techniques for various problems with high dimensional data sets.
CO5	Implement various mining techniques on complex data objects.

Module I:

Data Analysis foundation, Numeric and Categorical attributes, Dimensionality reduction.

(8L)

Module II:

Data Warehouse: Introduction, A Multidimensional Data Model, Data Warehouse Architecture, Data Warehouse Implementation, Data Cube Technology, From Data Warehousing to Data Mining. Data Cube Computation and Data Generalization.

(8L)

Module III:

Frequent Pattern Mining, Summarizing Itemsets, Itemset Mining, Sequence Mining.

(8L)

Module IV:

Classification: Naïve Bayes, KNN, Decision Tree, Classification Performance measures, Classifier evaluation.

(8L)

Module V:

Clustering: K-Means, Agglomerative, Hierarchical, DBSCAN, Spectral and Graph Clustering. Anomaly detection, Statistical, distance and density-based approaches.

(8L)

Text Books:

- 1. Mohammed J. Zaki, and Wagner Meira Jr., "Data Mining and Analysis: Fundamental Concepts and Algorithms", Cambridge University Press, 2016. (T1)
- 2. Pang-Ning Tan, Michael Steinbach, and Vipin Kumar, "Introduction to Data Mining", Pearson, 2014. (**T2**)
- 3. Jiawei Han, and Micheline Kamber, "Data Mining Concepts & Techniques", 3rd Edition, Publisher Elsevier India Private Limited, 2015. (**T3**)

Course Evaluation:

Individual assignment, Theory (Quiz and End semester) examinations

Gaps in the syllabus (to meet Industry/Profession requirements):

POs met through Gaps in the Syllabus:

Topics beyond syllabus/Advanced topics/Design:

POs met through Topics beyond syllabus/Advanced topics/Design: Teaching through research papers.

COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS & EVALUATION PROCEDURE

Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Continuous Internal Assessment	50
Semester End Examination	50

3 Quizzes	30 % (3 × 10%)
Assignment (s)	10
Seminar before a committee	10

Assessment Components	CO1	CO2	CO3	CO4	CO5
Continuous Internal Assessment					
Semester End Examination					

Indirect Assessment –

- 1. Student Feedback on Faculty
- 2. Student Feedback on Course Outcome

CD #	Course Delivery methods
CD1	Lecture by use of boards/LCD projectors/OHP projectors
CD2	Assignments/Seminars
CD3	Laboratory experiments/teaching aids
CD4	Industrial/guest lectures
CD5	Industrial visits/in-plant training
CD6	Self- learning such as use of NPTEL materials and internets
CD7	Simulation

<u>Mapping between Objectives and Outcomes</u> <u>Mapping of Course Outcomes onto Program Outcome</u>

Course Outcome	Program Outcomes					
	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	1	2		3	2
CO2	3	3		2	2	
CO3	2	3	3	2	3	1
CO4		2	3		2	3
CO5	1	2	3	3	2	3

If satisfying and < 34% = L, 34-66% = M, > 66% = H

Mapping	Mapping Between COs and Course Delivery (CD) methods						
CD	Course Delivery methods	Course Outcome	Course Delivery				
			Method				
CD1	Lecture by use of boards/LCD	CO1, CO2, CO3,	CD1				
	projectors/OHP projectors	CO4, CO5					
CD2	Laboratory experiments/teaching						
	aids						
CD3	Industrial/guest lectures						
CD4	Industrial visits/in-plant training						
CD5	Self- learning such as use of						
	NPTEL materials and internets						

Course Code: CS510

Course title: ADVANCED ALGORITHM LAB

Pre-requisite(s): Design and Analysis of Algorithms, Data Structures

Co- requisite(s): None

Credits: L:0 T:0 P: 2 Class schedule per week: 04

Class: M. Tech

Semester / Level: II/5

Branch: Computer Science and Engineering

Course Objectives

After the completion of this course, students will be able to:

- 1. Able to create a requirements model using UML class notations and use-cases based on statements of user requirements, and to analyze requirements models given to them for correctness and quality.
- 2. Able to create the OO design of a system from the requirements model in terms of a high-level architecture description, and low-level models of structural organization and dynamic behaviour using UML class, object, and sequence diagrams.
- 3. Able to comprehend enough Java to see how to create software the implements the OO designs modelled using UML.
- 4. Able to comprehend the nature of design patterns by understanding a small number of examples from different pattern categories, and to be able to apply these patterns in creating an OO design.
- 5. Given OO design heuristics, patterns or published guidance, evaluate a design for applicability, reasonableness, and relation to other design criteria.

Course Outcomes

After the completion of this course, students will be able to:

CO1	Able to know the different notions of asymptotic complexity and determine the				
	asymptotic complexity of algorithms including the solving of recurrence relations.				
CO2	Able to determine the practical implications of asymptotic notations.				
CO3	Able to Implement, analyze, and compare algorithms.				
CO4	Able to Know the difference between the dynamic programming concept and a greedy				
	approach.				
CO5	Able to know and use basic and advanced graph algorithms including DFS, BFS, and				
	Bellman Ford.				

List of Programs as Assignments:

1. Lab Assignment No: 1

Programs on Polynomial vs logarithmic running times

2. Lab Assignment No: 2

Programs on Divide-and-conquer algorithms

3. Lab Assignment No: 3

Programs on Greedy and dynamic-programming algorithms

4. Lab Assignment No: 4

Programs on Binary trees

5. <u>Lab Assignment No: 5</u>

Programs on Heaps and priority queues

6. Lab Assignment No: 7

Programs on Binary search trees

7. Lab Assignment No: 8

Programs on Hash tables

8. Lab Assignment No: 9

Programs on Graph traversal

9. Lab Assignment No: 10

Programs on Shortest paths in graphs.

Books recommended:

Text Books:

- 1. Thomas H Cormen, Charles E Lieserson, Ronald L Rivest and Clifford Stein, Introduction to Algorithms, Second Edition, MIT Press/McGraw-Hill, 2001. (T1)
- 2. Sanjoy Dasgupta, Christos H. Papadimitriou and Umesh V. Vazirani, Algorithms, Tata McGraw-Hill, 2008. (**T2**)
- 3. Jon Kleinberg and Éva Tardos, Algorithm Design, Pearson, 2005. (T3)

Course Evaluation:

Individual assignment, Theory (Quiz and End semester) examinations

Gaps in the syllabus (to meet Industry/Profession requirements):

POs met through Gaps in the Syllabus:

Topics beyond syllabus/Advanced topics/Design:

POs met through Topics beyond syllabus/Advanced topics/Design: Teaching through research papers.

COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS & EVALUATION PROCEDURE

Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Continuous Internal Assessment	60
Semester End Examination	40

Continuous Internal Assessment	% Distribution
Day to day performance & Lab files	30
Quiz (es)	10
Viva	20

Semester End Examination	% Distribution
Examination Experiment Performance	30
Quiz	10

Assessment Components	CO1	CO2	CO3	CO4	CO5
Continuous Internal Assessment					
Semester End Examination					

Indirect Assessment –

- 1. Student Feedback on Faculty
- 2. Student Feedback on Course Outcome

CD#	Course Delivery methods
CD1	Lecture by use of boards/LCD projectors/OHP projectors
CD2	Assignments/Seminars
CD3	Laboratory experiments/teaching aids
CD4	Industrial/guest lectures
CD5	Industrial visits/in-plant training
CD6	Self- learning such as use of NPTEL materials and internets
CD7	Simulation

Mapping between Objectives and Outcomes

Mapping of Course Outcomes onto Program Outcome

Course Outcome	Program Outcomes					
	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	1	2		3	2
CO2	3	3		2	2	
CO3	2	3	3	2	3	1
CO4		2	3		2	3
CO5	1	2	3	3	2	3

If satisfying and < 34% = L, 34-66% = M, > 66% = H

Mapping Between COs and Course Delivery (CD) methods			
CD	Course Delivery methods	Course Outcome	Course Delivery
			Method
CD1	Lecture by use of boards/LCD	CO1, CO2, CO3,	CD1
	projectors/OHP projectors	CO4, CO5	
CD2	Laboratory experiments/teaching		
	aids		
CD3	Industrial/guest lectures		
CD4	Industrial visits/in-plant training		
CD5	Self- learning such as use of		
	NPTEL materials and internets		

Course code:IT517

Course title: DATA MINING AND DATA ANALYSIS LAB

Pre-requisite(s):
Co- requisite(s): None

Credits: 2 L: 0 T: 0 P: 4 Class schedule per week: 04

Class: M. Tech

Semester / Level: II/5

Branch: Computer Science & Engg.

