BIRLA INSTITUTE OF TECHNOLOGY

NEP-2020 CURRICULUM BOOK

(Effective from Academic Session: Monsoon 2024)

Bachelor of Technology

DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING

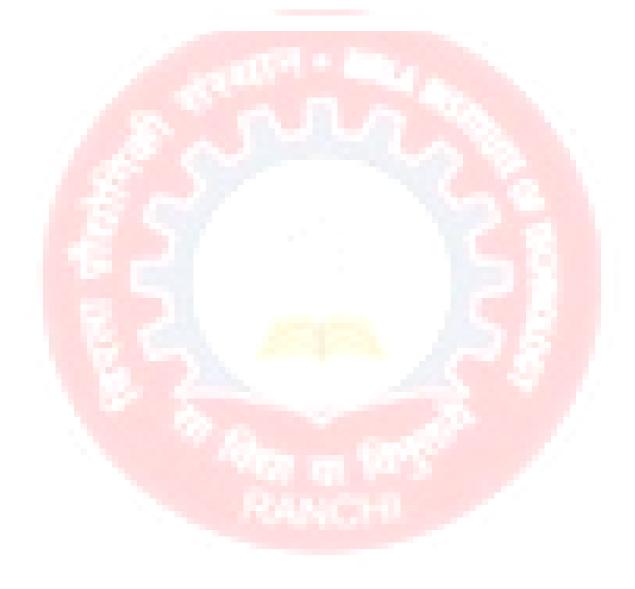
INSTITUTE VISION

To become a Globally Recognized Academic Institution in consonance with the social, economic and ecological environment, striving continuously for excellence in education, research and technological service to the National needs.

INSTITUTE MISSION

To educate students at Undergraduate, Postgraduate, Doctoral, and Post-Doctoral levels to perform challenging engineering and managerial jobs in industry.

- To provide excellent research and development facilities to take up Ph.D. programmes and research projects.
- To develop effective teaching and learning skills and state of art research potential of the faculty.
- To build national capabilities in technology, education and research in emerging areas.
- To provide excellent technological services to satisfy the requirements of the industry and overall academic needs of society.



DEPARTMENT VISION

To develop quality intellectuals through education, research and motivation so that they can bring a positive contribution to society in the area of Civil and Environmental Engineering.

DEPARTMENT MISSION

- 1. To develop professional skills through quality education & research.
- 2. To outreach various sectors of society through interdisciplinary programmes and practical oriented approach.
- 3. To create dynamic, logical and effective leaders with inspiring mindsets.

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

- 1. **PEO1:** Attain the analytical expertise to create, analyse, formulate, and solve challenging problems in the field of Civil Engineering; and recognize and develop the necessary and suitable tools for the same.
- **2. PEO2:** Develop technical and management flair to take responsibility for engineering projects and research programs significantly.
- **3. PEO3:** Uncover multidisciplinary approach and co-relate engineering issues to social and human background in broader sense, in which their engineering helping hand will be utilised.
- **4. PEO4:** Develop attitude of lifelong learning for becoming successful civil engineers.
- 5. PEO5: Implant sensitivity towards ethics, public policies and their responsibilities towards the society.

PROGRAMME OUTCOMES (POs)

- 1. **PO1: Engineering Knowledge:** Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization as specified in WK1 to WK4 respectively to develop to the solution of complex engineering problems.
- 2. **PO2: Problem Analysis:** Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated development. (WK1 to WK4)
- 3. PO3: Design/Development of Solutions: Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required. (WK5)
- 4. **PO4:** Conduct Investigations of Complex Problems: Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions. (WK8).
- 5. **PO5:** Engineering Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems. (WK2 and WK6)
- 6. **PO6: The Engineer and The World:** Analyze and evaluate societal and environmental aspects while solving complex engineering problems for its impact on sustainability with reference to economy, health, safety, legal framework, culture and environment. (WK1, WK5, and WK7).
- 7. **PO7: Ethics:** Apply ethical principles and commit to professional ethics, human values, diversity and inclusion; adhere to national & international laws. (WK9)
- 8. PO8: Individual and Collaborative Team work: Function effectively as an individual, and as a member or leader in diverse/multi-disciplinary teams.
- 9. **PO9:** Communication: Communicate effectively and inclusively within the engineering community and society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations considering cultural, language, and learning differences
- 10. **PO10: Project Management and Finance:** Apply knowledge and understanding of engineering management principles and economic decision-making and apply these to one's own work, as a member and leader in a team, and to manage projects and in multidisciplinary environments.
- 11. **PO11: Life-Long Learning:** Recognize the need for, and have the preparation and ability for i) independent and life-long learning ii) adaptability to new and emerging technologies and iii) critical thinking in the broadest context of technological change. (WK8)

PROGRAMME SPECIFIC OUTCOMES (PSOs)

- 1. **PSO1:** Plan, analyse, and design infrastructural projects and its components in various areas of Civil Engineering like Structural Engineering, Geotechnical Engineering, Water Resources Engineering, Environmental Engineering, and Transportation Engineering.
- **2. PSO2:** Execute the construction of buildings and other components of various projects in Civil Engineering including its layout, management, and quality control.
- **3. PSO3:** Implement the provisions made in Indian Standard Codes/ other relevant codes/ specifications/ guidelines and applicable laws including labour laws and environmental laws.

Mapping of Pos and PSOs with PEOs

	PEO1	PEO2	PEO3	PEO4	PEO5
PO1	3	0	0	0	0
PO2	3	0	0	0	0
PO3	2	1	2	0	0
PO4	3	0	0	0	0
PO5	3	2	0	0	0
PO6	1	0	3	0	3
PO6	0	0	3	0	3
PO7	0	2	2	0	1
PO8	0	1	1	0	0
PO9	0	3	1	1	0
PO10	2	1	0	3	1
PO11	3	1	1	0	0
PSO1	1	3	1	0	1
PSO2	1	1	3	1	3
PSO3	3	0	0	0	0

Grading: No correlation - 0, Low correlation - 1, Moderate correlation - 2, High Correlation - 3

Program Course Structure

Sr. No.	Semester of Study (Recomm	Category of Course	Course Code	Subjects		Delivery & ure; T-Tuto Practical		Total Credit
	ended)	Categ Cou			L (Periods/ Week)	T (Periods/ Week)	P (Periods/ Week)	
				THEORY				
I.1	FIRST		MA24101	Mathematics - I	3	1	0	4
I.2	FIRST	FS	PH24101	Physics	3	1	0	4
I.3			BE24101	Biological Sciences for Engineers	2	0	0	2
I.4		GE	CS24101	Programming for Problem Solving	3	1	0	4
I.5		OL.	EE24101	Basics of Electrical Engineering	2	1	0	3
T		EC	DI 12 41 02	LABORATORIES		0	2	1
I.6 I.7		FS GE	PH24102 CS24102	Physics Lab Programming for problem	0	0	2 2	1
I.8			EE24102	Solving Lab. Electrical Engineering Lab.	0	0	2	1
I.9			HS24131	Communication Skill - I	0	0	3	1.5
I.10		MC	MC24 101/ 102	Choice of : NCC/NSS/ PT & Games/ Creative Arts	0	0	2	1
			/103/ 104/105	(CA) /Entrepreneurship				
			ТОТ	AL (Theory + Labs)			_	22.5
II.1			MA24103	THEORY Mathematics - II	3	1	0	4
II.1	SECOND	FS	CH24101	Chemistry	3	1	0	4
II.3	-		EC24101	Basic Electronics	2	1	0	3
II.4		GE	ME24101	Basics of Mechanical Engineering	2	1	0	3
II.5		FS	CE24101	Environmental Science	2	0	0	2
				LABORATORIES	S			
II.6		FS	CH24102	Chemistry Lab	0	0	2	1
II.7		GE	EC24102	Basic Electronics Lab	0	0	2	1
II.8			ME24102	Engineering Graphics	0	0	4	2
II.9		HSS	PE24102	Workshop Practice	0	0	2	1
II.10		MC	MC24 106 /107/108/1 09/110	Choice of : NCC/NSS/PT & Games/ Creative Arts (CA) /Entrepreneurship	0	0	2	1
	<u> </u>		TOT	AL (Theory + Labs)	1			22
				OTAL FOR FIRST YEAR courses for Exit after 1st Year				44.5
	Vocational (Course 1	: CE24151 B	uilding Drawing	1	0	4	3
				52 Surveying	1	0	4	3

Sr. No.	Semester of Study (Recomm	Category of Course	Course Code	Subjects		Delivery & ure; T-Tuta Practical		Total Credit s
	Con		L (Periods/ Week)	T (Periods/ Week)	P (Periods/ Week)			
				THEORY	•		•	
III.1	THIRD	FS	MA24201	Numerical Methods	2	0	0	2
III.2			CE24201	Solid Mechanics	4	0	0	4
III.3			CE24202	Structural Analysis - I	3	0	0	3
III.4		PC	CE24203	Fluid Mechanics	4	0	0	4
III.5	- 4		CE24204	Building Materials and Construction	3	0	0	3
III.6		HSS	MT24131	UH <mark>V-II:</mark> Understanding Harmony	3	0	0	3
				LABORATORIE				
III.7		FS	MA24202	Numerical Methods Laboratory	0	0	2	1
III.8		PC	CE24205	Civil Engineering Drawing	0	0	4	2
III.9			CE24206	Fluid Mechanics Laboratory	0	0	2	1
III.10		MC	MC24 201/202/20 3/204/205	Choice of : NCC/NSS/ PT & Games/ Creative Arts (CA) / Entrepreneurship	0	0	2	1
				TOTAL (Theory + Labs)				24
				THEORY				
IV.1		PC	CE24207	Structural Analysis - II	3	0	0	3
IV.2	FOURTH		CE24208	Surveying	3	0	0	3
IV.3			CE24209	Construction Engineering and Management	3	0	0	3
IV.4			CE24210	Earthquake Engineering and Disaster Management	2	0	0	2
IV.5		PE	CE2425X	Elective - I	3	0	0	3
IV.6		OE	XX24XXX/ MO24201	Open Elective - I / MOOC - I	3	0	0	3
IV.7		MC	HU24211	Indian Knowledge System	2	0	0	0
TX C	4		GE2 (C.)	LABORATORIES	_			
IV.8			CE24211	Structural Engineering Laboratory - I	0	0	2	1
IV.9		DC	CE24212	Surveying Field Work	0	0	4	2
IV.10		PC	CE24213	Specifications Estimation and Costing	1	0	2	2
IV.11			CE24214	Solid Mechanics Laboratory	0	0	2	1
IV.12		MC	MC24 206/207/20	Choice of : NCC/NSS/PT & Games/ Creative Arts	0	0	2	1
			8/209/210 TOT	(CA) / Entrepreneurship CAL (Theory + Labs)				24
				TAL FOR SECOND YEAR				48
Voca	Vocational Course III: CE24251 Cement Concrete and Road 1 0 4						3	
			Materials	vestigations and Testing	1	0	4	3

