Course code: CE 530 Course title: Environmental Engineering Laboratory 1 Pre-requisite(s): Co- requisite(s): Credits: 2 L: 0 T: 0 P: 4 Class schedule per week: 4 Class: M. Tech Semester / Level: Ist SEMESTER/ LEVEL 5 Branch: Environmental Science and Engineering Name of Teacher:

Course Objectives

This course enables the students:

А.	To introduce the students about the importance of water and its properties and given standards (K2,K3)
В.	To make students aware about the procedure for the analysis of various water quality parameters (K2)
C.	To introduce the students how to make water quality assessment report (K2,K3, K5)
D.	To make students aware about the required type of treatment to purify a given water sample.(K3, K5)
E.	To introduce students about the quality requirements of water in various uses of water for example, industrial purpose and domestic purpose.(K4,K5,K6)

Course Outcomes

After the completion of this course, students will be able to:

1.	Understand the importance of water and its quality requirement (K2,K3)
2.	Understand the procedure for analysis of various quality parameters (K2)
3.	Understand the procedure of making water quality assessment report (K2,K3, K5)
4.	Understand and suggess the the water treatment process for a raw water(K3, K5)
5.	Understand and suggess the water quality requirements for industrial and domestic
	purposes (K4, K5,K6)

- 1. To determine pH, EC, and Turbidity and T.D.S.of a given water sample.
- 2. To determine total alkalinity of a given water sample.
- 3. To determine acidity of a given water sample
- 4. To determine total hardness of a given water sample
- 5. To determine dissolved oxygen (DO) of a given water sample
- 6. To determine B.O.D. of a given water sample
- 7. To determine C.O.D. of a given water sample
- 8. To determine the residual chlorine in a given water sample.
- 9. To determine nitrates of a given water sample
- 10. To determine phosphates of a given water sample

- 11. To determine Fluoride in a given water sample
- 12. To determine Iron of a given water sample
- 13. To determine the bacteriological quality of a given water sample.

- Standard methods for the examination of water and wastewater published by APHA
- Water supply Engineering, by Santhosh Kumar Garg, Khanna publishers

Gaps in the syllabus (to meet Industry/Profession requirements) POs met through Gaps in the Syllabus Topics beyond syllabus/Advanced topics/Design

POs met through Topics beyond syllabus/Advanced topics/Design

Course Delivery methods	
Lecture by use of boards/LCD projectors/OHP projectors	\checkmark
Tutorials/Assignments	\checkmark
Seminars	
Mini projects/Projects	
Laboratory experiments/teaching aids	\checkmark
Industrial/guest lectures	
Industrial visits/in-plant training	\checkmark
Self- learning such as use of NPTEL materials and internets	\checkmark
Simulation	

Course Outcome (CO) Attainment Assessment tools & Evaluation procedure

Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Progressive Evaluation Marks	<mark>60</mark>
EndExamination Marks	<mark>40</mark>

Assessment Components	CO1	CO2	CO3	CO4	CO5
Progressive Evaluation Marks	\checkmark	\checkmark	✓	\checkmark	~
EndExamination Marks	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Indirect Assessment -

- 1. Student feedback on teaching quality and teaching methods adopted
- 2. Student feedback on course syllabus and course outcome

Mapping of Course Outcomes onto Program Outcomes and Program Specific Outcomes

Course	Program Outcomes							tcomes Program Specific Outcome		
Outcome	1	2	3	4	5	6	1	2	3	
1	3	3	3	3	3	1	3	3	3	

	Mapping Between COs and Course Delivery (CD) methods										
CD	Course Delivery methods					Cou Out	rse come	Course Metho	e Deliver d	ry	
CD1		ure by us ectors	e of board	ds/LCD p	rojectors	OHP		CO1	CD1, C CD8	CD2, CD	5,
CD2	Tuto	rials/Assi	ignments				CO2	CD7,C			
CD3	Seminars							CO3	CD1, C CD8,	CD2, CD	5,
CD4	Mini projects/Projects							CO4	CD1, CD2, CD5, CD7,CD8,		
CD5	Laboratory experiments/teaching aids							CD1, CD2, CD5, CO5 CD8			5,
CD6	Indu	strial/gue	st lecture	S							
CD7				t training							
CD8		learning internets	such as u	ise of NP	TEL mate	erials					
CD9	Simu	ulation									-
2		3	3	3	3	3	1	3	3	3	
3	3		3	3	3	3	1	3	3	3	
4	ļ	2	2	2	2	2	2	3	3	3	
5	5 2 2 2 2 2 2				2	2	3	3	3		