Name of Teacher:

Course Objectives

This course enables the students to:

1.	Explain about the necessity of preprocessing and its procedure.
2.	Generate and evaluate Association patterns
3.	Solve problems using various Classifiers
4.	Learn the principles of Data mining techniques and various mining algorithms.
5.	Learn about traditional and modern data driven approach and problem solving techniques for various datasets

Course Outcomes

After the completion of this course, students will be able to:

CO1	Understand Data Warehousing and Data Mining and its applications and challenges and Create mini data warehouse.
CO2	Apply the association rules for mining applications .
CO3	Identify appropriate Classification techniques for various problems with high dimensional data.
CO4	Implement appropriate Clustering techniques for various problems with high dimensional data sets.
CO5	Implement various mining techniques on complex data objects.

List of Programs as Assignments:

1. Lab Assignment No: 1

. Build a Data Warehouseand Explore WEKA tool.

2. Lab Assignment No: 2

. Demonstration of preprocessingon various datasets.

3. Lab Assignment No: 3

Q3.Demonstration of Association rule process on dataset using apriori algorithm.

4. Lab Assignment No: 4

Q4.Demonstrate performance of classification on various data sets.

5. <u>Lab Assignment No: 5</u>

Q5. Demonstrate performance of clustering on various data sets.

6. Lab Assignment No: 6

Q6. Demonstrate performance of Regression on various data sets

7. Lab Assignment No: 7

- Q7. Implement following algorithms for various datasets
 - A. Apriori Algorithm.
 - B. FP-Growth Algorithm.
 - C. K-means clustering.

8. Q8. Lab Assignment No: 8

Implement Bayesian Classification for various datasets

9. Lab Assignment No: 9

Q9 Implement Decision Tree for various datasets.

10. Lab Assignment No: 10

Q10. Implement Support Vector Machines.

11. Lab Assignment No: 11

Q11Applications of classification for web mining.

12. Lab Assignment No: 12

Q12. Case Study on Text Mining or any commercial application

Books recommended:

TEXT BOOKS:

1. Jiawei Han &MichelineKamber - Data Mining Concepts & Techniques Publisher Harcout India. Private Limited. (T1)

REFERENCE BOOKS:

- 1. G.K. Gupta Introduction to Data Mining with case Studies, PHI, New Delhi 2006. (R1)
- 2. A. Berson S.J. Smith Data Warehousing Data Mining, COLAP, TMH, New Delhi 2004. (R2)
- 3. H.M. Dunham & S. Sridhar Data Mining, Pearson Education, New Delhi, 2006. (R3)

Course Evaluation:

Day to day progressive evaluation, Lab Quizzes, Surprise Tests, Online Lab performance and Viva Voce

Gaps in the syllabus (to meet Industry/Profession requirements):

Implementing of real world problems

POs met through Gaps in the Syllabus: PO5&6

Topics beyond syllabus/Advanced topics/Design:

POs met through Topics beyond syllabus/Advanced topics/Design: Teaching through research papers.

COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS & EVALUATION PROCEDURE

Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Continuous Internal Assessment	60
Semester End Examination	40

Continuous Internal Assessment	% Distribution
Day to day performance & Lab files	30
Quiz (es)	10
Viva	20

Semester End Examination	% Distribution
Examination Experiment Performance	30
Quiz	10

Assessment Components	CO1	CO2	CO3	CO4	CO5
Continuous Internal Assessment					
Semester End Examination					

Indirect Assessment -

- 1. Student Feedback on Faculty
- 2. Student Feedback on Course Outcome

Course Delivery Methods

CD1	Lecture by use of boards/LCD projectors/OHP projectors
CD2	Assignments/Seminars
CD3	Laboratory experiments/teaching aids
CD4	Industrial/guest lectures
CD5	Industrial visits/in-plant training
CD6	Self- learning such as use of NPTEL materials and internets
CD7	Simulation

Mapping between Objectives and Outcomes

Mapping of Course Outcomes onto Program Outcomes

Course Outcome	Program Outcomes							
	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	3	3	2	2		1		
CO2	3	3	2		1			
CO3	2	3	2	1	1	1		
CO4	3				1	1		
CO5	3	2	1			1		

If satisfying and < 34% = 1, 34-66% = 2, > 66% = 3

MAPPING BETWEEN COURSE OUTCOMES AND COURSE DELIVERY METHOD

Course Outcomes	Course Delivery Method
CO1	CD1,CD6
CO2	CD1, CD6,CD7
CO3	CD1, CD2, CD3,
CO4	CD1, CD3,CD6,CD7
CO5	CD1,CD2,CD7

Course code: CS518

Course title: PARALLEL COMPUTING LAB.

Pre-requisite(s):

Co- requisite(s): None

Credits: 2 L: 0 T: 0 P: 4 Class schedule per week: 04

Class: B. Tech

Semester / Level: II/5

Branch: Computer Science & Engineering

Name of Teacher:

Course Objectives

This course enables the students to:

1.	To describe benefits and applications of parallel computing.
2.	Explain architectures of multicore CPU, GPUs and HPC clusters, including the key concepts in parallel computer architectures, e.g. shared memory system, distributed system, NUMA and cache coherence, interconnection
3.	Understand principles for parallel and concurrent program design, e.g. decomposition of works, task and data parallelism, processor mapping, mutual exclusion, locks.
4.	write programs that effectively use parallel collections to achieve performance.
5.	To use large scale parallel machines to solve problems as well as discuss the issues related to their construction and use.

Course Outcomes

After the completion of this course, students will be able to:

CO1	Reason about task and data parallel programs.
CO2	Express common algorithms in a functional style and solve them in parallel.
CO3	To analyse a problem, and identify, formulate and use the appropriate computing and engineering requirements for obtaining its solution.
CO4	Write parallel program using OpenMP, CUDA, MPI programming models.
CO5	Perform analysis and optimization of parallel program.

List of Programs as Assignments:

1. Lab Assignment No: 1

Objective: To understand and Implement basic MPI program.

Q1. Write a program that uses MPI and has each MPI process print

'Hello world from process i of n' using the rank in MPI_COMM_WORLD for i and the size of MPI_COMM_WORLD for n.

Q2. Write a parallel program to print any input message supplied by user.

2. <u>Lab Assignment No: 2</u>

Objective: To Understand and Implement MPI program.

- Q1. Write a parallel program to add two one dimensional arrays of size 'n'.
- Q2. Write a parallel program to add two matrices of order n * n.

3. Lab Assignment No: 3

Objective: To Understand and Implement MPI program.

- Q1.Write a parallel program to multiply two matrices.
- Q2. Write a parallel program to multiply a matrix of order n x n by a vector of size n.

4. Lab Assignment No: 4

Objective: To Understand and Implement MPI program.

- Q1. Write a parallel Program to count the no. of vowels in a text.
- Q2. Write a parallel program to find the largest element of n elements.

5. Lab Assignment No: 5

Objective: To Understand and Implement MPI program.

- Q1. Write a parallel program to count no. of characters, words and lines in a file.
- Q2. Write a parallel program to find factorial value of an integer.

6. Lab Assignment No: 6

Objective: To Understand and ImplementMPI program.

- Q1. Write a parallel program to find the transpose of a given Matrix.
- Q2. Write a parallel program to implement ring topology.