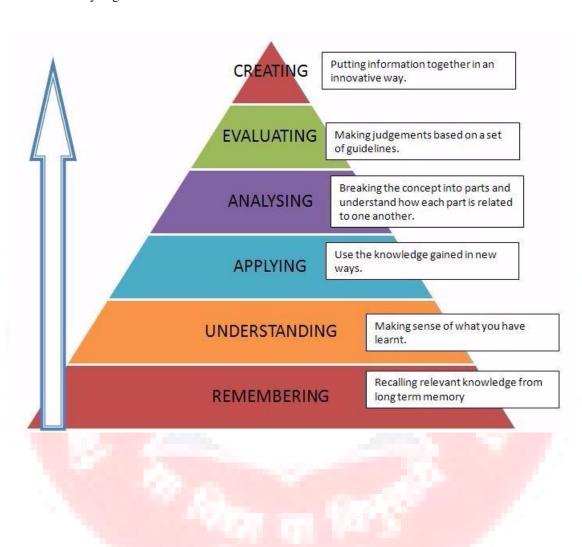
Sr. No.	Semester of Study (Recomm	ory of rse	Course Code	Subjects		Delivery & ure; T-Tuto Practical		Total Credit s
	ended)	Category of Course			L (Periods/ Week)	T (Periods/ Week)	P (Periods/ Week)	
				THEORY				
V.1	FIFTH		CE24301	Structural Design - I	4	0	0	4
V.2				Water Resources				3
V.3		PC	CE24302	Engineering Geotechnical Engineering	3	0	0	3
V.3 V.4			CE24303		3	0	0	3
			CE24304	Environmental Engineering	3	0	0	3
V.5		OF	CE24305	Transportation Engineering	3	0	0	3
V.6		OE	XX24XXX/ MO24301	Open Elective - II / MOOC - II	3	0	0	3
				LABORATORIES				
V.7		PC	CE24306	Water Resources Engineering Laboratory	0	0	2	1
V.8			CE24307	Environmental Engineering Laboratory	0	0	2	1
V.9		HSS	HU24133	Communication Skill - II	0	0	3	1.5
V.10		PC	CE24300	Project - I				2
			TOT	AL (Theory + Labs)				24.5
				THEORY				
VI.1		PC	CE24308	Structural Design - II	4	0	0	4
VI.2	SIXTH		CE2435X	Elective - II	3	0	0	3
VI.3		PE	CE2435X	Elective - III	3	0	0	3
VI.4			CE2435X	Elective - IV	3	0	0	3
VI.5	. 10	OE	XX24XXX/ MO24303	Open Elective - III / MOOC - III	3	0	0	3
				LABORATORIES	S			
VI.6			CE24309	Structural Engineering Laboratory - II	0	0	2	1
VI.7			CE24310	Computer Aided Analysis and Design	1	0	2	2
VI.8		PC	CE24311	Geotechnical Engineering Laboratory	0	0	2	1
VI.9			CE24312	Transportation Engineering Laboratory	0	0	2	1
VI.10			CE24350	Project - II				2
				AL (Theory + Labs)				23
			GRAND TO	OTAL FOR THIRD YEAR				47.5
			T	THEORY	T	1	Т	
VII.1	SEVENTH		CE2445X	Elective - V	3	0	0	3
VII.2	SEVENIU	PE	CE2445X	Elective - VI	3	0	0	3
VII.3			CE2445X	Elective - VII	3	0	0	3
VII.4		OE	XX24XXX/ MO24401	Open Elective - IV / MOOC - IV	3	0	0	3
VII.5		HSS	MT24204	Constitution of India	2	0	0	0
VII.3		1100	111127207	Constitution of fitting			<u> </u>	0

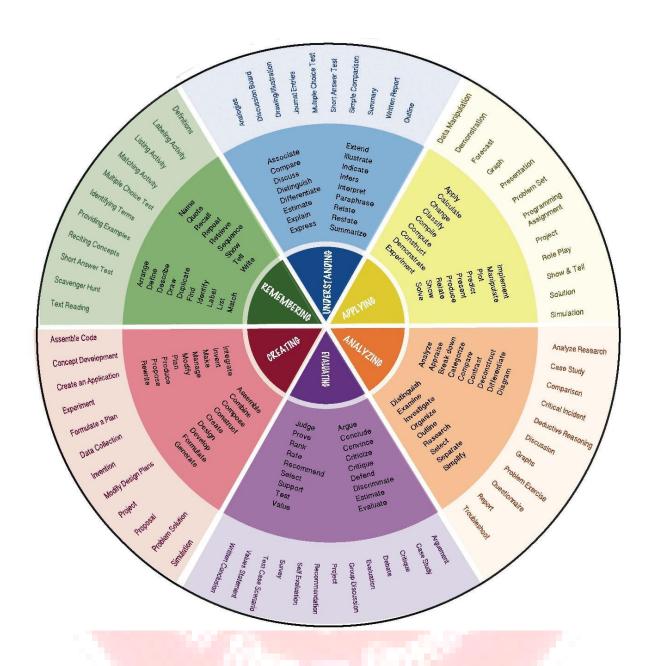
Sr. No.	Semester of Study (Recomm	Course Code Subjects Mode of Delivery & Credits L-Lecture; T-Tutorial; P- Practical L T P					Total Credit s	
	ended)	Category Course			L (Periods/ Week)	T (Periods/ Week)	P (Periods/ Week)	
				LABORATORIES	S			
VII.6		PC	CE24402	Remote Sensing and GIS Laboratory	0	0	2	1
VII.7		MC	CE24403	Advanced Instrumentation Laboratory	0	0	2	1
VII.8	- 4		MC24400	Summer Training (Minimum Four Weeks / 160 Hrs)				4
VII.9		PC	CE24400	Project - III				3
			TOT	AL (Theory + Labs)				21
VIII.1	EIGHTH	PC	CE24450/ CE24490	Project-IV / Industry Internship				6
VIII.2			CE24498	Comprehensive Viva				1
				TOTAL (Theory + Labs)				7
			GRAND TO	TAL FOR FOURTH YEAR				28
			GRAND	TOTAL FOR B.TECH.				168

		Progra	mme Electiv	es for Students of B.Tech. (C	Civil Engin	eering)		
Sr. No.	Semester of Study (Recomm	ory of rse	Course Code	Subjects		D <mark>elivery &</mark> ure; T-Tuto Prac <mark>tica</mark> l		Total Credit s
	ended)	Category Course			L (Periods/ Week)	T (Periods/ Week)	P (Periods/ Week)	
PE1	FOURTH	PE	CE24251	Advanced Solid Mechanics	3	0	0	3
PE1	FOURTH	PE	CE24252	Concrete Technology	3	0	0	3
PE1	FOURTH	PE	CE24253	Open Channel Hydraulics	3	0	0	3
PE2	SIXTH	PE	CE24351	Advanced Structural Analysis	3	0	0	3
PE2	SIXTH	PE	CE24352	Finite Element Method	3	0	0	3
PE2	SIXTH	PE	CE24353	Structural Dynamics	3	0	0	3
PE3	SIXTH	PE	CE24354	Transportation Planning	3	0	0	3
PE3	SIXTH	PE	CE24355	Traffic Engineering and Management	3	0	0	3
PE3	SIXTH	PE	CE24356	Harbour and Airport Engineering	3	0	0	3
PE4	SIXTH	PE	CE24357	Air Pollution and Control	3	0	0	3
PE4	SIXTH	PE	CE24358	Solid Waste Management	3	0	0	3
PE4	SIXTH	PE	CE24359	Environmental Impact Assessment	3	0	0	3

Sr. No.	Semester of Study (Recomm	ory of rse	Course Code	Subjects		Delivery & ure; T-Tuto Practical		Total Credi s
	ended)	Category Course			L (Periods/ Week)	T (Periods/ Week)	P (Periods/ Week)	
PE5	SEVENTH	PE	CE24451	Pre-stressed Concrete	3	0	0	3
PE5	SEVENTH	PE	CE24452	Advanced Concrete Structures Design	3	0	0	3
PE5	SEVENTH	PE	CE24453	Advanced Steel Structures Design	3	0	0	3
PE6	SEVENTH	PE	CE24454	Advanced Surveying	3	0	0	3
PE6	SEVENTH	PE	CE24455	Advanced Soil Mechanics	3	0	0	3
PE6	SEVENTH	PE	CE24456	Foundation Engineering	3	0	0	3
PE7	SEVENTH	PE	CE24457	Remote Sensing in Civil Engineering	3	0	0	3
PE7	SEVENTH	PE	CE24458	Groundwater Engineering	3	0	0	3
PE7	SEVENTH	PE	CE24459	Design of Hydraulic Structures	3	0	0	3

Op <mark>en Electives Offered by Department of Civil and Environmental Engineering for Students of Othe Departments</mark>								
Sr. No.	Semester of Study (Recomm	ory of rse	Course Code	Subjects	Mode of L-Lecti	Total Credit s		
	ended)	Category Course	N.	ATTENDA	L (Periods/ Week)	T (Periods/ Week)	P (Periods/ Week)	
OE1	FOURTH	OE	CE24291	Building Construction	3	0	0	3
OE2	FIFTH	OE	CE24391	Environmental Management	3	0	0	3
OE3	SIXTH	OE	CE24392	Disaster Management	3	0	0	3
OE4	SEVENTH	OE	CE24491	Construction Management	3	0	0	3


			Tranagement						
			Vocational Courses						
	After Completion of First Year of B.Tech.								
Sr.		Course	Subjects	Mode of	Delivery &	Credits	Total		
No.	of	Code		L-Lect	ure; T-Tuto	rial; P-	Credits		
	ory				Practical				
	Category Course			L	T	P			
	$C_{\mathbf{a}}$			(Periods/	(Periods/	(Periods/			
				Week)	Week)	Week)			
1	VOC1	CE24151	Building Drawing	1	0	4	3		
2	VOC2	CE24152	Surveying	1	0	4	3		
		After Comp	 letion of Second Vear of R Te	 ch <i>(C</i> ivil Fi	 				
	After Completion of Second Year of B.Tech. (Civil Engineering)								
1	VOC3	CE24XXX	Cement Concrete and Road	1	0	4	3		
			Materials						


2	VOC4	CE24XXX	Soil Investigations and	1	0	4	3
			Testing				

BLOOM'S TAXONOMY FOR CURRICULUM DESIGN AND ASSESSMENT:

Preamble

The design of curriculum and assessment is based on Bloom's Taxonomy. A comprehensive guideline for using Bloom's Taxonomy is given below for reference.

Bloom's Taxonomy is used to formulate questions. It facilitates the formulation of action verbs in connection with the various tiers of thinking to achieve a balance between basic retrieval and more complex abilities. Questions at the Remember level, e.g., may use verbs to define or list, questions at the Understand level may use verbs to explain or summarize, at the Apply level use or demonstrate, at the Analyze level differentiate or compare, at the Evaluate level justify or critique, and then at the Create level design or formulate.