Course code: CE 531 Course title: ECOLOGY AND MICROBIOLOGY LAB Pre-requisite(s): Co- requisite(s): Credits: 2 L: 0 T: 0 P: 4 Class schedule per week: 4 Class: M. Tech Semester / Level: 1ST SEMESTER/ LEVEL 5 Branch: Environmental Science and Engineering Name of Teacher:

Course Objectives

This course enables the students:

A.	To analyse the community structure of vegetation patch for biodiversity study. (K4)
В.	To understand the concept of productivity in aquatic ecosystem. (K4)
C.	To learn the techniques related to environmental microbiology. (K2)
D.	To isolate and employ bacterial strains for environmental pollutant degradation study.
	(K2)

Course Outcomes

After the completion of this course, students will be able to:

1.	Design and enumerate floral diversity of an ecosystem. (K6)
2.	Analyse the state of an aquatic ecosystem according to its productivity rate. (K5)
3.	Isolate and culture bacterial strains from the environmental samples. (K4)
4.	Examine the water quality in terms of biological water pollutants (K4)
5.	To design and implement bacterial degradation studies in lab scale against
	environmental pollutants. (K5)

- 1. Vegetation community structure study: Determination of minimum size of a quadrat.
- 2. Vegetation community structure study: Determination of minimum numbers of a quadrat.
- 3. To determine the frequency, abundance and dominance of plant species in a vegetation community.
- 4. Aquatic productivity estimation through Light and Dark Bottle method
- 5. Microbiological Media preparation and sterilization
- 6. Isolation of bacterial strain from environmental samples (air, water and soil)
- 7. Total Coliform estimation through membrane- filter technique
- 8. Total coliform estimation through MPN
- 9. Gram staining technique
- 10. Handling of liquid cultures and monitoring microbial growth phases via spectrophotometry

- 1. Practical Ecology by Rao K.S, K.S. Rao, Anmol Publications
- 2. Practical field Ecology by Wheater C. Philip, Publisher: John Wiley and Sons Ltd
- 3. Practical Microbiology by R.C. Dubey and Maheswari D.K. (S.Chand Publication)
- 4. Microbiology A laboratory Manual by Cappuccino Sherman (Pearson Education Publication)

Gaps in the syllabus (to meet Industry/Profession requirements) POs met through Gaps in the Syllabus Topics beyond syllabus/Advanced topics/Design

POs met through Topics beyond syllabus/Advanced topics/Design

Course Delivery methods	
Lecture by use of boards/LCD projectors/OHP projectors	\checkmark
Tutorials/Assignments	
Seminars	
Mini projects/Projects	
Laboratory experiments/teaching aids	\checkmark
Industrial/guest lectures	\checkmark
Industrial visits/in-plant training	\checkmark
Self- learning such as use of NPTEL materials and internets	\checkmark
Simulation	

Course Outcome (CO) Attainment Assessment tools & Evaluation procedure

Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Progressive Evaluation Marks	60
End Examination Marks	40

Assessment Components	CO1	CO2	CO3	CO4	CO5
Progressive Evaluation Marks	\checkmark	✓	✓	✓	✓
End Examination Marks	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Indirect Assessment -

- 1. Student feedback on teaching quality and teaching methods adopted
- 2. Student feedback on course syllabus and course outcome

	Program Outcomes					
Course Outcome	1	2	3	4	5	6
1	3	3	2	1	2	1
2	3	2	2	3	2	1
3	3	3	3	3	2	2
4	3	2	3	2	2	2
5	3	2	2	2	2	1

	Mapping Between COs and Course Delivery (CD) methods					
CD	Course Delivery methods	Course Outcome	Course Delivery Method			
CD1	Lecture by use of boards/LCD projectors/OHP projectors	CO1	CD1, CD5, CD7, CD8, CD9			
CD2	Tutorials/Assignments	CO2	CD1, CD5, CD7, CD8, CD9			
CD3	Seminars	CO3	CD1, CD5, CD7, CD8, CD9			
CD4	Mini projects/Projects	CO4	CD1, CD5, CD8, CD9			
CD5	Laboratory experiments/teaching aids	CO5	CD1, CD5, CD8			
CD6	Industrial/guest lectures					
CD7	Industrial visits/in-plant training					
CD8	Self- learning such as use of NPTEL materials and internets					
CD9	Simulation					