7. Lab Assignment No: 7

Objective: To Understand and ImplementMPI program.

- Q1.Write a parallel program to find the largest and the second largest from a list of elements considering minimum no. of comparisons.
- Q2. Write a parallel program to sort n elements, using any sorting technique.

8. <u>Lab Assignment No: 8</u>

Objective: To Understand and Implement MPI program.

- Q1. Write a parallel program to solve a set of linear equations using gauss elimination method.
- Q2. Write a parallel program to find the inverse of a given matrix of n*n order.

9. Lab Assignment No: 9

Objective: To Understand and ImplementMPI program.

- Q1. Write a parallel program to find minimal path (minimal cost) in an undirected graph.
- Q2. Write a parallel program to find roots of an equation using N-R method.

Books recommended:

TEXT BOOKS

- 1. Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar, Introduction to Parallel Computing (2nd Edition). (**T1**)
- 2. Edition), PDF, Amazon, cover theory, MPI and OpenMP introduction Recommended: John Cheng, Max Grossman, and Ty McKercher, Professional CUDA C Programming, 1st Edition 2014. (T2)

REFERENCE BOOKS

1. Barbara Chapman, Gabriele Jost, and Ruud van der Pas, Using OpenMP: Portable Shared Memory Parallel Programming, 2007. (R1)

Course Evaluation:

Day to day progressive evaluation, Lab Quizzes, Surprise Tests, Online Lab performance and Viva Voce

Gaps in the syllabus (to meet Industry/Profession requirements):

Implementing of real world problems

POs met through Gaps in the Syllabus: PO5&6

Topics beyond syllabus/Advanced topics/Design:

POs met through Topics beyond syllabus/Advanced topics/Design: Teaching through research papers.

COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS & EVALUATION PROCEDURE

Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Continuous Internal Assessment	60
Semester End Examination	40

Continuous Internal Assessment	% Distribution
Day to day performance & Lab files	30
Quiz (es)	10
Viva	20

Semester End Examination	% Distribution
Examination Experiment Performance	30
Quiz	10

Assessment Components	CO1	CO2	CO3	CO4	CO5
Continuous Internal Assessment					
Semester End Examination					

Indirect Assessment -

- 1. Student Feedback on Faculty
- 2. Student Feedback on Course Outcome

Course Delivery Methods

CD1	Lecture by use of boards/LCD projectors/OHP projectors
CD2	Assignments/Seminars
CD3	Laboratory experiments/teaching aids
CD4	Industrial/guest lectures
CD5	Industrial visits/in-plant training
CD6	Self- learning such as use of NPTEL materials and internets
CD7	Simulation

Mapping between Objectives and Outcomes

Mapping of Course Outcomes onto Program Outcomes

Course		Program Outcomes								
Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	2	2	1	1	3					
CO2	2	1	1	1	3			3		
CO3	1	2	3	3	3					
CO4		1	1	3	2					1
CO5	1	1	2	2				2		3

If satisfying and < 34% = 1, 34-66% = 2, > 66% = 3

MAPPING BETWEEN COURSE OUTCOMES AND COURSE DELIVERY METHOD

Course Outcomes	Course Delivery Method
CO1	CD1,CD6
CO2	CD1, CD6,CD7
CO3	CD1, CD2, CD3,
CO4	CD1, CD3,CD6,CD7
CO5	CD1,CD2,CD7

Course code: CS516

Course title: ADVANCED OPERATING SYSTEM LAB

Pre-requisite(s):
Co- requisite(s): None

Credits: 2 L: 0 T: 0 P: 4 Class schedule per week: 04

Class: M. Tech

Semester / Level: II/5

Branch: Computer Science & Engineering

Name of Teacher:

Course Objectives

This course enables the students to:

1.	Gain practical experience with designing and implementing concepts of operating systems such as system calls.
2.	Implement and develop CPU scheduling.
3.	Implement and understand process management, memory management.
4.	To provide a foundation in use of file systems and deadlock handling using C language in Linux environment.

Course Outcomes

After the completion of this course, students will be able to:

	aprovious of this course, students will obtain to.
CO1	Understand and implement basic services and functionalities of the operating system using system calls.
CO2	Use modern operating system calls and synchronization libraries in software/ hardware interfaces.
CO3	Understand the benefits of thread over process and implement synchronized programs using multithreading concepts.
CO4	Analyze and simulate CPU Scheduling Algorithms like FCFS, Round
	Robin, SJF, and Priority.
CO5	Implement memory management schemes and page replacement schemes.

List of Programs as Assignments:

1. Lab Assignment No: 1

Objective: To Understand and Implement Directory Structure

Q1. WAP to create a File directory system.

2. Lab Assignment No: 2

Objective: To Understand and Implement Scheduling processes

Q1. WAP to schedule various processes

3. Lab Assignment No: 3

Objective: To Understand and Implement FCFS

Q1. WAP to implement FCFS CPU Scheduling

4. Lab Assignment No: 4

Objective: To Understand and Implement SJF

Q1. WAP to implement SJF CPU scheduling.

5. Lab Assignment No: 5

Objective: To Understand and Implement SRTF

Q1.WAP to implement SRTF CPU scheduling.

6. Lab Assignment No: 6

Objective: To Understand and Implement Scheduling algorithms

Q1. WAP to implement Round Robin Scheduling

7. Lab Assignment No: 7

Objective: To Understand and Implement Scheduling algorithms

Q1 WAP to implement SRTF scheduling.

8. Lab Assignment No: 8

Objective: To Understand and Implement context switching

Q1. WAP to implement Round Robin Scheduling with context switching.

9. Lab Assignment No: 9

Objective: To Understand and Implement context switching.

Q1.WAP to implement SRTF with context switching.

10. Lab Assignment No: 10

Objective: To Understand and Implement Page Replacement Techniques

- Q1. WAP to implement FCFS page replacement algorithm.
- Q2. WAP to implement Optimal page replacement algorithm.

Books recommended:

Text Books:

- 1. Operating System Concepts(2012): Abraham Silberschatz Yale University PETER BAER GALVIN Pluribus Networks GREG GAGNE Westminster College. (T1)
- 2. Operating Systems (2003) by Deitel, Deitel, and Choffnes. (T2)

Course Evaluation:

Day to day progressive evaluation, Lab Quizzes, Surprise Tests, Online Lab performance and Viva Voce

Gaps in the syllabus (to meet Industry/Profession requirements):

Implementing of real world problems

POs met through Gaps in the Syllabus: PO5&6

Topics beyond syllabus/Advanced topics/Design:

POs met through Topics beyond syllabus/Advanced topics/Design: Teaching through research papers.

COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS & EVALUATION PROCEDURE

Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Continuous Internal Assessment	60
Semester End Examination	40

Continuous Internal Assessment	% Distribution
Day to day performance & Lab files	30
Quiz (es)	10
Viva	20

Semester End Examination	% Distribution
Examination Experiment Performance	30
Quiz	10

Assessment Components	CO1	CO2	CO3	CO4	CO5
Continuous Internal Assessment					
Semester End Examination					

Indirect Assessment –

- 1. Student Feedback on Faculty
- 2. Student Feedback on Course Outcome

Course Delivery Methods

CD1	Lecture by use of boards/LCD projectors/OHP projectors
CD2	Assignments/Seminars
CD3	Laboratory experiments/teaching aids
CD4	Industrial/guest lectures
CD5	Industrial visits/in-plant training
CD6	Self- learning such as use of NPTEL materials and internets
CD7	Simulation

Mapping between Objectives and Outcomes

Mapping of Course Outcomes onto Program Outcomes

Course Outcome	Program Outcomes					
	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	3	2	2	2
CO2	2	3	3	3	3	2
CO3	3	2	2	1	1	1
CO4	3	3	3	2	3	1
CO5	2	2	2	2	1	3