Course Code: MA24101

Course Title: MATHEMATICS-I

Pre-requisite(s): NA Co- requisite(s): NA

Credits: 4 L: 3 T: 1 P: 0

Class schedule per week: 4

Class: B.Tech.
Semester / Level: I / 1
Branch: All

Name of Teacher:

COURSE OBJECTIVES

This course envisions to impart to students to:

1.	Infinite sequences and series
2.	Theory of matrices including elementary transformations, rank and its application in
	consistency of system of linear equations, eigenvalues, eigenvectors etc.
3.	Multivariable functions, partial differentiation, properties and applications of partial
	derivatives.
4.	Integrals of multivariable functions viz. double and triple integrals with their
	applications
5.	Properties like gradient, divergence, curl associated with derivatives of vector point
	functions and integrals of vector point functions

COURSE OUTCOMES (COs)

CO1	Decide the behavior of sequences and series using appropriate tests.						
CO2	Handle problems related to the theory of matrices including elementary						
	transformations, rank and its application in consistency of system of linear equations,						
	eigenvalues, eigenvectors etc.						
CO3	Get an understanding of partial derivatives and their applications in finding maxima -						
	minima problems.						
CO4	Apply the principles of integrals (multivariable functions viz. double and triple						
	integrals) to solve a variety of practical problems in engineering and sciences.						
CO5	Get an understanding of gradient, divergence, curl associated with derivatives of						
	vector point functions and integrals of vector point functions and demonstrate a depth						
	of understanding in advanced mathematical topics, enhance and develop the ability of						
	using the language of mathematics in engineering.						

SYLLABUS

MODULE	(NO. OF LECTURE HOURS)
Module – I: Sequences and Series Sequences, Convergence of Sequence. Series, Convergence of Series, Tests for Convergence: Comparison tests, Cauchy's Integral test, Ratio test, Cauchy's root test, Raabe's test, Gauss test, Alternating series, Leibnitz test, Absolute and Conditional Convergence.	9
Module – II: Matrices Rank of a Matrix, elementary transformations. Vectors, Linear Independence and Dependence of Vectors. Consistency of system of linear equations. Eigenvalues, Eigenvectors, Cayley - Hamilton theorem.	9
Module – III: Advance Differential Calculus Function of several variables, Partial derivatives, Euler's theorem for homogeneous functions, Total derivatives, Chain rules, Jacobians and its properties, Taylor series for function of two variables, Maxima – Minima.	9
Module – IV: Advance Integral Calculus Double integrals, double integrals in polar coordinates, Change of order of integration, Triple Integrals, cylindrical and spherical coordinate systems, transformation of coordinates, Applications of double and triple integrals in areas and volumes.	9
Module – V: Vector Calculus Scalar and vector point functions, gradient, directional derivative, divergence, curl. Line Integral, Work done, Conservative field, Green's theorem in a plane, Surface and volume integrals, Gauss – divergence theorem, Stoke 's theorem.	9

TEXTBOOKS:

- 1. M. D. Weir, J. Hass and F. R. Giordano: Thomas' Calculus, 11th edition, Pearson Educations, 2008E.
- 2. H. Anton, I. Brivens and S. Davis, Calculus, 10th Edition, John Wiley and sons, Singapore Pte. Ltd., 2013.
- 3. Ramana B.V., Higher Engineering Mathematics, Tata McGraw Hill New Delhi, 11th Reprint, 2010.

REFERENCE BOOKS:

- 1. M. J. Strauss, G. L. Bradley And K. J. Smith, Calculus, 3rd Ed, Dorling. Kindersley (India) Pvt. Ltd. (P Ed), Delhi, 2007.
- 2. David C. Lay, Linear Algebra and its Applications (3rd Edition), Pearson Ed. Asia, Indian Reprint, 2007.
- 3. Robert Wrede & Murray R. Spiegel, Advanced Calculus, 3rd Ed., Schaum's outline series, McGraw-Hill Companies, Inc.,2010.
- 4. D. G. Zill and W.S. Wright, Advanced Engineering Mathematics, Fourth Edition, 2011.

GAPS IN THE SYLLABUS (TO MEET INDUSTRY/PROFESSION REQUIREMENTS) --

POS MET THROUGH GAPS IN THE SYLLABUS --

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN --

POS MET THROUGH TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN --

${\bf COURSE\ OUTCOME\ (CO)\ ATTAINMENT\ ASSESSMENT\ TOOLS\ \&\ EVALUATION\ PROCEDURE$

DIRECT ASSESSMENT

Assessment Tool	% Contribution during CO Assessment
Mid Sem Examination	25
End Sem Examination	50
Quiz	10
Assignment	10
Teacher's assessment	05

Continuous Internal Assessment	% Distribution
Mid Sem Examination	50
Quiz and assignment	40
Teacher's assessment	10

Assessment Components	CO1	CO2	CO3	CO4	CO5
Continuous Internal Assessment	Y	Y	Y	Y	
Semester End Examination	Y	Y	Y	Y	Y

INDIRECT ASSESSMENT

1. Student Feedback on Course Outcome

COURSE DELIVERY METHODS

CD1	Lectures by use of boards/LCD projectors/OHP projectors
CD2	Tutorials/Assignments
CD3	Self- learning such as use of NPTEL materials and internets
CD4	Laboratory experiments/teaching aids
CD5	Industrial/guest lectures
CD6	Industrial visits/in-plant training
CD7	Simulation

MAPPING BETWEEN COURSE OUTCOMES AND POs and PSOs

	РО	PO	PO	PO	PSO	PSO	PSO							
	1	2	3	4	5	6	7	8	9	10	11	1	2	3
CO1	3	3	2	2	1	0	0	0	0	1	2			
CO2	3	3	2	2	2	0	0	0	0	1	2			
CO3	3	3	2	2	1	0	0	0	0	1	2			
CO4	3	3	3	3	2	1	0	0	0	1	2			
CO5	3	3	2	3	2	1	1	1	1	2	2			

 $Grading: No\ correlation-0, Low\ correlation-1, Moderate\ correlation-2, High\ Correlation-3$

MAPPING BETWEEN COURSE OUTCOMES AND COURSE DELIVERY METHOD

Course Outcomes	Course Delivery Method
CO1	CD1, CD2, CD3
CO2	CD1, CD2, CD3
CO3	CD1, CD2, CD3
CO4	CD1, CD2, CD3
CO5	CD1, CD2, CD3

Course Code: PH24101 Course Title: PHYSICS

Pre-requisite(s): Intermediate Physics and Intermediate Mathematics

Co- requisite(s): Mathematics I

Credits: 4 L: 3 T: 1 P: 0

Class schedule per week: 4

Class: B.Tech. Semester / Level: I Branch: All Name of Teacher:

COURSE OBJECTIVES

This course envisions to impart to students:

1.	The principles of physical optics and basic concept of fiber optics.		
2.	Fundamental laws of electromagnetism leading to Maxwell's equations.		
3.	The posulates of special theory of relativity, Lorenz transformation equation and their		
	consequences: Einstein energy mass relation and relativistic energy-momentum		
	relation		
4.	The limitations of classical physics and basic concepts such as wave-particle duality,		
	and working of quantum mechanics with the help of particles in a box problem		
5.	Concepts of stimulated emission and working principle of laser with examples,		
	concepts of nuclear physics and plasma physics		

COURSE OUTCOMES (COs)

CO1	Analyse the intensity variation of light due to polarization, interference and
	diffraction.
CO2	Formulate and solve the problems on electromagnetism
CO3	Explain and apply concepts of special theory of relativity and its consequences
CO4	Apply the concepts of quantum mechanics such as wave-particle duality and obtain the
	solution of simple quantum mechanical problems.
CO5	Esxplain working principle of lasers and to summarize its applications, describe basic
	concepts of nuclear and plasma physics

SYLLABUS

MODULE	(NO. OF LECTURE HOURS)
Module – I: Physical Optics Polarization, Malus' Law, Brewster's Law, Double Refraction, Interference in thin parallel films, Interference in wedge-shaped layers, Newton's rings, Fraunhofer diffraction by single slit and double slit. Elementary ideas of fibre optics and application of fibre optic cables	8
Module – II: Electromagnetic Theory Gradient, Divergence and Curl, Statement of Gauss theorem & Stokes theorem, Gauss's law, Applications, Concept of electric potential, Relationship between E and V, Polarization of dielectrics and dielectric constant, Boundary conditions for E & D, Gauss's law in magnetostatics, Ampere's circuital law, Boundary conditions for B continuity, Displacement current, Maxwell's equations.	8
Module – III: Special Theory of Relativity Introduction, Inertial frame of reference, Galilean transformations, Postulates, Lorentz transformations and its conclusions, Length contraction, time dilation, velocity addition, Mass change, Einstein's mass energy relation.	6
Module – IV: Quantum Mechanics Planck's theory of black-body radiation, Compton effect, Wave-particle duality, De Broglie waves, Davisson and Germer's experiment, Uncertainty principle, Brief idea of Wave Packet, Wave Function and its physical interpretation, Schrodinger equation in one-dimension, free particle, particle in an infinite square well	9
Module – V: Modern Physics Laser-Spontaneous and stimulated emission, Einstein's A and B coefficients, Population inversion, Light amplification, Basic laser action, Ruby and He-Ne lasers, Properties and applications of laser radiation, Nuclear Physics: Binding Energy Curve, Nuclear Force, Liquid drop model, Introduction to Shell model, Applications of Nuclear Physics, Concept of Plasma Physics and its applications.	9

TEXTBOOKS:

- 1. A. Ghatak, Optics, 4th Edition, Tata Mcgraw Hill, 2009
- 2. Mathew N.O. Sadiku, Elements of Electromagnetics, Oxford University Press, 2001
- 3. Arthur Beiser, Concept of Modern Physics, 6th edition, Tata McGraw-Hill, 2009
- 4. F. F. Chen, Introduction to Plasma Physics and controlled Fusion, Springer, Edition 2016.

REFERENCE BOOKS:

1. Fundamentals of Physics, Halliday, Walker and Resnick

GAPS IN THE SYLLABUS (TO MEET INDUSTRY/PROFESSION REQUIREMENTS)

POS MET THROUGH GAPS IN THE SYLLABUS

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

POS MET THROUGH TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS & EVALUATION PROCEDURE

DIRECT ASSESSMENT

Assessment Tool	% Contribution during CO Assessment
Mid Sem Examination	25
End Sem Examination	50
Quiz	10
Assignment/Quiz	10
Teacher's assessment	05

Continuous Internal Assessment	% Distribution
Mid Sem Examination	50
Quiz and assignment	40
Teacher's assessment	10

Assessment Components	CO1	CO2	CO3	CO4	CO5
Continuous Internal Assessment	Y	Y	Y	Y	
Semester End Examination	Y	Y	Y	Y	Y

INDIRECT ASSESSMENT

1. Student Feedback on Course Outcome

COURSE DELIVERY METHODS

CD1	Lectures by use of boards/LCD projectors/OHP projectors
CD2	Tutorials/Assignments
CD3	Self- learning such as use of NPTEL materials and internets

MAPPING BETWEEN COURSE OUTCOMES AND POs and PSOs

	PO	PSO	PSO	PSO										
	1	2	3	4	5	6	7	8	9	10	11	1	2	3
CO1	2	2	0	1	1	0	0	1	0	0	2			
CO2	2	2	0	1	1	0	0	1	0	0	2			
CO3	2	1	0	1	1	0	0	1	0	0	2			
CO4	2	1	0	1	1	0	0	1	0	0	2			
CO5	2	1	0	1	1	0	0	1	0	0	2			

Grading: No correlation - 0, Low correlation - 1, Moderate correlation - 2, High Correlation - 3

MAPPING BETWEEN COURSE OUTCOMES AND COURSE DELIVERY METHOD

Course Outcomes	Course Delivery Method
CO1	CD1, CD2, CD3
CO2	CD1, CD2, CD3
CO3	CD1, CD2, CD3
CO4	CD1, CD2, CD3
CO5	CD1, CD2, CD3

Course Code: BE24101

Course Title: BIOLOGICAL SCIENCE FOR ENGINEERS

Pre-requisite(s): NA Co- requisite(s): NA

Credits: 2 L:2 T: 0 P: 0

Class schedule per week: 2

Class: B. Tech. Semester / Level: I Branch: Biotechnology Name of Teacher:

COURSE OBJECTIVES

This course envisions to impart to students to:

- 1. Understand fundamental concepts of biology relevant to engineering.
- 2. Explore the structure and function of biological molecules and cells.
- 3. Learn about genetic principles and molecular biology techniques.
- 4. Understand the applications of biological science in various engineering fields considering global challenges and ethical considerations.