Course code: CE 535 Course title: ENVIRONMENTAL ENGINEERING LABORATORY-II Pre-requisite(s): Co- requisite(s): Credits: 2 L: 0 T: 0 P: 4 Class schedule per week: 4 Class: M. Tech Semester / Level: 2ND SEMESTER/ LEVEL 5 Branch: Environmental Science and Engineering Name of Teacher:

Course Objectives

This course enables the students:

A.	To monitor and analyse the air pollution level of the ambient air. (K4)
В.	To select the suitable plant species for green belt development. (K4)
C.	To determine some important soil properties and assess its effect on environmental quality. (K6)
D.	To demonstrate some solar powered instrument as a renewable energy source. (K2)

Course Outcomes

After the completion of this course, students will be able to:

1.	Design and implement ambient air quality monitoring plan. (K6)
2.	Interpret the air quality data and evaluate the air pollution status. (K5)
3.	Recommend suitable plant species with dust capturing capacity. (K5)
4.	Examine some of the soil physico-chemical properties. (K4)
5.	To understand the use of some of the solar powered instruments. (K2)

Syllabus

- 11. Monitoring and analysis of PM_{10} and $PM_{2.5}$ in the ambient air.
- 12. Sampling and analysis of NOx by chemiluminescence method.
- 13. Sampling and analysis of CO₂ and CO by NDIR method.
- 14. Sampling and analysis of sulphur dioxide in ambient air (Improved West and Gaeke method)
- 15. Sampling and analysis of Lead, Nickel and Arsenic in ambient air.
- 16. Estimation of dust retention capacity of leaves of various species.
- 17. Determination of particle size distribution in fine aggregates.
- 18. To determine the soil particle size distribution by hydrometer analysis.
- 19. To determine the moisture content of soil by gravimetric method.
- 20. Introduction to solar lab and study various solar powered equipment.

Text books:

- 1. Soil Testing for Engineers- Lambe T.W., Wiley Eastern Ltd., New Delhi. 5. Manual of
- 2. Soil Laboratory Testing- Head K.H., (1986)- Vol. I, II, III, Princeton Press, London Reference books:

1. Guidelines for the Measurement of Ambient Air Pollutants, CPCB ,2013.

Gaps in the syllabus (to meet Industry/Profession requirements) POs met through Gaps in the Syllabus Topics beyond syllabus/Advanced topics/Design

Course Delivery methods	
Lecture by use of boards/LCD projectors/OHP projectors	\checkmark
Tutorials/Assignments	
Seminars	
Mini projects/Projects	
Laboratory experiments/teaching aids	\checkmark
Industrial/guest lectures	
Industrial visits/in-plant training	\checkmark
Self- learning such as use of NPTEL materials and internets	\checkmark
Simulation	

Course Outcome (CO) Attainment Assessment tools & Evaluation procedure

Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Progressive Evaluation Marks	60
End Examination Marks	40

Assessment Components	CO1	CO2	CO3	CO4	CO5
Progressive Evaluation Marks	✓	✓	✓	✓	✓
End Examination Marks	\checkmark	✓	✓	✓	✓

Indirect Assessment -

- 1. Student feedback on teaching quality and teaching methods adopted
- 2. Student feedback on course syllabus and course outcome

	Program Outcomes					
Course Outcome	1	2	3	4	5	6
1	3	2	3	2	3	1
2	3	3	3	3	3	2
3	3	3	3	3	3	2
4	3	2	3	2	2	2
5	2	2	1	2	2	1

Mapping of Course Outcomes onto Program Outcomes and Program Specific Outcomes

	Mapping Between COs and Course Delivery (CD) methods					
CD	Course Delivery methods	Course Outcome	Course Delivery Method			
CD1	Lecture by use of boards/LCD projectors/OHP projectors	CO1	CD1, CD5, CD7, CD8, CD9			
CD2	Tutorials/Assignments	CO2	CD1, CD5, CD8, CD9			
CD3	Seminars	CO3	CD1, CD5, CD7, CD8, CD9			
CD4	Mini projects/Projects	CO4	CD1, CD5, CD8, CD9			
CD5	Laboratory experiments/teaching aids	CO5	CD1, CD5, CD8			
CD6	Industrial/guest lectures					
CD7	Industrial visits/in-plant training					
CD8	Self- learning such as use of NPTEL materials and internets					
CD9	Simulation					

Course code: CE 536 Course title: DESIGN OF WATER AND WASTEWATER SYSTEM Pre-requisite(s): Co- requisite(s): Credits: 2 L: 0 T: 0 P: 4 Class schedule per week: 4 Class: M. Tech Semester / Level: 2ND SEMESTER/ LEVEL 5 Branch: CIVIL & ENVIRONMENTAL ENGINEERING Name of Teacher:

Course Objectives

This course enables the students:

A.	To introduce the students about the basic concepts of water supply system(K2,K3)
В.	To make students aware about design criteria's for water supply systems(K6)
C.	To introduce the students about the basic concepts of wastewater treatment system (K2,K3)
D.	To make students aware about design criteria's for wastewater treatment systems(K6)
E.	To introduce softwares for water and waste water treatment designing(K5,K6)

Course Outcomes

After the completion of this course, students will be able to:

1.	Understand the designing concepts of water supply (K2,K3)
2.	Design water supply systems(K6)
3.	Understand the designing criteria and concepts of waste water treatment systems (K2,K6)
4.	Design wastewater treatment systems(k6)
5.	Design water and waste water treatment systems using softwares (K5,K6)

- 14. To Identify and understand the basic design criteria of water supply systems.
- 15. To design a sedimentation tank in water supply system
- 16. To design a aeration tank in water supply system
- 17. To design a chlorination dosage for water supply system
- 18. To design filtration units for water supply system
- 19. To design a storm-water management system
- 20. To design a water distribution network system using a software
- 21. To Design a primary treatment facility for WWT.
- 22. To Design a secondary treatment facility for WWT.
- 23. To Design a tertiary treatment facility for WWT.
- 24. To design a decentralised wastewater treatment system
- 25. An introduction to softwares on Wastewater treatment design facilities.

- Peavy H S., Rowe DR, Tchobanoglous G., Environmental Engineering, McGraw Hill International.
- Bhave PR, Gupta R, Analysis of Water Distribution Network, Narosa Publishing House, New Delhi
- Qasim SR, Motley EM, Zhu G., Water works engineering0Plaanning, design and Operation. Prentice hall.
- CPHEEO manual on water supply and treatment, 2nd ed. MoUD. New Delhi

Gaps in the syllabus (to meet Industry/Profession requirements) POs met through Gaps in the Syllabus Topics beyond syllabus/Advanced topics/Design

POs met through Topics beyond syllabus/Advanced topics/Design

Course Delivery methods	
Lecture by use of boards/LCD projectors/OHP projectors	\checkmark
Tutorials/Assignments	\checkmark
Seminars	
Mini projects/Projects	\checkmark
Laboratory experiments/teaching aids	\checkmark
Industrial/guest lectures	
Industrial visits/in-plant training	\checkmark
Self- learning such as use of NPTEL materials and internets	\checkmark
Simulation	

Course Outcome (CO) Attainment Assessment tools & Evaluation procedure

Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Progressive Evaluation Marks	60
End Examination Marks	40

Assessment Components	CO1	CO2	CO3	CO4	CO5
Progressive Evaluation Marks	✓	✓	✓	~	✓
EndExamination Marks	✓	✓	✓	~	✓

Indirect Assessment -

- 1. Student feedback on teaching quality and teaching methods adopted
- 2. Student feedback on course syllabus and course outcome

Program Outcomes								
1	2	3	4	5	6			
1	2	3	2	3	1			
2	2	3	3	3	2			
1	2	3	2	3	1			
2	2	3	3	3	2			
2	2	3	2	3	2			
	1 2 1 2	1 2 2 2 1 2 2 2 2 2	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			

Mapping of Course Outcomes onto Program Outcomes and Program Specific Outcomes

	Mapping Between COs and Course Delivery (CD) methods							
		Course	Course Delivery					
CD	Course Delivery methods	Outcome	Method					
	Lecture by use of boards/LCD projectors/OHP		CD1, CD2, CD5,					
CD1	projectors	CO1	CD8					
			CD1, CD2, CD5,					
CD2	Tutorials/Assignments	CO2	CD7,CD8					
			CD1, CD2, CD5,					
CD3	Seminars	CO3	CD8,					
CD4	Mini projects/Projects	CO4	CD1, CD2, CD5, CD7,CD8,					
CD5	Laboratory experiments/teaching aids	CO5	CD1, CD2, CD8,Cd9					
CD6	Industrial/guest lectures							
CD7	Industrial visits/in-plant training							
CD8	Self- learning such as use of NPTEL materials and internets							
CD9	Simulation							

Course code: CE538 Course title: Environmental System Engineering Pre-requisite(s): Co- requisite(s): Credits: 2 L: T: P:4 Class schedule per week: 4 Class: M. Tech Semester / Level: III/VI Branch: Environmental Science & Eng. Name of Teacher:

Course Objectives

This course enables the students:

A.	To Identify the impact of industrial activities on the environment and apply the knowledge of environmental system engineering in the choice of cost-effective
	remediation strategies (K3, K5)
В.	To identify the system boundary of the existing problem (K3, K4)
C.	To address the critical environmental issues with optimization techniques for
	the useful utilization of land and mineral resources, wastewater treatment, and
	solid waste management and disposal. (K3, K5)
D.	To understand the importance of time by solving 'optimization over time'
	problems (K3, K4)
.E	To identify the contemporary issues, design, formulate and solve the problem.
	(K5, K6)

Course Outcomes

After the completion of this course, students will be able to:

1.	apply the knowledge of science, mathematics and engineering and work with
	multidisciplinary team (K3, K4)
2.	An ability to analyze, interpret data and use appropriate optimization techniques
	(K3, K6)
3.	An ability to design & formulate a system and its components as per the desired
	need and solve engineering problems (K5, K6)
4.	An understanding of professional, ethical responsibility and knowledge of
	contemporary issues (K4, K5)
5	An ability to minimize the environmental impact and opt for cost-effective
	remediation techniques (K4, K5)

- 1. problem formulation, model construction and deriving solution from models. (Graphical methods)
- 2. Simplex and Dual Simplex Method. Limitations of LPP. Sensitivity analysis
- 3. LPP (Artificial Variable: M method and 2 phase)
- 4. Transportation models
- 5. Coal mine transportation problem
- 6. Application of ILPM (municipal solid waste management)

- 7. air quality management
- 8. Agricultural non-point source pollution: pesticide management problems
- 9. Lagrange's multipliers: Unconstrained and constrained optimization
- 10. Sequential search algorithms (Box algorithm)
- 11. Separable and integer programming (multi-objective planning)
- 12. Dynamic programming models (land use planning)
- 13. Optimization over time (Wildlife habitat)

1. Environmental Systems Optimization – D.A.Haith , 1982, Wiley Sons, NY.

2. Operations Research: An Introduction - Hamdy A. Taha, Prentice Hall Pub.

3. Environmental System Engineering & Economics – Robert Wills & Brad A. Finney, Kluwer Academic Pub.

4. Techniques for Environmental System Analysis - R.H.Pantell Wiley, NY, 2001.

Reference books:

1. Operation Research: theory & applications – J. K. Sharma,

Gaps in the syllabus (to meet Industry/Profession requirements) POs met through Gaps in the Syllabus Topics beyond syllabus/Advanced topics/Design

POs met through Topics beyond syllabus/Advanced topics/Design

Course Delivery methods	
Lecture by use of boards/LCD projectors/OHP projectors	\checkmark
Tutorials/Assignments	\checkmark
Seminars	
Mini projects/Projects	
Laboratory experiments/teaching aids	
Industrial/guest lectures	
Industrial visits/in-plant training	
Self- learning such as use of NPTEL materials and internets	✓
Simulation	

Course Outcome (CO) Attainment Assessment tools & Evaluation procedure

Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Progressive Evaluation Marks	60
End Examination Marks	40

Assessment Compoents	CO1	CO2	CO3	CO4	<u>CO5</u>
Progressive Evaluation Marks	✓	✓	✓	✓	✓
End Examination Marks	\checkmark	\checkmark	\checkmark	√	\checkmark

Indirect Assessment -

Student Feedback on Faculty
 Student Feedback on Course Outcome

Mapping between Objectives and Outcomes

	Program Outcomes						Program	Specific	Outcome
Course Outcome	1	2	3	4	5	6	1	2	3
1	3	3	3	2	2	3	3	3	3
2	3	3	3	2	2	3	3	3	3
3	3	3	3	2	2	3	3	3	3
4	3	3	3	2	2	3	3	3	3
5	3	3	3	2	2	3	3	3	3

Mapping of Course Outcomes onto Program Outcomes

	Mapping Between COs and Course Delivery (CD) methods							
CD	Course Delivery methods	Course Outcome	Course Delivery Method					
CD1	Lecture by use of boards/LCD projectors/OHP projectors	CO1	CD1, CD2, CD8					
CD2	Tutorials/Assignments	CO2	CD1, CD2, CD8					
CD3	Seminars	CO3	CD1, CD2, CD8					
CD4	Mini projects/Projects	CO4	CD1, CD2, CD8					
CD5	Laboratory experiments/teaching aids	CO5	CD1, CD2, CD8					
CD6	Industrial/guest lectures							
CD7	Industrial visits/in-plant training							
CD8	Self- learning such as use of NPTEL materials and internets							
CD9	Simulation							