If satisfying and < 34% = 1, 34-66% = 2, > 66% = 3

MAPPING BETWEEN COURSE OUTCOMES AND COURSE DELIVERY METHOD

Course Outcomes	Course Delivery Method
CO1	CD1,CD4
CO2	CD1, CD2,CD5
CO3	CD1, CD2
CO4	CD1, CD3,CD5
CO5	CD1,CD2

Course code: CS601

Course title: GRAPH THEORY

Pre-requisite(s): Discrete Mathematics

Co- requisite(s): None

Credits: 3 L: 3 T: 0 P: 0 Class schedule per week: 03

Class: M. Tech

Semester / Level: III/6

Branch: Computer Science and Engineering

Course Objectives

This course enables the students to:

1.	Learn and become comfortable with graphs and its terminologies
2.	Understand applications of graph theory to practical problems and other branches of mathematics
3.	Understand various graphs algorithms along with its analysis.
4.	Practice creative problem solving and improve skills in this area

Course Outcomes

After the completion of this course, students will be able to:

CO1	Attain knowledge about different types of graphs and their applications in real world.
CO2	Perceive the role of cut-set, cut-vertex and fundamental circuits in network flows.
CO3	Create an awareness of planar and dual graph.
CO4	Understand how to represent graphs in computer system
CO5	Apply the concept of graph coloring and partitioning techniques in NP-problems

Module I:

Introduction: Graphs and its applications, Finite and infinite graphs, incidence and degree, isolated Vertex, pendant Vertex, and Null graph, paths and circuits, isomorphism, sub graphs, walks, paths, and circuits, connected graphs, disconnected graphs and components, Connectivity checking algorithm, Euler graphs, Operations on graphs, more on Euler graphs, Hamiltonian paths and circuits, Travelling Salesman problem.

(8L)

Module II:

Trees and Fundamental circuits: Trees and its properties, Distance and centers in a tree, Algorithm for checking if a graph is Tree, Partial k-trees, Dynamic Programming in partial k-trees, Spanning trees, Spanning trees in a Weighted graph, Prim's and Kruskal's algorithms **Cut set and cut vertices**: Properties of a cut set, Fundamental circuits and cut sets, connectivity and separability, Computing connected components, Menger's theorem, Network flows, 1-Isomorphism, 2-Isomorphism.

(8L)

Module III:

Planar and Dual Graphs: Planar graph, Kuratowski's Graphs, Representations of a planar graph, Detection of planarity, Planar Separator Theorem, Geometric Dual, Combinatorial, Duel, Thickness and crossings, Algorithms for finding Clique and maximum clique.

(8L)

Module IV:

Matrix Representation of Graphs: Incidence matrix, Adjacency matrix, Adjacency list, Circuits Matrix, Fundamental Circuit Matrix and Rank of B, Cut-set Matrix, Relationships among Af, Bf and Cf, path Matrix.

(8L)

Module V:

Coloring, Covering and partitioning: Chromatic number, Chromatic partitioning, Chromatics polynomial, Coverings, Four colour problem, Algorithm for graph colouring.

Directed Graphs: Digraphs and its types, Digraphs and binary Relations, Directed paths and connectedness, Euler Digraphs, Trees with Directed Edges, Fundamental Circuits in Di graphs, Matrices A, B and C of Digraphs, Adjacency Matrix of a Digraph, Paired Comparisons and Tournaments, Acyclic Di graphs and De-cyclization.

(8L)

Text Books:

1. Narasingh Deo, "Graph Theory with Applications to engineering and Computer Science", Prentice Hall of India, 2001. (T1)

Reference Books:

1. Douglas B. West, "Introduction to Graph theory", Pearson Education, 2002. (R1)

Course Evaluation:

Individual assignment, Theory (Quiz and End semester) examinations

Gaps in the syllabus (to meet Industry/Profession requirements):

POs met through Gaps in the Syllabus:

Topics beyond syllabus/Advanced topics/Design:

POs met through Topics beyond syllabus/Advanced topics/Design: Teaching through research papers.

$\frac{\text{COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS \& EVALUATION}}{\text{PROCEDURE}}$

Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Continuous Internal Assessment	50
Semester End Examination	50

Continuous Internal Assessment	% Distribution
3 Quizzes	30 % (3 × 10%)
Assignment (s)	10
Seminar before a committee	10

Assessment Components	CO1	CO2	CO3	CO4	CO5
Continuous Internal Assessment					
Semester End Examination					

CD#	Course Delivery methods
CD1	Lecture by use of boards/LCD projectors/OHP projectors
CD2	Assignments/Seminars
CD3	Laboratory experiments/teaching aids
CD4	Industrial/guest lectures
CD5	Industrial visits/in-plant training
CD6	Self- learning such as use of NPTEL materials and internets
CD7	Simulation

Mapping between Objectives and Outcomes

Mapping of Course Outcomes onto Program Outcomes

Course Outcome	Program Outcomes					
	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	2	3	1	1
CO2	3	2	3	3	1	1
CO3	3	3	3	2	1	2
CO4	3	3	3	3	2	2
CO5	3	3	3	2	2	1

If satisfying and < 34% = L, 34-66% = M, > 66% = H

Mapping Between COs and Course Delivery (CD) methods					
CD	Course Delivery methods	Course Outcome	Course Delivery		
			Method		
CD1	Lecture by use of boards/LCD	CO1, CO2, CO3,	CD1		
	projectors/OHP projectors	CO4, CO5			
CD2	Laboratory experiments/teaching				
	aids				
CD3	Industrial/guest lectures				
CD4	Industrial visits/in-plant training				
CD5	Self- learning such as use of				
1	NPTEL materials and internets				

Program Electives III

COURSE INFORMATION SHEET

Course code: CS605

Course title: HIGH PERFORMANCE COMPUTER ARCHITECTURE

Pre-requisite(s): Computer Architecture/Organization, Operating System, Parallel

Computing Co-requisite(s):

Credits:3 L:3 T:0 P:0 Class schedule per week: 03

Class: M. Tech

Semester / Level: III/6

Branch: Computer Science & Engineering

Course Objectives

This course enables the students to:

1.	To Explain different terminologies in High Performance Computer Architecture.
2.	To introduce basic concepts of High Performance Computer Architecture
3.	Hands on the different parallel architectures in terms of various parameters.
4.	Evaluate performance metrics and scalability and selection criteria for parallelism and different parallel systems and able to modify it.
5.	Provide the students with practice on running complex problem in high performance computing machines.

Course Outcomes

After the completion of this course, students will be:

COL	Describe different terminals size in High Denformance Computer Architecture
COI	Describe different terminologies in High Performance Computer Architecture.
000	
CO2	Demonstrate and Implement the concepts of High Performance Computer Architecture
C03	Compare and differentiate the different parallel architectures in terms of various
	parameters.
COA	Evaluate performance metrics and scalability and selection criteria for parallelism and
CO4	
	different parallel systems and able to modify it.
CO5	Design effective high-performance systems as per users' criteria with proper justification
	by self or in a group.
	by sen of magroup.

Module I

Parallel Computer Models : The State of Computing, Multiprocessors and Multicomputers, Multivector and SIMD Computers, PRAM and VLSI Models, Architectural Development Tracks.

(8L)

Program and Network Properties: Conditions for Parallelism, Program Partitioning and Scheduling, Program Flow Mechanism, System Interconnect Architectures.

Module II

Program and Network Properties: Conditions for Parallelism, Program Partitioning and Scheduling, Program Flow Mechanism, System Interconnect Architectures.

Principles of Scalable Performance: Performance Metrics and Measures, Parallel Processing Applications, Speedup Performance Laws, Scalability Analysis and Approaches.

(8L)

Module III

Processors and Memory Hierarchy: Advanced Processor Technology, Super Scaler and Vector Processors, Memory Hierarchy Technology, Virtual Memory Technology.