COURSE OUTCOMES (COs)

CO1	Comprehend and apply the fundamental concepts of biological sciences in the context
	of engineering.
CO2	Analyze the structure and function of biological molecules and cells and their relevance
	to engineering solutions.
CO3	Demonstrate understanding of genetic principles and molecular biology techniques and
	their applications in engineering.
CO4	Apply knowledge of biological sciences to innovate and develop solutions in various
	engineering domains and critically evaluate the role of biological sciences in addressing
	global challenges, including ethical and safety considerations.

SYLLABUS

MODULE						
Module – I: Introduction to Biological Sciences Overview and importance of biology in engineering, Origin of Life, Cell Theory and Structure.						
Module – II: Molecular Biology and Genetics Central Dogma of Molecular Biology, DNA, RNA and Protein structure and function, Mendelian Genetics, rDNA Technology and Genome Editing.	6					
Module – III: Biochemistry Cell Metabolism, Enzymes and Catalysis, Cell Communication and Signalling.	6					
Module – IV: Applications of Biological Sciences in Engineering Biomaterials, Bioinformatics, Biosensors and Bioelectronics (Biological Sensors- Ear & Eye), Synthetic Biology, Nanobiotechnology.	6					
Module – V: Global Challenges and Ethical Considerations Convergence of AI and Biology, Climate change and food security, Biosafety and Biohazards, Ethical Considerations.	6					

TEXTBOOKS:

- 1. Lehninger A, Principals of Biochemistry
- 2. Stryer L, Biochemistry
- 3. K. Wilson & K.H. Goulding, A biologist's guide to Principles and Techniques of Practical Biochemistry.
- 4. Biology for Engineers" by Arthur T. Johnson

REFERENCE BOOKS:

- 1. Purves et al, Life: The Science of Biology
- 2. R. Dulbecco, The Design of Life.
- 3. Biological Science Edited by Soper, Cambridge low price edition.
- 4. Synthetic Biology: A Primer" by Paul S. Freemont and Richard I. Kitney
- 5. "Introduction to Bioinformatics" by Arthur Lesk Genomes" by T.A. Brown

GAPS IN THE SYLLABUS (TO MEET INDUSTRY/PROFESSION REQUIREMENTS)

POS MET THROUGH GAPS IN THE SYLLABUS

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN POS MET THROUGH TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS & EVALUATION PROCEDURE

DIRECT ASSESSMENT

Assessment Tool	% Contribution during CO Assessment
Mid Sem Examination	25
End Sem Examination	50
Quiz	10
Assignment	10
Teacher's assessment	05

Continuous Internal Assessment	% Distribution
Mid Sem Examination	50
Quiz and assignment	40
Teacher's assessment	10

Assessment Components	CO1	CO ₂	CO3	CO4
Continuous Internal Assessment	V	1	1	$\sqrt{}$
Semester End Examination	V		√	V

INDIRECT ASSESSMENT

1. Student Feedback on Course Outcome

COURSE DELIVERY METHODS

CD1	Lecture by use of boards/LCD projectors/OHP projectors
CD2	Assignments/Seminars
CD3	Self- learning such as use of NPTEL materials and internets

MAPPING BETWEEN COURSE OUTCOMES AND POs and PSOs

Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	РО	PSO	PSO	PSO
Outcomes											11	1	2	3
(CO)														
CO1	3	3	3	3	1	1	1	2	1	1	1	3	2	3
CO2	3	3	3	3	1	1	1	2	1	1	1	3	3	3
CO3	1	3	3	3		1	1	1		1	1	2	3	3
CO4	2	2	2	2		2	2	2		1	1	3	2	3

Grading: No correlation – 0, Low correlation – 1, Moderate correlation – 2, High Correlation – 3

MAPPING BETWEEN COURSE OUTCOMES AND COURSE DELIVERY METHOD

Course Outcomes	Course Delivery Method
CO1	CD1, CD2, CD3
CO2	CD1, CD2, CD3
CO3	CD1, CD2, CD3
CO4	CD1, CD2, CD3

Course Code: CS24101

 $\ \, \textbf{Course Title: PROGRAMMING FOR PROBLEM SOLVING} \\$

Pre-requisite(s): School-level mathematics and Science

Co- requisite(s):

Credits: 4 L: 3 T: 1 P:0

Class schedule per week: 4

Class: UG

Semester / Level: I Branch: ALL Name of Teacher:

COURSE OBJECTIVES

This course envisions to impart to students to:

1.	Develop Programming Skill.
2.	Understand the fundamental Concepts of Coding
3.	Learn how to Debug Programs
4.	Convert Problems to Programs

COURSE OUTCOMES (COs)

CO1	Formulate Algorithms for arithmetic and logical problems.
CO2	Translate the algorithms to programs.
CO3	Test and execute the programs and correct syntax and logical errors.
CO4	Apply programmatic skills for solving scientific problems.
CO5	Decompose problems into functions and structured programming.

SYLLABUS

MODULE	(NO. OF LECTURE HOURS)
Module – I Representation of an Algorithm: Flowchart/Pseudo code with examples. From algorithms to programs: source code, variables and memory locations, Syntax and Logical Errors in compilation, object and executable code.	6
Module – II Structure of a C program, variables and data types, Operators – precedence and associativity, Evaluating expressions, Basic I/O – use of printf, scanf, getchar etc. and format specifiers, Conditional Branching statements – If, If - else, If-else- if, switch case, Writing nested conditional statements.	8
Module – III Iterative programming structures – for loops, while loops, do while loops. Understanding break and continue and their usage. Writing Nested loops, Arrays – creation and usage, Strings and string handling.	8
Module – IV Functions (including using built in libraries), Parameter passing in functions, call by value, Recursion, as a different way of solving problems, Nested function calls. Understanding scope and lifetime of a variable.	8
Module – V Structures - Defining structures, Accessing structures elements, Creating an array of Structures, Nested structures. Some advanced concepts – typedef, enum, macros. An introduction to pointers – understanding, creating pointers and accessing variables using pointers. Passing arrays to functions: idea of call by reference, passing parameters to main.	10

TEXTBOOKS:

- 1. Let us C, Yashwant Kanetkar, 18th Edition, BPB Publications
- 2. Byron Gottfried, Schaum's Outline of Programming with C, McGraw-Hill
- 3. E. Balaguruswamy, Programming in ANSI C, Tata McGraw-Hill
- 4. R.G.Dromey, How to Solve it by Computer, Pearson Education

REFERENCE BOOKS:

1. Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, Prentice.

GAPS IN THE SYLLABUS (TO MEET INDUSTRY/PROFESSION REQUIREMENTS)

- 1. The syllabus focused on the concepts and basics of Program writing skills.
- 2. Industry often requires debugging of their existing programs/software compare to the new program, which is a knowledge beyond the basics, including real-world software (collection of programs) experience.
- 3. More memory management practices, file handling and library functions

POS MET THROUGH GAPS IN THE SYLLABUS: YES [PO1-PO5 & PO10-PO12]

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN:

File Handling with memory management, pre processor directives, Graphics, Data Arrangement, Task scheduling and assembly level programs.

POS MET THROUGH TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN: YES [PO1-PO5]

COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS & EVALUATION PROCEDURE

DIRECT ASSESSMENT

Assessment Tool	% Contribution during CO Assessment
Mid Sem Examination	25
End Sem Examination	50
Quiz	10
Assignment	10
Teacher's assessment	05

Continuous Internal Assessment	% Distribution
Mid Sem Examination	50
Quiz and assignment	40
Teacher's assessment	10

Assessment Components	CO1	CO2	CO3	CO4	CO5
Continuous Internal Assessment	Y	Y	Y	Y	
Semester End Examination	Y	Y	Y	Y	Y

INDIRECT ASSESSMENT

- 1. Student Feedback on Course Outcome
- 2. Student Feedback on Faculty/Content Delivery
- 3. Student Feedback on Evaluation Procedures

COURSE DELIVERY METHODS

CD1	Lecture by use of boards/LCD projectors
CD2	Tutorials/Assignments
CD3	Seminars/ Quiz (s)
CD4	Mini projects/Projects
CD5	Laboratory experiments/teaching aids
CD6	Industrial/guest lectures
CD7	Self-Learning, Group Study, Coding Contest

MAPPING BETWEEN COURSE OUTCOMES AND POs and PSOs

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PSO 1	PSO 2	PSO 3
CO1	3	3	3	3	3	2	0	1	2	2	2			
CO2	3	3	3	3	3	2	0	1	2	2	2			
CO3	3	3	3	3	3	2	0	1	2	2	2			
CO4	3	3	3	3	3	2	0	1	2	2	2			
CO5	3	3	3	3	3	2	0	1	2	2	2			

Grading: No correlation - 0, Low correlation - 1, Moderate correlation - 2, High Correlation - 3

MAPPING BETWEEN COURSE OUTCOMES AND COURSE DELIVERY METHOD

Course Outcomes	Course Delivery Method
CO1	CD1, CD2, CD3
CO2	CD3, CD5
CO3	CD3, CD5, CD7
CO4	CD2, CD3, CD4, CD6, CD7
CO5	CD1, CD3, CD5, CD7

Course Code: EE24101

Course Title: BASICS OF ELECTRICAL ENGINEERING

Pre-requisite(s): NA

Co- requisite(s): Basic Sciences

Credits: 3 L: 2 T: 1 P: 0

Class schedule per week: 3

Class: B.Tech. Semester / Level: I/1

Branch: All Name of Teacher:

COURSE OBJECTIVES

This course envisions to impart to students to:

1.	Realize the electrical signals, elements, and their properties.
2.	Understand the mathematical representation of AC, DC signals and theorems/laws
	for solving electrical circuits with variations of voltage and frequency.
3.	Perceive the 3-phase AC signal representation and 3-phase circuit analysis for
	balanced and unbalanced condition.
4.	Understand the characteristics of magnetic material and analysis of magnetic
	circuits.

COURSE OUTCOMES (COs)

CO1	Explain the voltage, current signals and their characteristics in electrical circuit
	elements.
CO2	Apply the theorems/laws for electrical circuit analysis.
CO3	Solve the electrical circuits for variable voltage and frequency to observe
	the resonance, power and power factor in the electric circuit.
CO4	Analyze the 1-phase and 3-phase AC balanced and unbalanced circuits
CO5	Apply the concept of magnetic circuits for magnetic circuit analysis.

SYLLABUS

MODULE	(NO. OF LECTURE HOURS)
Module – I: Introduction Importance of Electrical Engineering in day-to-day life, Electrical elements, properties (linear, non-linear, unilateral, bilateral, lumped and distributed, etc.) and their classification, Ideal and Real Sources, Source Conversion, Star-Delta conversion, KCL and KVL, Mesh current and Nodal voltage method.	8
Module – II: D.C. Circuits Steady state analysis with independent and dependent sources; Series and Parallel circuits. Circuit Theorems: Superposition, Thevenin's, Norton's, and Maximum Power Transfer theorems for Independent and Dependent Sources applied to DC circuits.	8
Module – III: Single-phase AC Circuits Common signals and their waveforms, RMS and Average value. Form factor & Peak factor of a sinusoidal waveform. Series Circuits: Impedance of Series circuits. Phasor diagram. Active Power. Power factor. Power triangle. Parallel Circuits: Admittance method, Phasor diagram, Power and Power factor Power triangle, Series-parallel Circuit, Power factor improvement, Circuit Theorems applied to AC circuits. Series and Parallel Resonance: Resonance curve, Q-factor, Dynamic Impedance, and Bandwidth.	12
Module – IV: Three-Phase AC Circuits Importance and use of a 3-phase network, types of 3-phase connections- Star and Delta, Line and Phase relations for Star and Delta connection, Phasor diagrams, Power relations, analysis of balanced and unbalanced 3-phase circuits, Measurement of Power in 3-phase star and delta network.	6
Module – V: Magnetic Circuits Introduction, Series-parallel magnetic circuits, Analysis of Linear and Non-linear magnetic circuits, Energy storage, A.C. excitation, Eddy currents and Hysteresis losses. Coupled Circuits: Dot rule, Self and mutual inductances, Coefficient of coupling, working of transformer.	6

TEXTBOOKS:

- 1. W. H. Hayt, Jr J. E. Kemmerly and S. M. Durbin, Engineering Circuit Analysis, 7th Edition TMH, 2010.
- 2. Hughes, Electrical Technology, Revised by McKenzie Smith, Pearson.
- 3. Fitzgerald and Higginbotham, Basic Electrical Engineering, McGraw Hill Inc, 1981

REFERENCE BOOKS:

- 1. D. P. Kothari and I. J. Nagrath, Basic Electrical Engineering, 3rd Edition, TMH, New Delhi, 2009.
- 2. Electrical Engineering Fundamental, Vincent Del Toro, Prentice Hall, New Delhi.
- 3. Rajendra Prasad, Fundamentals of Electrical Engineering, 2nd Edition, PHI, New Delhi, 2011.

- 4. Raymond A. DeCarlo, Prn-Min Lin, Linear Circuit Analysis Time Domain, Phasor and Laplace Transform Approaches, 2nd Edition, Oxford University, 2001
- 5. Abhijit Chakrabarti, Sudipta Nath, Chandan Kumar Chanda, Basic Electrical Engineering, Tata McGraw Hill Publication, 2009.

GAPS IN THE SYLLABUS (TO MEET INDUSTRY/PROFESSION REQUIREMENTS)

- 1. Application of principles of magnetic circuits to electrical machines like transformers, generators and motors.
- 2. Field applications of three phase equipment and circuits in power system.
- 3. Applications of circuit theorems in electrical and electronics engineering

POS MET THROUGH GAPS IN THE SYLLABUS: 6, 4, 11

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

- 1. Concepts of electric, magnetic and electromagnetic fields.
- 2. 3Φ power generation, transmission, and distribution.
- 3. Power factor improvement for three phase systems.
- 4. Utility of reactive power for creation of electric and magnetic fields.

POS MET THROUGH TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN: 3, 4, 6.

COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS & EVALUATION PROCEDURE

DIRECT ASSESSMENT

Assessment Tool	% Contribution during CO Assessment
Quiz (s)	10
Mid Semester Examination	25
End Semester Examination	50
Assignment	10
Teacher Assessment	05

Continuous Internal Assessment	% Distribution
Mid Sem Examination	50
Quiz and assignment	40
Teacher's assessment	10

Assessment Components	CO1	CO2	CO3	CO4	CO5
Continuous Internal Assessment					
Semester End Examination					

INDIRECT ASSESSMENT

1. Student Feedback on Course Outcome

COURSE DELIVERY METHODS

CD1	Lectures by use of boards/LCD projectors/OHP projectors
CD2	Tutorials/Assignments
CD3	Seminars
CD4	Mini projects/Projects
CD5	Laboratory experiments/teaching aids
CD6	Industrial/guest lectures
CD7	Self- learning such as use of NPTEL materials and internets
CD8	Simulation

MAPPING BETWEEN COURSE OUTCOMES AND POs and PSOs

	PO	PO1	PO1	PSO	PSO	PSO								
	1	2	3	4	5	6	7	8	9	0	1	1	2	3
CO1	3	1	3	2	3	1	1	2	3	1	2	1	2	
CO2	3	1	3	3	3	1	1	2	3	1	2	3	3	
CO3	3	2	3	3	3	1	2	1	3	1	2	3	3	
CO4	3	2	3	3	3	2	2	1	3	1	2	3	3	
CO5	3	2	1	1	3	1	2	1	3	1	2	3	3	

Grading: No correlation – 0, Low correlation - 1, Moderate correlation – 2, High Correlation - 3

MAPPING BETWEEN COURSE OUTCOMES AND COURSE DELIVERY METHOD

Course Outcomes	Course Delivery Method
CO1	CD1, CD2, CD5
CO2	CD1, CD2, CD4, CD5, CD7
CO3	CD1, CD2, CD5, CD7, CD8
CO4	CD1, CD2, CD5, CD7, CD8
CO5	CD1, CD2, CD4, CD5, CD7, CD8

Course Code: PH24102

Course Title: PHYSICS LABORATORY Pre-requisite(s): Intermediate Physics

Co- requisite(s):

Credits: 1 L: 0 T: 0 P: 2

Class schedule per week: 2

Class: B.Tech. Semester / Level: I Branch: All Name of Teacher:

COURSE OBJECTIVES

This course enables the students to:

1.	Understand the fundamentals of physical measurements and learn to account for inevitable
	errors in physical measurements.
2.	Understand and verify the basic principles of physics by hands-on experiments and making
	suitable measurements.
3.	Make electrical connections reliably to form functional circuits for measuring electrical
	quantities such as voltage, current, resistance, and resistivity
4.	Learn to set up different types of oscillating systems to study their characteristics, viz -a-viz
	resonant frequency, frequency response, phase relationship, bandwidth, and quality factor
5.	Develop an understanding of optical phenomena like dispersion, interference and diffraction
	and make measurements on the patterns produced to obtain physical quantities such as
	wavelength of light and refractive index of transparent materials.

COURSE OUTCOMES (COs)

CO1	Make reliable measurements and report results along with errors.
CO2	Wire simple electrical circuits for experimentally determining measurable electrical quantities.
CO3	Build electral and mechanical oscillating systems, characterize them, and make measurements over them.
CO4	Construct setups to produce interference and diffraction patterns and make measurements for determining physical quantities.

SYLLABUS (List of experiments)

- 1. Error analysis in Physics Laboratory (CO: 1)
- 2. To determine the frequency of AC mains with the help of a sonometer. (CO:1, 2, 3)
- 3. To determine the resistance per unit length of a Carey Foster's bridge wire and resistivity of unknown wire. (CO:1, 2)
- 4. Measurement of electrical equivalent of heat (CO:1, 2)
- 5. To determine the wavelength of sodium lines by Newton's rings method (CO:1, 4)
- 6. To determine the frequency of tuning fork using Melde's Experiment (CO:1,3)
- 7. Measurement of voltage and frequency of a given signal using CRO (CO: 1,2,3)
- 8. To determine the emf of a cell using stretched wire potentiometer (CO:1, 2)
- 9. Determination of refractive index of the material of a prism using spectrometer and sodium light (CO:1, 4)
- 10. To study the frequency response of a series LCR circuit (CO:1, 2, 3)
- 11. To study Lorentz force using Current balance (CO:1,2)
- 12. To study electromagnetic induction and verification of Faraday's laws. (CO:1,2,3)
- 13. To measure the wavelength of prominent spectral lines of mercury light by a plane transmission grating. (CO:1, 4)
- 14. To determine the Planck's constant using photocell and optical wavelength filters. (CO:1, 2)

REFERENCE MATERIALS:

1. Lab manuals (available on department website)

GAPS IN THE SYLLABUS (TO MEET INDUSTRY/PROFESSION REQUIREMENTS)

POS MET THROUGH GAPS IN THE SYLLABUS

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

POS MET THROUGH TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS & EVALUATION PROCEDURE

DIRECT ASSESSMENT

Assessment Tool	% Contribution during CO Assessment
Lab Journal	30
Lab quizes	20
Progressive viva	20
End Sem Examination	30

Continuous Internal Assessment	% Distribution
Lab Journal	30
Lab quiz	10
Progressive viva	20

Assessment Components	CO1	CO2	CO3	CO4	CO5
Continuous Internal Assessment	Y	Y	Y	Y	Y
Semester End Examination	Y	Y	Y	Y	Y

INDIRECT ASSESSMENT

1. Student Feedback on Course Outcome

COURSE DELIVERY METHODS

CD1	Introductory lecture by use of boards/LCD projectors
CD2	Laboratory experiments/ teaching aid
CD3	Self- learning such as use of NPTEL materials and internets

MAPPING BETWEEN COURSE OUTCOMES AND POs and PSOs

	РО	PSO	PSO	PSO										
	1	2	3	4	5	6	7	8	9	10	11	1	2	3
CO 1	2	1	0	1	2	0	0	2	0	0	2			
CO 2	2	1	0	1	2	0	0	2	0	0	2	٧.		
CO 3	2	1	0	1	2	0	0	2	0	0	2		ħ.	
CO 4	2	1	0	1	2	0	0	2	0	0	2			

Grading: No correlation – 0, Low correlation – 1, Moderate correlation – 2, High Correlation – 3

MAPPING BETWEEN COURSE OUTCOMES AND COURSE DELIVERY METHOD

Course Outcomes	Course Delivery Method
CO1	CD1, CD2, CD3
CO ₂	CD1, CD2, CD3
CO3	CD1, CD2, CD3
CO4	CD1, CD2, CD3

Course Code: CS24102

Course Title: PROGRAMMING FOR PROBLEM SOLVING LABORATORY

Pre-requisite(s): NA Co- requisite(s): CS24101

Credits:1 L:0 T:0 P:2

Class schedule per week:

Class: B.Tech.
Semester / Level: I / 1
Branch: All
Name of Teacher:

COURSE OBJECTIVES

This course envisions to impart to students:

1.	The basics of computer programming.
2.	Ideas about converting problem statements to programs.
3.	Ideas about handling data at scale.
4.	Knowledge about accessing the memory of a computer using code.

COURSE OUTCOMES (COs)

CO1	Write basic programs using fundamental control structures.
CO ₂	Demonstrate the accessing of arrays.
CO ₃	Write simple functions to modularize programs.
CO4	Work with user defined data types.
CO5	Access memory using pointers and manipulate data using them.