Bus, Cache, and Shared Memory: Bus Systems, Cache Memory Organizations, Shared-Memory Organizations, Sequential and Weak Consistency Models, Weak Consistency Models. (8L)

Module IV

Pipelining and Superscalar Techniques: Linear Pipeline Processors, Non Linear Pipeline Processor, Instruction Pipeline Design, Arithmetic Pipeline Design, Superscalar Pipeline Design

Multiprocessors and Multicomputers: Multiprocessor System Interconnects, Cache Coherence Synchronization Mechanism, Three Generations of Multicomputers, Message-Passing Mechanisms.

(8L)

Module V

Multivector and SIMD Computers: Vector Processing Principles, Multivector Multiprocessor, Compound Vector Processing, SIMD Computer Organizations, The Connection Machine CM-5

Scalable, Multithreaded and Data Flow Architecture: Latency-Hiding Techniques, Principle of Multithreading, Fine-Grain Multicomputers, Scalable and Multithreaded Architectures, Data Flow and Hybrid Architectures.

(8L)

Text Book:

1. Hwang K., Jotwani N., Advanced Computer Architecture, 2nd Edition, Tata Mc-Graw Hill, India, 2010. **(T1)**

Reference Book:

1. Stone, H. S., High Performance Computer Architecture, 3rd Edition, Addison Wesley Publishing Company, USA. (**R1**)

Gaps in the syllabus (to meet Industry/Profession requirements):

POs met through Gaps in the Syllabus:

Topics beyond syllabus/Advanced topics/Design:

Course Evaluation:

Individual assignment, Theory (Quiz and End semester) examinations

POs met through Topics beyond syllabus/Advanced topics/Design: Teaching through research papers.

COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS & EVALUATION PROCEDURE

Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Continuous Internal Assessment	50
Semester End Examination	50

Continuous Internal Assessment	% Distribution
3 Quizzes	30 % (3 × 10%)
Assignment (s)	10
Seminar before a committee	10

Assessment Components	CO1	CO2	CO3	CO4	CO5
Continuous Internal Assessment					
Semester End Examination					

Course Delivery Methods

CD1	Lecture by use of boards/LCD projectors/OHP projectors
CD2	Assignments/Seminars
CD3	Laboratory experiments/teaching aids
CD4	Industrial/guest lectures
CD5	Industrial visits/in-plant training
CD6	Self- learning such as use of NPTEL materials and internets
CD7	Simulation

Mapping between Objectives and Outcomes

Mapping of Course Outcomes onto Program Outcomes

Course Outcome #						
	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3			1	2	1
CO2	3	3		1	1	1
C03	3	3	3			1
CO4	2	3			2	1
CO5	2	3	2			1

If satisfying and < 34% = 1, 34-66% = 2, > 66% = 3

MAPPING BETWEEN COURSE OUTCOMES AND COURSE DELIVERY METHOD

Course Outcomes	Course Delivery Method
CO1	CD1,CD6
CO2	CD1, CD6, CD7
CO3	CD1, CD2, CD3,
CO4	CD1, CD3,CD6,CD7
CO5	CD1,CD2, ,CD5,CD7

Course Code: IT508

Course title: CLOUD COMPUTING

Pre-requisite(s):

Co- requisite(s): None

Credits: 3 L:3 T:0 P: 0 Class schedule per week: 03

Class: M. Tech

Semester / Level: II/5

Branch: Information Technology

Course Objectives

This course enables the students to:

1.	Understand about security requirements in cloud.
2.	Learn about infrastructure security at different levels
3.	Know about management standards of cloud security
4.	Develop and Apply trust-based security model to different layers

Course Outcomes

After the completion of this course, students will be able to:

	1
CO1	Identify security aspects of each cloud model
CO2	Implement a public cloud instance using a public cloud service provider
CO3	Apply trust-based security model to different layer
CO4	Develop a risk-management strategy for moving to the Cloud
CO5	Identify various research domain of cloud computing

Module I:

Introduction: Online Social Networks and Applications, Cloud introduction and overview, Different clouds, Risks, Novel applications of cloud computing.

(8L)

Module II:

Requirements, Introduction Cloud computing architecture, On Demand Computing Virtualization at the infrastructure level, Security in Cloud computing environments, CPU Virtualization, A discussion on Hypervisors Storage Virtualization Cloud Computing Defined, The SPI Framework for Cloud Computing, The Traditional Software Model, The Cloud Services Delivery Model, Key Drivers to Adopting the Cloud, The Impact of Cloud Computing on Users, Governance in the Cloud, Barriers to Cloud Computing Adoption in the Enterprise.

(8L)

Module III:

Infrastructure Security, Infrastructure Security: The Network Level, The Host Level, The Application Level, Data Security and Storage, Aspects of Data Security, Data Security Mitigation Provider Data and Its Security Identity and Access Management Trust Boundaries and IAM, IAM Challenges, Relevant IAM Standards and Protocols for Cloud Services, IAM Practices in the Cloud, Cloud Authorization Management.

(8L)

Module IV:

Security Management Standards, Security Management in the Cloud, Availability Management: SaaS, PaaS, IaaS, Privacy Issues: Privacy Issues, Data Life Cycle, Key Privacy Concerns in the Cloud, Protecting Privacy, Changes to Privacy Risk Management and Compliance in Relation to Cloud Computing, Legal and Regulatory Implications, U.S. Laws and Regulations, International Laws and Regulations.

(8L)

Module V:

Internal Policy Compliance, Governance, Risk, and Compliance (GRC), Regulatory/External Compliance, Cloud Security Alliance, Auditing the Cloud for Compliance, Security-as-a-Cloud, Recent developments in hybrid cloud and cloud security.

(8L)

Text Books:

- 1. John Rhoton, "Cloud Computing Explained: Implementation Handbook for Enterprises", Publication Date: November 2, 2009. (T1)
- 2. Tim Mather, "Cloud Security and Privacy: An Enterprise Perspective on Risks and Compliance (Theory in Practice)", ISBN-10: 0596802765, O'Reilly Media, September 2009. .(T2)

Course Evaluation:

Individual assignment, Theory (Quiz and End semester) examinations

Gaps in the syllabus (to meet Industry/Profession requirements):

POs met through Gaps in the Syllabus:

Topics beyond syllabus/Advanced topics/Design:

POs met through Topics beyond syllabus/Advanced topics/Design: Teaching through research papers.

COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS & EVALUATION PROCEDURE

Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Continuous Internal Assessment	50
Semester End Examination	50

Continuous Internal Assessment	% Distribution
3 Quizzes	30 % (3 × 10%)
Assignment (s)	10
Seminar before a committee	10

Assessment Components	CO1	CO2	CO3	CO4	CO5
Continuous Internal Assessment					
Semester End Examination					

Indirect Assessment -

- 1. Student Feedback on Faculty
- 2. Student Feedback on Course Outcome

Course Delivery Methods

CD1	Lecture by use of boards/LCD projectors/OHP projectors
CD2	Assignments/Seminars
CD3	Laboratory experiments/teaching aids
CD4	Industrial/guest lectures
CD5	Industrial visits/in-plant training
CD6	Self- learning such as use of NPTEL materials and internets
CD7	Simulation

Mapping between Objectives and Outcomes

Mapping of Course Outcomes onto Program Outcome

Course Outcome	Program Outcomes					
	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	1	1	1	1
CO2	3	3	3	2	1	1
CO3	3	2	2	1	1	1
CO4	3	2	1	1	1	1
CO5	1	2	3	1	1	1

If satisfying and < 34% = L, 34-66% = M, > 66% = H

Map	Mapping Between COs and Course Delivery (CD) methods				
CD	Course Delivery methods	Course Outcome	Course Delivery Method		
CD1	Lecture by use of boards/LCD projectors/OHP projectors	CO1, CO2, CO3, CO4, CO5	CD1		
CD2	Laboratory experiments/teaching aids				
CD3	Industrial/guest lectures				
CD4	Industrial visits/in-plant training				
CD5	Self- learning such as use of NPTEL materials				
	and internets	CO5	CD5		

Course code: IT518

Course title: INTERNET OF THINGS

Pre-requisite(s): Co-requisite(s):

Credits:3 L:3 T:0 P:0 Class schedule per week: 03

Class: M. Tech

Semester / Level: III/05

Branch: Computer Science & Engineering

Course Objectives

This course enables the students:

1.	Understand the basic concept and the Iot Paradigm
2.	Know the state of art architecture for IoT applications
3.	Learn the available protocols used for IoT
4.	Design basic IoT Applications.
5.	Evaluate optimal IoT applications.