SYLLABUS

MODULE	(NO. OF LECTURE HOURS)					
Module – I Programming using basic control structures including sequential programs, selection logic including nested selection logic switch structures.						
Module – II Write programs using basic iterative structures, nested iterations, programs using looping with selections, controlled loop exit, Manipulating n-dimensional arrays.	3					
Module – III Modularize programs using functions, functions calling functions, elementary string handling programs, recursive programs.	3					
Module – IV Programs using user defined data types, arrays of user defined data types, basic usage of pointers, functions and pointers.	3					
Module – V Advanced usage of pointers, string handling using pointers, parameterizing main, manipulating arrays using pointers.	3					

TEXTBOOKS:

1. Programming in C, Yashwant Kanetkar, BPB Publications.

REFERENCE BOOKS:

1. C Programming, Byron Gottfried, Addison Wesley Press

GAPS IN THE SYLLABUS (TO MEET INDUSTRY/PROFESSION REQUIREMENTS)
1) Elementary file handling

POS MET THROUGH GAPS IN THE SYLLABUS

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

POS MET THROUGH TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS & EVALUATION PROCEDURE

DIRECT ASSESSMENT

Assessment Tool	% Contribution during CO Assessment
Laboratory Quiz	20
Laboratory Performance	30
Laboratory Viva	20
Continuous Evaluation	30

INDIRECT ASSESSMENT

1. Student Feedback on Course Outcome

COURSE DELIVERY METHODS

CD1	Lecture by use of boards/LCD projectors/OHP projectors
CD2	Tutorials/Assignments
CD3	Seminars
CD4	Mini projects/Projects
CD5	Laboratory experiments/teaching aids
CD6	Industrial/guest lectures
CD7	Self- learning such as use of NPTEL materials and internets

MAPPING BETWEEN COURSE OUTCOMES AND POS and PSOS

	PO1	PO2	РО3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	2	3	1	2			3	1					
CO2	3	3	2	1	2			3	1					
CO3	3	3	2	1	2			3	1					
CO4	3	3	2	1	2			3						
CO5	3	2	2	1	2			1						

Grading: No correlation - 0, Low correlation - 1, Moderate correlation - 2, High Correlation - 3

Course code: EE 24102

Course Title: Electrical Engineering Laboratory

Pre-requisite(s): Physics, Fundamentals of Mathematics and Electrical Engineering.

Co- requisite(s):

Credits: 01 L: 0 T: 0 P: 2

Class schedule per week: 02

Class: B. Tech

Semester / Level: I (II)/1

Branch: EEE Name of Teacher Course Objectives

This course enables the students:

1.	To describe students' practical knowledge of active and passive elements and operation of
	measuring instruments
2.	To demonstrate electrical circuit fundamentals and their equivalent circuit models for both 1-φ
	and 3- φ circuits and use circuit theorems
3.	To establish voltage & current relationships with the help of phasors and correlate them to
	experimental results
4.	1. To conclude performance of $1 - \Phi$ AC series circuits by resonance phenomena
	2. To evaluate different power measurements for both 1-φ and 3-φ circuits

Course Outcomes

CO1	classify active and passive elements, explain working and use of electrical components,
	different types of measuring instruments;
CO ₂	illustrate fundamentals of operation of DC circuits, 1-φ and 3- φ circuits and also correlate the
	principles of DC, AC 1-φ and 3- φ circuits to rotating machines like Induction motor and D.C
	machine
CO3	measure voltage, current, power, for DC and AC circuits and also represent them in phasor
	notations;
CO4	analyze response of a circuit and calculate unknown circuit parameters;
CO5	recommend and justify power factor improvement methods in order to save electrical

LIST OF EXPERIMENTS (The experiment list may vary to accommodate recent development in the field)

EXPERIMENT – 1

Name: - Measurement of low and high resistance of a DC shunt motor

Aim: - (i) To measure low resistance of armature winding of DC shunt motor.

(ii) To measure high resistance of field winding of DC shunt motor.

EXPERIMENT – 2

Name: - AC RLC series circuit

Aim: - To obtain current and voltage distribution in AC RLC series circuit and draw the phasor diagram of voltage distribution.

EXPERIMENT – 3

Name: - Single phase power factor measurement by three voltmeter method

Aim: - To obtain power and power factor of the single-phase load using three voltmeter method and draw the phasor diagram.

EXPERIMENT - 4

Name: - AC RLC parallel circuit

Aim: - To obtain current and voltage distribution in a AC RLC parallel circuit and draw the current phasor diagram.

EXPERIMENT - 5

Name: - Single phase power factor measurement by three Ammeter method

Aim: -To obtain power and power factor of single-phase load using three ammeter method and draw the phasor diagram.

EXPERIMENT - 6

Name: -Study of resonance in a RLC series circuit

Aim: - To obtain the resonance condition in AC RLC series circuit and draw the phasor diagram.

EXPERIMENT - 7

Name: -Three phase Delta connection

Aim: - To obtain the relation between line and phase quantities in a three-phase Delta connected load and obtain the phasor diagram.

EXPERIMENT - 8

Name: - Three phase Star connection

Aim: -To obtain the relation between line and phase quantities in a three-phase Star connected load and draw the phasor diagram.

EXPERIMENT - 9

Name: - Measurement of three phase power by two wattmeter method.

Aim: - To measure the power input to a three-phase induction motor by two-wattmeter method and draw the phasor diagram.

EXPERIMENT – 10

Name: - Verification of superposition and Thevenin's Theorems.

Aim: - (i) To verify Thevenin's Theorem for a given circuit.

(ii) To verify Superposition Theorem for a given circuit.

Gaps in the syllabus (to meet Industry/Profession requirements)

- 1. Application of principles of magnetic circuits to electrical machines like transformers, generators and motors.
- 2. Visualize Phase sequence.

POs met through Gaps in the Syllabus: 1, 2, 4, 6.

Topics beyond syllabus/Advanced topics/Design

- 1. Assignment: Simulation of electrical circuits with dependent/independent sources by various techniques (Mesh current/Node Voltage/Thevenin's theorem/Norton's theorem/Maximum power transfer theorem etc.) using MATLAB/PSIM/C++ software.
- 2. Active/reactive power calculation for 3Φ circuits

POs met through Topics beyond syllabus/Advanced topics/Design: 3, 4, 5, 6.

Mapping lab experiment with Course Outcomes

Evmonimont	Course Ou	tcomes			
Experiment	CO1	CO2	CO3	CO4	CO5
1	3	3	1	1	
2	3	3	3	3	3
3	3	3	3	3	3
4	3	3	3	3	3
5	3	3	3	3	3
6	3	3	3	3	
7	3	3	3	1	
8	3	3	3	1	1
9	3	3	3	2	2
10	3	3	2	2	

MAPPING BETWEEN COURSE OUTCOMES AND POs and PSOs

	PO	PO1	PO1	PSO	PSO	PSO								
	1	2	3	4	5	6	7	8	9	0	1	1	2	3
CO 1	3	2	3	2	3	1	2	3	3	1	2	1	2	
CO 2	3	2	3	2	3	1	2	3	3	1	2	3	3	
CO 3	3	2	3	2	3	1	2	3	3	1	2	3	3	
CO 4	3	2	3	2	3	1	2	3	3	1	2	3	3	
CO 5	3	2	3	2	3	2	2	3	3	1	2	3	3	

Course Delivery methods					
CD1	Laboratory experiments/teaching aids				
CD2	Mini projects/Projects				
CD3	Tutorials/Assignments				
CD4	Self-learning, such as the use of NPTEL materials and the internet				

Course Code: HS24131 Course Title: Communication Skills I

Pre-requisite(s): Co- requisite(s): -

Credits: 1.5 (L:0 T:0 P: 3)

Class schedule per week: 3
Class: B. Tech
Semester / Level: FIRST

Branch: Biotechnology

Name of Teacher:

COURSE OBJECTIVES

This course envisions to impart to students to:

1	
ı.	Develop Language Proficiency and communicative competence: Improve students' ability to
	read, write, speak, and listen effectively in English. In addition, students will also learn and
	improve politeness strategies in communicative contexts.
2.	Enhance Verbal and Non-Verbal Communication: Train students in both spoken and body
	language communication for personal and professional interactions.
3.	Enhance Reading Ability: Equip students with the ability to strategically comprehend and
	interpret visual and textual information.
4.	Enhancing Writing Proficiency: Enable students to write structured reports, emails, resumes,
	and other professional documents.
5.	Developing Presentation and Public Speaking Skills: Self-assurance during talks,
	presentations and speeches.

COURSE OUTCOMES (COs)

CO1	In a variety of pragmatic and communicative contexts, students will be able to confidently and
	fluently articulate their ideas.
CO2	This will enable learners to accurately interpret messages for effective interaction by
	comprehending audio texts and listening selectively.
CO3	Learners will be able to examine texts for particular and intricate details, draw inferences, and
	provide interpretations.
CO4	Learners will be capable of creating organized written pieces, including paragraphs, essays, and
	narratives, and will also be able to summarize, paraphrase, and create précis of ideas effectively.
CO5	Learners will be capable of confidently using verbal and non-verbal communication during
	speeches and presentations.

SYLLABUS

MODULE	(NO. OF LECTURE HOURS)
Module – I Theory	
Principles of Fundamental Communication.	
Communication theory, various types and methods of communication, communication	
flow (upward, downward, and horizontal), characteristics of successful communication,	
obstacles, and approaches, verbal and non-verbal communication, and social context	
communication— requests, refusals, compliments, and providing constructive feedback.	
Practice Communication:	
Study relevant materials or case studies on effective communication, obstacles, strategies,	_
and both verbal and non-verbal aspects. Understand and contextualize the influence of	6
culture and society on communication in both writing and speaking. Role plays:	
Engage in scenario-based questions focusing on communication, body language, and	
courtesy.	
Dialogue writing:	
Presenting viewpoints based on various situations or scenarios—including requests,	
refusals,	
compliments, and criticism—in both writing and speaking.	
Module – II Theory Communicating, Depicting, and Hearing: Salutations, Presenting oneself/others, Descriptive communication for locations, objects, scenarios, challenges, etc. Proficient listening abilities and the various aspects of listening including types such as intensive, responsive, selective and extensive. A brief introduction to Varieties of English Accents (neutral accent) through audio and video examples. Practice tasks	
Intr <mark>oducing people/</mark> Describing people:	
Introducing oneself and others	
Characterizing an individual, image, circumstance	6
• Discussing traits (positive/negative/critical) about a person, object, scenario,	
or image.	
Listening skills:	
Listening skills: • Engaging in attentive listening activities	
Engaging in attentive listening activities	
 Listening selectively to complete the blanks Hearing a passage and rephrasing the precise information in your own words 	

Module – III Theory

Enhancing Vocabulary and Grammar

Lexicon (Affixes- Inflections-Derivations), Registers, Idiomatic Expressions and Phrasal Verbs, vocabulary in context. Opposites, similar words, and one-word alternatives. Sentence constructions (word order like SVO, etc.), Paragraphs (Thesis statement, main idea, topic sentences), Generating ideas for paragraph composition.