Course Outcomes

After the completion of this course, students will be:

CO1	Identify the IoT Components and its capabilities
CO2	Explain the architectural view of IoT under real world constraints
C03	Analyse the different Network and link layer protocols
CO4	Evaluate and choose among the transport layer protocols
CO5	Design an IoT application

Module I:

IoT-An Architectural Overview

An Architectural Overview Building an architecture, Main design principles and needed capabilities, An IoT architecture outline, standards considerations. M2M and IoT Technology Fundamentals- Devices and gateways, Local and wide area networking, Data management, Business processes in IoT, Everything as a Service(XaaS), M2M and IoT Analytics, Knowledge Management.

(8L)

ModuleII:

IoT Architecture-State of the Art

State of the art, Reference Model and architecture, IoT Reference Architecture; Introduction, Functional View, Information View, Deployment and Operational View, Other Relevant architectural views.

(8L)

ModuleIII:

Sensor Technology, RFID Technology, WPAN Technologies for IoT/M2M, Cellular and Mobile Network Technologies for IoT/M2M CoAP, REST, Zigbee, Bluetooth

(8L)

ModuleIV:

Transport & Session Layer Protocols

Mobile IPv6 technology for IoT, 6LoWPAN, Transport Layer TCP, MPTCP, UDP, DCCP, Session Layer-HTTP, CoAP, XMPP, AMQP, MQTT

(8L)

ModuleV:

Layer Protocols & Security

Introduction, Technical Design constraints. Implementation Examples. Security and Interoperability.

(8L)

Books recommended:

TEXT BOOK

- 3. Jan Holler, VlasiosTsiatsis, Catherine Mulligan, Stefan Avesand, StamatisKarnouskos, David Boyle, "From Machine-to-Machine to the Internet of Things: Introduction to a New Age of Intelligence", 1stEdition, Academic Press, 2014.(**T1**)
- 4. Daniel Minoli, "Building the Internet of Things with IPv6 and MIPv6". (T2)

REFERENCE BOOK

- 3. Bernd Scholz-Reiter, Florian Michahelles, "Architecting the Internet of Things", ISBN 978-3-642-19156-5 e-ISBN 978-3-642-19157-2, Springer. (**R1**)
- 4. Peter Waher, "Learning Internet of Things", PACKT publishing, BIRMINGHAM MUMBAI. (R2)

Gaps in the syllabus (to meet Industry/Profession requirements):

POs met through Gaps in the Syllabus:

Topics beyond syllabus/Advanced topics/Design:

Course Evaluation:

Individual assignment, Theory (Quiz and End semester) examinations

POs met through Topics beyond syllabus/Advanced topics/Design: Teaching through research papers.

COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS & EVALUATION PROCEDURE

Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Continuous Internal Assessment	50
Semester End Examination	50

Continuous Internal Assessment	% Distribution
3 Quizzes	30 % (3 × 10%)
Assignment (s)	10
Seminar before a committee	10

Assessment Components	CO1	CO2	CO3	CO4	CO5
Continuous Internal Assessment					
Semester End Examination					

Course Delivery Methods

CD1	Lecture by use of boards/LCD projectors/OHP projectors
CD2	Assignments/Seminars
CD3	Laboratory experiments/teaching aids
D4	Industrial/guest lectures
CD5	Industrial visits/in-plant training
CD6	Self- learning such as use of NPTEL materials and internets
CD7	Simulation

<u>Mapping between Objectives and</u> <u>Outcomes</u> Mapping of Course Outcomes onto Program Outcomes

Course Outcome #	Program Outcomes					
	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	3	3	2	1
CO2	3	3	3	2	1	1
C03	3	2	2	3	1	1
CO4	3	3	2	1	3	1
CO5	2	1	2	2	1	1

If satisfying and < 34% = 1, 34-66% = 2, > 66% = 3

MAPPING BETWEEN COURSE OUTCOMES AND COURSE DELIVERY METHOD

Course Outcomes	Course Delivery Method
CO1	CD1,CD6
CO2	CD1, CD6, CD7
CO3	CD1, CD2, CD3,
CO4	CD1, CD3,CD6,CD7
CO5	CD1,CD2, ,CD5,CD7

Course code: IT519

Course title: INTERNET OF THINGS LAB

Pre-requisite(s): Co-requisite(s):

Credits: 2 L: 0 T: 0 P: 4 Class schedule per week: 04

Class: M. Tech

Semester / Level: I/05

Branch: Computer Science & Engg.

Course Objectives

This course enables the students:

1.	Understand the basic concept and the IoT Paradigm
2.	Know the state of art architecture for IoT applications
3.	Learn the available protocols used for IoT
4.	Design basic IoT Applications.
5.	Evaluate optimal IoT applications.

Course Outcomes

After the completion of this course, students will be:

CO1	Identify the IoT Components and its capabilities
CO2	Explain the architectural view of IoT under real world constraints
C03	Analyse the different Network and link layer protocols
CO4	Evaluate and choose among the transport layer protocols
CO5	Design an IoT application
1	

List of Programs as Assignments:

1. Lab Assignment No: 1

Glowing LEDs.

Toggling LED's.

2. Lab Assignment No: 2

Transmitting a string through UART

Controlling LEDs blinking pattern through UART.

3. Lab Assignment No: 3

Echo each character typed on HyperTerminal

Digital IO configuration.

Timer based LED Toggle.

4. Lab Assignment No: 4

Scanning the available SSID's in the range of Wi-FI Mote.

Connect to the SSID of choice

5. <u>Lab Assignment No: 5</u>

Demonstration of a peer to peer network topology.

check the connectivity to any device in the same network.

6. Lab Assignment No: 6

Send hello world to TCP server existing in the same network

Reading of atmospheric pressure value from pressure sensor.

7. <u>Lab Assignment No: 7</u>

I2C protocol study

Reading Temperature and Relative Humidity value from the sensor.

Reading Light intensity value from light sensor.

8. Lab Assignment No: 8

Proximity detection with IR LED.

Generation of alarm through Buzzer.

9. Lab Assignment No: 9

Timestamp with RTC

IO Expander.

Relay control.

10. Lab Assignment No: 10

I2C based 12-channel ADC

EEPROM read and write

11. Lab Assignment No: 11

Transmitting the measured physical value from the UbiSense Over the Air.

Text books:

- 1. Jan Holler, VlasiosTsiatsis, Catherine Mulligan, Stefan Avesand, StamatisKarnouskos, David Boyle, "From Machine-to-Machine to the Internet of Things: Introduction to a New Age of Intelligence", 1 st Edition, Academic Press, 2014. (T1)
- 2. Peter Waher, "Learning Internet of Things", PACKT publishing, BIRMINGHAM MUMBAI. (T2)

Reference books:

1. Bernd Scholz-Reiter, Florian Michahelles, "Architecting the Internet of Things", ISBN 978-3-642-19156-5 e-ISBN 978-3-642-19157-2, Springer. (R1)

Daniel Minoli, "Building the Internet of Things with IPv6 and MIPv6:" (R2)

Gaps in the syllabus (to meet Industry/Profession requirements):

POs met through Gaps in the Syllabus:

Topics beyond syllabus/Advanced topics/Design:

Course Evaluation:

Individual assignment, Theory (Quiz and End semester) examinations

POs met through Topics beyond syllabus/Advanced topics/Design: Teaching through research papers.

COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS & EVALUATION PROCEDURE

Direct Assessment

Assessment Tool	% Contribution during CO Assessment		
Continuous Internal Assessment	60		
Semester End Examination	40		

Continuous Internal Assessment	% Distribution
Day to day performance & Lab files	30
Quiz (es)	10
Viva	20

Semester End Examination	% Distribution
Examination Experiment Performance	30
Quiz	10

Assessment Components	CO1	CO2	CO3	CO4	CO5
Continuous Internal Assessment					
Semester End Examination					

Indirect Assessment –

- 1. Student Feedback on Faculty
- 2. Student Feedback on Course Outcome

Course Delivery Methods

CD1	Lecture by use of boards/LCD projectors/OHP projectors
CD2	Assignments/Seminars
CD3	Laboratory experiments/teaching aids
D4	Industrial/guest lectures
CD5	Industrial visits/in-plant training
CD6	Self- learning such as use of NPTEL materials and internets
CD7	Simulation

<u>Mapping between Objectives and</u> <u>Outcomes</u> Mapping of Course Outcomes onto Program Outcomes

Course Outcome #	Program Outcomes					
	PO1	PO1 PO2 P		PO3 PO4		PO6
CO1	3	3	3	3	2	1
CO2	3	3	3	2	1	1
C03	3	2	2	3	1	1
CO4	3	3	2	1	3	1
CO5	2	1	2	2	1	1

If satisfying and < 34% = 1, 34-66% = 2, > 66% = 3

MAPPING BETWEEN COURSE OUTCOMES AND COURSE DELIVERY METHOD

Course Outcomes	Course Delivery Method
CO1	CD1,CD6
CO2	CD1, CD6, CD7
CO3	CD1, CD2, CD3,
CO4	CD1, CD3,CD6,CD7
CO5	CD1,CD2, ,CD5,CD7

Course code:IT603

Course title: PYTHON PROGRAMMING LAB

Pre-requisite(s):
Co- requisite(s): None

Credits: 2 L: 0 T: 0 P: 4 Class schedule per week: 04

Class:

Semester / Level: III/6

Branch: Computer Science and Engg.

Name of Teacher:

Course Objectives

This course enables the students to:

1.	To introduce with fundamentals and grammar of Python programming.
2.	To understand and be able to use basic programming principles such as data types, variable, conditionals, loops, recursion and function calls.
3.	To learn how to use basic data structures such as List, Dictionary and be able to manipulate text files and images.
4.	To understand the process and skills necessary to effectively attempt a programming problem and implement it with a specific programming language Python.
5.	To understand a python program written by someone else and be able to debug and test the same.

Course Outcomes

After the completion of this course, students will be able to:

CO1	To use their problem solving abilities to implement programs in Python.
CO2	To apply Python in software development, testing and systems administration environments.
CO3	To develop Python applications for a variety of uses
CO4	To understand the fact that there is more than one right solution to a problem.
CO5	Work in industry environment with good enough knowledge about Python programming.

List of Programs as Assignments:

1. Lab Assignment No: 1

Objective: ToImplement basic Python programming.

- Q1. Create a new program called hello world.py. Use this file to write your very First "Hello, world!" program.
- Q2. Write a Python program containing exactly one print statement that produces the following output:

A

В

 \mathbf{C}

D

E

F

2. Lab Assignment No: 2

Objective: To Understand and Implement the concept of if-else-if statements.

- Q1.Write a Python program that requests five integer values from the user. It then prints one of two things: if any of the values entered are duplicates, it prints "DUPLICATES"; otherwise, it prints "ALL UNIQUE".
- Q2. Write a Python program that allows the user to enter a four-digit binary number and displays its value in base 10. Each binary digit should be entered one per line, starting with the leftmost digit, as shown below.

Enter leftmost digit: 1 Enter the next digit: 0 Enter the next digit: 0 Enter the next digit: 1

The value is 9

Q3.Develop and test a program that prompts the user for their age and determines approximately how many breaths and how many heartbeats the person has had in their life. The average respiration (breath) rate of people changes during different stages of development. Use the breath rates given below for use in your program:

	Breaths per Minut
Infant	30–60
1 –4 years	20–30
5 –14 years	15–25
adult	12_20

For heart rate, use an average of 67.5 beats per second.

3. <u>Lab Assignment No: 3</u>

Objective: To Understand and Implement the flow control statements.

- Q1. Using a for loop, write a program that prints out the decimal equivalents of 1/2, 1/3, 1/4... 1/10.
- Q2.Write a program using a for loop that calculates exponentials. Your program should ask the user for a base 'b' and an exponent 'exp', and calculate b^exp.
- Q3. Write a program using a while loop that asks the user for a number, and prints a countdown from that number to zero. What should your program do if the user input a negative number? As a programmer, you should always consider "edge conditions" like these when you program! (Another way to put it- always assume the users of your program will be trying to find a way to break it! If you don't include a condition that catches negative numbers, what will your program do?)

4. Lab Assignment No: 4

Objective: To practice drawing patterns

Q1.Write the program to print the following pattern: ex if the user enters 7, the program would print

Q2. Write a program in python to print the following pattern:

5. Lab Assignment No: 5

Objective: To Understand and Implement methods in Python.

- Q1. Write a method fact that takes a number from the user and prints its factorial.
- Q2. Write a Python function named compare3 that is passed three integers and returns true if the three integers are in order from smallest to largest, otherwise it returns false.
- Q3. Write a python function named modCount that is given a positive integer and a second positive integer, m<=n, and returns how many numbers between 1 and n are evenly divisible by m.

6. Lab Assignment No: 6

Objective: To Understand and Implement the concept of Recursion

- Q1. Write a program to read an integer number. Print the reverse of this number using recursion.
- Q2. Write a program that calculates the GCD using recursive functions.

7. <u>Lab Assignment No: 7</u>

Objective: To Understand and Implement Sorting techniques

- Q1. Write a program to sort the list of elements using Insertion sort.
- Q2. Write a program to sort the list of elements using Merge sort.
- Q3. Write a program to multiply the two matrices.

8. Lab Assignment No: 8

Objective: To Understand and Implement the concept of Strings in Python

- Q1. Write a program to check whether string is a palindrome or not.
- Q2. Write a program to implement format method available with string object.

9. Lab Assignment No: 9

Objective: To Understand and Implement Dictionary

- Q1. Program to demonstrate the built in functions within the dictionary.
- Q2. Program to implement dictionary as an associative array

10. Lab Assignment No: 10

Objective: To Understand and Implement File Handling.

- Q1. Program to open the file in the read mode and use of for loop to print each line present in the file.
- Q2. Write a Python program to illustrate Append vs write mode.
- Q3. Write a Program to read and write data from a file.

Books recommended:

TEXT BOOKS

- 1. Krishna P. R., Object Oriented Programming through JAVA, 1st Edition, Universities Press, 2008. **(T1)**
- 2. Patrick Naghton& H. Schildt The Complete Reference Java 2, Tata McGraw Hill Publication, New Delhi. (**T2**)
- 3. Dietel, Dietel Java How to program, 7th edition; Pearson Education, New Delhi. (T3)

REFERENCE BOOKS

- 1. C. Horstmann, G. Cornell Core Java 2 Vol I & Vol II; Pearson Education, New Delhi. (R1)
- 2. Balagurusamy -Programming in Java, 2nd Edition; Tata McGraw Hill Publication; New Delhi. (**R2**)

Course Evaluation:

Day to day progressive evaluation, Lab Quizzes, Surprise Tests, Online Lab performance and Viva Voce

Gaps in the syllabus (to meet Industry/Profession requirements):

Implementing of real world problems

POs met through Gaps in the Syllabus: PO5&6

Topics beyond syllabus/Advanced topics/Design:

POs met through Topics beyond syllabus/Advanced topics/Design: Teaching through research papers.

COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS & EVALUATION PROCEDURE

Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Continuous Internal Assessment	60
Semester End Examination	40

Continuous Internal Assessment	% Distribution
Day to day performance & Lab files	30
Quiz (es)	10
Viva	20

Semester End Examination	% Distribution
Examination Experiment Performance	30
Quiz	10

Assessment Components	CO1	CO2	CO3	CO4	CO5
Continuous Internal Assessment					
Semester End Examination					

Indirect Assessment –

- 1. Student Feedback on Faculty
- 2. Student Feedback on Course Outcome

Course Delivery Methods

CD1	Lecture by use of boards/LCD projectors/OHP projectors
CD2	Assignments/Seminars
CD3	Laboratory experiments/teaching aids
CD4	Industrial/guest lectures
CD5	Industrial visits/in-plant training
CD6	Self- learning such as use of NPTEL materials and internets
CD7	Simulation

Mapping between Objectives and Outcomes

Mapping of Course Outcomes onto Program Outcomes

Course Outcome		F	rogram	Outcon	ies	
	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	2	1	1	3	
CO2	2	1	1	1	3	
CO3	1	2	3	3	3	
CO4		1	1	3	2	
CO5	1	1	2	2		

If satisfying and < 34% = 1, 34-66% = 2, > 66% = 3

MAPPING BETWEEN COURSE OUTCOMES AND COURSE DELIVERY METHOD

Course Outcomes	Course Delivery Method
CO1	CD1,CD6
CO2	CD1, CD6,CD7
CO3	CD1, CD2, CD3,
CO4	CD1, CD3,CD6,CD7
CO5	CD1,CD2,CD7

Course code:IT604

Course title: WEB APP DEVELOPMENT LAB

Pre-requisite(s):
Co- requisite(s): None

Credits: 2 L: 0 T: 0 P: 4 Class schedule per week: 04

Class:

Semester / Level: III/6

Branch: Computer Science & Engg.

Name of Teacher:

Course Objectives

This course enables the students to:

1.	To get familiar with basics of the Internet Programming.
2.	To acquire knowledge and skills for creation of web site considering both client and server side programming
3.	To gain ability to develop responsive web applications
4.	To explore different web extensions and web services standards

Course Outcomes

After the completion of this course, students will be able to:

CO1	Analyze a web page and identify its elements and attributes.		
CO2	Implement interactive web page(s) using HTML, CSS and JavaScript.		
CO3	Demonstrate Rich Internet Application.		
CO4	Build Dynamic web sites using server side Programming and Database connectivity.		

List of Programs as Assignments:

1. Lab Assignment No: 1

Objective: To Understand and Implement HTML

- Q1. To create a simple html file to demonstrate the use of different tags.
- Q2. To create an html file to link to different html page which contains images, tables, and also link within a page.
- Q3. To create an html page with different types of frames such as floating frame, navigation frame & mixed frame.
- Q4. To create a registration form as mentioned below.

Create an html page named as "registration.html"

- a) set background colors
- b) use table for alignment
- c) provide font colors & size

2. Lab Assignment No: 2

Objective: To Understand and Implement CSS

- Q1. To create an html file by applying the different styles using inline, external & internal style sheets.
- 1. Create a external style sheet named as "external_css.css" and provide some styles for h2, hr, p & a tags.
- 2. Create an html file named as "Style sheet.html"
- a) Include the external style sheet with necessary tag.
- b) Include the internal style sheet for body tags & also use class name, so that the style can be applied for all tags.
- c) Include a tags with inline style sheet.

3. Lab Assignment No: 3

Objective: To Understand and Implement JavaScript

- Q1. To write a Javascript program to define a user defined function for sorting the values in an array.
- Q2. Create an html page named as "exception.html" and do the following.
- 1. within the script tag write code to handle exception
- a) define a method RunTest() to get any string values(str) from the user and cll the method Areletters(str).
- b) In Areletters(str) method check whether str contain only alphabets (a-z, AZ), if not throw exception.
- c) Define a exception method Input Exception(str) to handle the exception thrown bythe above method.
- 2. Within the body tag define a script tag to call Runtest() method defined.
- Q3. To display the calendar using javascript code by getting the year from the user.

Q4. To create a html page to display a new image & text when the mouse comes over the existing content in the page.

4. Lab Assignment No: 4

Objective: To Understand and Implement ASP

- Q1. To create an ASP file to find the no of hits on the page and to have rotating banner content.
- Q2. To create a table of content using ASP program & navigate within the pages.
- Q3. Create an ASP file named as request.asp
- a) Create a simple form to get the first name & last name and a button submit. When the button is clicked the values in the text box are printed by response object by Request.QueryString
- b) Create a hyperlink with some values defined in the tag & display the same using request & response object.
- Q4.To display all the content in the database using ASP program.

Lab Assignment No: 5

Objective: To Understand and Implement Java Servlets

- Q1. To create a simple servlet program to display the date (using Tomcat server).
- Q2. To create a servlet program to retrieve the values entered in the html file (Using NetBeans IDE).
- Q3. To display the cookie values that are entered in the html page using servlet program. (using NetBean IDE).

Lab Assignment No: 6

Objective: To Understand and Implement XML

- Q1. To create a simple catalog using XML file
- Q2. To create external style sheet and using the style sheet in xml file.

Lab Assignment No: 7

Objective: To Understand and Implement PHP

- Q1. To create a php program to demonstrate the different file handling methods.
- Q2. To create a php program to demonstrate the different predefined function in array, Math, Data & Regular Expression.

Books recommended:

TEXT BOOKS

- 1. Web Technologies: A Computer Science Perspective , Jeffrey C Jackson , Pearson Education , India. (T1)
- 2. Stephen Wynkoop, Running a perfect website, QUE, 1999. (T2)

REFERENCE BOOKS

- 1. Eric Ladd, Jim O' Donnel, Using HTML 4, XML and Java, Prentice Hall of India-QUE, 1999 (R1)
- 2. Chris Bates, Web Programming Building Intranet applications, Wiley

Publications, 2004 (**R2**)

3. Deitel, Deitel & Nieto, Internet and World Wide Web - How to Program, Pearson Education Asia, 2000. (**R3**)

Course Evaluation:

Day to day progressive evaluation, Lab Quizzes, Surprise Tests, Online Lab performance and Viva Voce

Gaps in the syllabus (to meet Industry/Profession requirements):

Implementing of real world problems

POs met through Gaps in the Syllabus: PO5&6

Topics beyond syllabus/Advanced topics/Design:

POs met through Topics beyond syllabus/Advanced topics/Design: Teaching through research papers.

COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS & EVALUATION PROCEDURE

Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Continuous Internal Assessment	60
Semester End Examination	40

Continuous Internal Assessment	% Distribution
Day to day performance & Lab files	30
Quiz (es)	10
Viva	20

Semester End Examination	% Distribution			
Examination Experiment Performance	30			
Quiz	10			

Assessment Components	CO1	CO2	CO3	CO4	CO5
Continuous Internal Assessment					
Semester End Examination					

Indirect Assessment –

- 1. Student Feedback on Faculty
- 2. Student Feedback on Course Outcome

Course Delivery Methods

CD1	Lecture by use of boards/LCD projectors/OHP projectors
CD2	Assignments/Seminars
CD3	Laboratory experiments/teaching aids
CD4	Industrial/guest lectures
CD5	Industrial visits/in-plant training
CD6	Self- learning such as use of NPTEL materials and internets
CD7	Simulation

Mapping between Objectives and Outcomes

Mapping of Course Outcomes onto Program Outcomes

Course Outcome			Риссион	Outcomos		
Course Outcome	PO1	PO2	PO3	Outcomes PO4	PO5	PO6
CO1		3			2	
CO2	1	3	3		1	2
CO3	2		1	2	2	1
CO4	1	3	3		1	

If satisfying and < 34% = 1, 34-66% = 2, > 66% = 3

MAPPING BETWEEN COURSE OUTCOMES AND COURSE DELIVERY METHOD

Course Outcomes	Course Delivery Method				
CO1	CD1,CD2,CD3				
CO2	CD2, CD3,CD6				
CO3	CD1, CD2, CD3,CD6				
CO4	CD3,CD6,CD7				