W. S Allen (Book)

Practice

Vocabulary Building:

- Students utilize specific vocabulary related to various registers to construct paragraphs, narratives, and more.
- Students incorporate phrasal verbs to create a coherent paragraph.

Exercises involving antonyms, synonyms, and word substitution can be conducted using worksheets.

 Engage graphic organizers such as word associations and concept mapping for vocabulary enhancement activities.

Identify suffixes, prefixes, idioms, and phrasal verbs:

- Analyze texts to find suffixes and prefixes along with their definitions.
- Word association and spider diagrams can be utilized to uncover suffixes and prefixes.

Paragraph writing:

Generate ideas about a topic/concept/idea and prompt students to compose a detailed
 paragraph.

Module – IV

Theory

Elements of Reading and Writing

Present the sub-skills involved in reading and writing, including the different types of reading such as close reading and intensive reading. Techniques like mind mapping and note-taking. Generating ideas through brainstorming, structuring thoughts, and creating coherent written pieces consisting of an introduction, body, and conclusion. Writing letters, summaries, précis, resumes, essays, narratives, biographies, and news articles.

Practice **Reading:**

- Encourage students to distinguish between factual and inferential information from a text.
- Read a passage and create a mind map outlining the main and supporting ideas of the content.
- Read the text and take notes.
- Read and interpret the author's perspective.
- Read and conduct a critical analysis of the text.
- Read a passage and provide constructive feedback. (speaking/writing modality)

Writing:

- Compose a summary.
- Write a précis.
- Create a resume.
- Develop an essay.
- Write a narrative account, whether personal or about others.

Produce a news column.

Module – V Theory

Public speaking and presentation abilities

Public speaking and presentation techniques

Public speaking, objectives of a speech – to inform, entertain, persuade, or commemorate/celebrate. Methods of persuasion in speeches – ethos, logos, and pathos. Speech preparation – researching background information, organizing content, crafting an introduction, developing main points, and concluding effectively. Showcasing structured speeches – welcome addresses, farewell remarks, expressions of gratitude (examples may be provided in written scripts, videos, or audio recordings).

Presentation etiquette, verbal presentations, poster displays, and delivering speeches.

Practice

Public speaking:

- Deliver an opening speech (during the Annual day, General meeting, sports day, cultural events)
- Present a farewell address
- Express gratitude through a vote of thanks
- Make a persuasive speech (given a specific scenario)

Engage in an extempore speech

Presentations:

- Conduct a role play
- Prepare a PowerPoint presentation

Create a poster presentation

TEXTBOOKS:

- Communication Skills (2015) 2nd edition, Sanjay Kumar & Pushp Lata, Oxford University Press
- Business Correspondence and Report Writing (2017), R.C.Sharma, Krishna Mohan. McGraw Hill

REFERENCE BOOKS:

- 1. Basic Business Communication-(2004). Lesikar I Flatley, McGraw Hill
- 2. Business Communication Today, (2017), Bovee, Thill and Chatterjee, Pearson
- 3. Krishnan, M, & Jha, S.(2024). Focus: A course in Communication Skills. Cambridge University Press
- 4. Suparna Dutta, 2013 Business Communication, PHI Learning Pvt Ltd, New Delhi

GAPS IN THE SYLLABUS (TO MEET INDUSTRY/PROFESSION REQUIREMENTS) POS MET THROUGH GAPS IN THE SYLLABUS TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

POS MET THROUGH TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS & EVALUATION PROCEDURE

DIRECT ASSESSMENT

Assessment Tool	% Contribution during CO Assessment
Continuous Internal Assessment	60
End Semester exams	40

Continuous Internal Assessment	% Distribution
Day-to-day performance & assignments	30
Quiz 1	10
Viva- Voce	20

End Semester Examination	% Distribution
Examination: Submission of reports	30
Viva- Voce	10

Assessment Components	CO1	CO2	CO 3	CO 4	CO 5
Continuous Internal Assessment	✓	✓	✓	✓	✓
Examination: Submission of reports	√	✓	✓	✓	✓

MAPPING BETWEEN COURSE OUTCOMES AND COURSE DELIVERY METHOD INDIRECT ASSESSMENT

1.Student Feedback on Course Outcome

COURSE DELIVERY METHODS

	Lecture by use of boards/LCD projectors/OHP projectors
	Assignments/Seminars
CD3	Laboratory experiments/teaching aids
	Industrial/guest lectures
CD5	Industrial visits/in-plant training
	Self- learning, such as the use of NPTEL materials and the internet
CD7	Simulation

MAPPING BETWEEN COURSE OUTCOMES AND POs and PSOs

	PO	PO1	PO1	PO1	PSO	PSO	PSO								
	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO ₁	1	1	1		1	1		2	3	3	2	3			
CO ₂	1			1	1	1		1	2	2	1	2			
CO ₃	2	3	1	2	2	1		1	2	2	1	3			
CO4	2	2	2	1	2	1		2	2	3	2	3			
CO5	1	1	1		2	2	1	2	3	3	2	3			

Grading: No correlation - 0, Low correlation - 1, Moderate correlation - 2, High Correlation - 3

Course Outcomes	Course Delivery Method
CO1	CD2, CD 3
CO2	CD 3, CD 6
CO3	CD 1, CD 2
CO4	CD 3, CD6
CO5	CD 2, CD3, CD6

Course Code: MA24103

Course Title: MATHEMATICS II Pre-requisite(s): Mathematics - I

Co- requisite(s): NA

Credits: 4 L: 3 T: 1 P: 0

Class schedule per week: 4

Class: B.Tech. Semester / Level: II/1

Branch: All Name of Teacher:

COURSE OBJECTIVES

This course envisions to impart to students to:

1.	various methods to solve linear differential equations of second and higher order
2.	special functions viz. Legendre's and Bessel's and different properties associated with
	them
3.	diverse mathematical techniques for solving partial differential equations of first
	order, along with their applications in wave and heat equations using Fourier series
4.	the theory of functions of a complex variable, complex differentiation and integration
5.	about random variables and elementary probability distribution

COURSE OUTCOMES (COs)

CO1	investigate the occurrence of ordinary differential equations in real-life problems and						
	identify the suitable methods available for their solutions.						
CO2	develop skills to solve and implement various forms of differential equations and						
	special functions in diverse domains.						
CO3	learn to solve various forms of partial differential equations arising in real-world.						
CO4	gain an understanding of complex variable functions and their properties in science						
	and engineering.						
CO5	comprehend and apply the concept of probability distributions in solving problems						
	related to uncertainty.						

SYLLABUS

MODULE	(NO. OF LECTURE HOURS)
Module – I Ordinary Differential Equations – I Linear differential equations, Wronskian, Linear independence and dependence of solutions, Linear differential equations of 2 nd and higher order with constant coefficients, Operator method, Euler – Cauchy's form of linear differential equation, Method of variation of parameters.	9
Module – II Ordinary Differential Equations – II Ordinary and singular points of differential equation, Power and Frobenius' series solutions (root differ by non integer and equal roots). Bessel's differential equation, Bessel function of first kind and its important properties. Legendre's differential equation, Legendre's polynomial and its important properties.	9
Module – III Fourier series and Partial Differential Equations Fourier series: Euler formulae for Fourier series, Half range Fourier series. Partial Differential Equations: Method of separation of variables and its application in solving one dimensional wave and heat equations.	9
Module – IV Complex Variable-Differentiation & Integration Function of a complex variable, Analyticity, Analytic functions, Cauchy – Riemann equations. Cauchy's theorem, Cauchy's Integral formula, Taylor and Laurent series expansions. Singularities and its types, Residues, Residue theorem.	9
Module – V Applied Probability Discrete and continuous random variables, cumulative distribution function, probability mass and density functions, expectation, variance. Introduction to Binomial, Poisson and Normal Distribution.	9

TEXTBOOKS:

- 1. E. Kreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons, 2006.
- 2. D. G. Zill and W.S. Wright, Advanced Engineering Mathematics, Fourth Edition, 2011.
- 3. J. W. Brown and R. V. Churchill, Complex Variables and Applications, 7th Ed., McGraw Hill, 2004.
- 4. R.K. Jain and S.R.K. Iyengar, Advanced Engineering Mathematics, Narosa Publishing, 3rd Ed, 2009.
- 5. R. A. Johnson, I. Miller and J. Freund: Probability and Statistics for Engineers, PHI
- 6. S. C. Gupta and V. K. Kapoor: Fundamental of Mathematical Statistics, Sultan Chand and Sons

REFERENCE BOOKS:

- 1. W. E. Boyce and R. C. DiPrima, Elementary Differential Equations and Boundary Value Problems, 9th Edition, Wiley India, 2009.
- 2. N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint, 2008.
- 3. E. A. Coddington, An Introduction to Ordinary Differential Equations, Prentice Hall India, 1995.
- 4. G. F. Simmons, Differential Equations with Applications and Historical Notes, TMH, 2nd ed., 2003
- 5. P. L. Meyer: Introductory Probability and Statistical Applications, Oxford & IBH.

GAPS IN THE SYLLABUS (TO MEET INDUSTRY/PROFESSION REQUIREMENTS) --

POS MET THROUGH GAPS IN THE SYLLABUS --

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN ---

POS MET THROUGH TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN --

COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS & EVALUATION PROCEDURE

DIRECT ASSESSMENT

Assessment Tool	% Contribution during CO Assessment
Mid Sem Examination	25
End Sem Examination	50
Quiz	10
Assignment	10
Teacher's assessment	05

Continuous Internal Assessment	% Distr <mark>ibution</mark>
Mid Sem Examination	50
Quiz and assignment	40
Teacher's assessment	10

Assessment Components	CO1	CO2	CO ₃	CO4	CO5
Continuous Internal Assessment	Y	Y	Y	Y	
Semester End Examination	Y	Y	Y	Y	Y

INDIRECT ASSESSMENT

1. Student Feedback on Course Outcome

COURSE DELIVERY METHODS

CD1	ectures by use of boards/LCD projectors/OHP projectors						
CD2	utorials/Assignments						
CD3	Self- learning such as use of NPTEL materials and internets						
CD4	Laboratory experiments/teaching aids						
CD5	Industrial/guest lectures						
CD6	Industrial visits/in-plant training						
CD7	Simulation						

MAPPING BETWEEN COURSE OUT COMES AND POs and PSOs

	PO	PSO	PSO	PSO										
	1	2	3	4	5	6	7	8	9	10	11	1	2	3
CO1	3	3	2	3	2	1	0	0	0	1	2			
CO2	3	3	2	3	2	1	0	0	1	1	2			
CO3	3	3	2	3	2	1	0	0	1	1	2			
CO4	3	2	2	2	2	1	0	0	1	1	2			
CO5	3	3	2	2	2	1	1	1	1	2	3			

Grading: No correlation - 0, Low correlation - 1, Moderate correlation - 2, High Correlation - 3

Course Outcomes	Course Delivery Method
CO1	CD1, CD2, CD3
CO2	CD1, CD2, CD3
CO3	CD1, CD2, CD3
CO4	CD1, CD2, CD3
CO5	CD1, CD2, CD3

Course Code: CH24101 Course Title: CHEMISTRY

Pre-requisite(s): Intermediate level Chemistry

Co- requisite(s): NA

Credits: 4 L: 3 T: 1 P: 0

Class schedule per week: 4

Class: B.Tech.
Semester / Level: II
Branch: All
Name of Teacher:

COURSE OBJECTIVES

This course envisions to impart to students:

1.	To create concept of chemical bonding in coordination chemistry
2.	To understand the basics of stereochemistry, aromaticity and reaction mechanism of
	organic molecules
3.	To understand the reaction dynamics and to know different types of catalysis
4.	To apprehend the basic principles and the application of vibrational, electronic and
	NMR spectroscopy
5.	To develop knowledge on the physical state and electrochemistry of molecules

COURSE OUTCOMES (COs)

CO1	Able to explain the bonding in a coordination complex
CO ₂	Able to explain the 3D structure, aromaticity and stereochemistry of organic molecules
CO3	Able to predict the rate, molecularity and mechanism of a simple as well as catalytic reaction
CO4	Able to explain the UV-vis, IR and NMR spectra of unknown molecules
CO5	Able to interpret the phase diagram of simple one and two component heterogeneous
	systems in equilibrium and the electrochemical behavior of the molecules

SYLLABUS

MODULE	(NO. OF LECTURE HOURS)
Module – I: Bonding in Coordination Complex Introduction to Chemical Bonding, Werner's Theory, Bonding in coordination complexes, Crystal Field Theory, Octahedral, Tetrahedral and Square planar complexes, CFSE, Jahn Teller theorem, Spectral, electronic and magnetic properties of coordination complexes.	8
Module – II: Organic Structure and Reactivity Aromaticity, Geometrical isomerism: cis-trans, E/Z, and syn-anti isomerism; Optical isomerism & Chirality; Wedge, Fischer, Newmann and Sawhorse projection formulae and interconversions; D/L, R/S nomenclature system; Conformational studies of n-butane. Addition, Elimination, Substitution and Rearrangement reaction.	8
Module – III: Kinetics and Catalysis Kinetics of Chain, Parallel/Competing/Side, Consecutive reactions; Fast reactions; Outline of Catalysis, Acid-base catalysis, Enzyme catalysis (Michaelis-Menten equation), Important catalysts in industrial processes: Hydrogenation using Wilkinsons catalyst, Phase transfer catalyst.	8
Module – IV: Spectroscopic Techniques Absorption Spectroscopy, Lambert-Beers law, Principles and applications of UV-Visible spectroscopy, Principles and applications of Vibrational spectroscopy; Introduction of NMR spectroscopy.	8
Module – V: Phase and Chemical equilibrium Phase rule: terms involved, Phase diagram of one component (Water) & Department (Pb/Ag) system & their applications; Gibbs Free energy, Van't Hoff equation and Chemical Equilibrium; Nernst Equation, Standard electrode potential, EMF measurement and its application, Batteries and Fuel Cells.	8

TEXTBOOKS:

- 1. Huheey, J. E., Inorganic Chemistry: Principles of Structure and Reactivity, 4th edition, Pearson.
- 2. Morrison, R. N. & Boyd, R. N. Organic Chemistry, Seventh Edition, Pearson
- 3. Atkins, P. W. & Drysical Chemistry, 10th Ed., Oxford University Press, 2014.

REFERENCE BOOKS:

- 1. Lee, J. D. Concise Inorganic Chemistry ELBS, 1991.
- 2. Mortimer, R. G. Physical Chemistry 3rd Ed., Elsevier (2009).
- 3. William Kemp, Organic Spectroscopy, 3 rd Ed., 2008 Macmillan.

GAPS IN THE SYLLABUS (TO MEET INDUSTRY/PROFESSION REQUIREMENTS)

Limited exposure to computational tools, industrial case studies, and skill-based training needed for industry readiness.

POS MET THROUGH GAPS IN THE SYLLABUS

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

POS MET THROUGH TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS & EVALUATION PROCEDURE

DIRECT ASSESSMENT

Assessment Tool	% Contribution during CO Assessment
Mid Sem Examination	25
End Sem Examination	50
Quiz	10
Assignment	10
Teacher's assessment	05

Continuous Internal Assessment	% Distribution
Mid Sem Examination	50
Quiz and assignment	40
Teacher's assessment	10

Assessment Components	CO1	CO2	CO3	CO4	CO5
Continuous Internal Assessment	Y	Y	Y	Y	
Semester End Examination	Y	Y	Y	Y	Y

INDIRECT ASSESSMENT

1. Student Feedback on Course Outcome

COURSE DELIVERY METHODS

CD1	Lectures by use of boards/LCD projectors/OHP projectors
CD2	Tutorials/Assignments
CD3	Self- learning such as use of NPTEL materials and internets
CD4	Seminars
CD5	Laboratory experiments/teaching aids
CD6	Industrial/guest lectures
CD7	Industrial visits/in-plant training

MAPPING BETWEEN COURSE OUTCOMES AND POs and PSOs

	РО	PSO	PSO	PSO										
	1	2	3	4	5	6	7	8	9	10	11	1	2	3
CO1	3	2	1	1	0	0	0	0	1	0	2			
CO2	3	3	2	1	0	0	0	0	1	0	2			
CO3	3	3	3	2	1	1	0	0	1	0	3			
CO4	3	2	1	3	3	0	0	0	2	0	2			
CO5	3	3	2	2	1	2	0	0	1	0	3			

 $Grading: No\ correlation-0, Low\ correlation-1, Moderate\ correlation-2, High\ Correlation-3$

Course Outcomes	Course Delivery Method
CO1	CD1, CD2, CD3
CO2	CD1, CD2, CD3
CO3	CD1, CD2, CD3
CO4	CD1, CD2, CD3
CO5	CD1, CD2, CD3

Course Code: EC24101

Course Title: BASIC ELECTRONICS

Pre-requisite(s): N/A Co- requisite(s): N/A

Credits: 3 L:2 T:1 P: 0

Class schedule per week: 3

Class: B. Tech.
Semester / Level: II/1
Branch: ALL B.TECH.

COURSE OBJECTIVES

This course envisions to impart to students:

1.	To understand PN Junction, diodes and their applications.
2.	To comprehend BJT and the bias configurations.
3.	To understand operating principles of FETs
4.	To understand op amp and its applications.
5.	To apprehend number system, Logic Gates and Boolean algebra.

COURSE OUTCOMES (COs)

CO1	Understand the characteristics of electronic devices like PN-diode, BJT, JFET
	and MOSFET
CO2	Classify and analyze the various circuit configurations of BJTs and MOSFETs.
CO3	Analyze the characteristics of operational amplifier.
CO4	Design electronic circuits using diodes, transistors, op-amp and logic gates for
	analogand digital applications.
CO5	Solve day-to-day life problems using electronic circuits.

SYLLABUS

MODULE	(NO. OF LECTURE HOURS)
Module – I: Diodes and Applications Introduction to semiconductor materials, PN junctiondiode, barrier potential, depletion layer width, junction capacitance, diode current equation, I-Vplot, diode-resistance, temperature dependence, breakdown mechanisms, Zener diode – operation and applications, Diode as a Rectifier: Half Wave and Full Wave Rectifiers with and without C-Filters.	8
Module – II: Bipolar Junction Transistors (BJT) Basic operation of PNP and NPN Transistors, Input and Output Characteristics of CB, CE and CC Configurations. Transistor biasing: operating point, Fixed bias, emitter bias, voltage divider bias, stability factor, small signal analysis (h-parametermodel) of CE configuration.	8
Module – III: Field Effect Transistors JFET: Principle of operation, transfer characteristics, MOSFET: Operation of N-MOS, P-MOS, enhancement and depletion type, transfer characteristics, CS biasing of JFET and MOSFET.	8
Module – IV: Operational Amplifiers Introduction of Operational Amplifier, Characteristics of Operational Amplifier, Differential Amplifier, CMRR, Slew Rate, input and output offset voltages, Inverting and non-inverting amplifiers, Summing Amplifier, Difference amplifier, Differentiator and Integrator.	8
Module – V: Boolean Algebra and Logic Gates Boolean Algebra, Boolean operators, Truth table of different digital logic gates (AND, OR, NOT, NAND, NOR, EXOR, EX-NOR), application of diode for design of logic gates, realization of logic gates using universal gates, adder, subtractor.	8

TEXTBOOKS:

- 1. Millman J., Halkias C.C. "Integrated Electronics: Analog and Digital Circuits and Systems", Tata McGraw-Hill.
- 2. Boylstead R.L., Nashelsky L., "Electronic Devices and Circuit Theory", Pearson Education, Inc,
- 3. Mano M.M., Michael D. Ciletti, "Digital Design", Pearson Education, Inc, 5/e, 2011.

REFERENCE BOOKS:

- 1. Millman J., Halkias C.C., Parikh Chetan, "Integrated Electronics: Analog and Digital Circuits and Systems", Tata McGraw-Hill, 2/e.
- 2. Millman J., Halkias C.C., Satyabrata Jit, "Millman's Electronic Devices and Circuits", Tata McGraw-Hill, 3/e.
- 3. Albert Paul, Malvino, David J. Bates, "Electronic principles", McGraw-Hill, 8/e, 2015.

GAPS IN THE SYLLABUS (TO MEET INDUSTRY/PROFESSION REQUIREMENTS)

PO MET THROUGH GAPS IN THE SYLLABUS 3, 11, 12

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

POS MET THROUGH TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN $2,\,3,\,11,\,12$

COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS & EVALUATION PROCEDURE

DIRECT ASSESSMENT

Assessment Tool	% Contribution during CO Assessment
First Quiz	10
Mid Semester Examination	25
Assignment	10
Teacher's Assessment	5
End Semester Examination	50

INDIRECT ASSESSMENT

- 1. Student Feedback on Faculty
- 2. Students' Feedback on Course Outcome.

MAPPING BETWEEN COURSE OUTCOMES AND POS and PSOS

	РО	PO	РО	РО	PO	PO	РО	РО	РО	РО	РО	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	1	2	3
CO1	3	3	1	2	3	1	2	2	3	2	2	3	3	1
CO2	3	3	1	2	3	1	2	2	3	2	2	3	3	1
CO3	3	3	1	2	3	1	2	2	3	2	2	3	3	1
CO4	3	3	1	2	3	1	2	2	3	2	2	3	3	1
CO5	3	3	1	2	3	1	2	2	3	2	2	3	3	1

Grading: No correlation - 0, Low correlation - 1, Moderate correlation - 2, High Correlation - 3

Course Outcomes	Course Delivery Method
CO1	CD1, CD2, CD3, CD8
CO2	CD1, CD2, CD3, CD8
CO3	CD1, CD2, CD3, CD8
CO4	CD1, CD2, CD3, CD8
CO5	CD1, CD2, CD3, CD8

Course Code: ME24101

Course Title: BASICS OF MECHANICAL ENGINEERING

Pre-requisite(s): NA Co- requisite(s): NA

Credits: 3 L: 2 T:1 P: 0

Class schedule per week: 3

Class: B. Tech.
Semester / Level: II

Branch: Mechanical Engineering

Name of Teacher:

COURSE OBJECTIVES

This course envisions to impart to students to:

1.	Introduce system of forces, and write equation of equilibrium.
2.	Analyse motion of particle and rigid body subjected to force.
3.	Grasp the importance of internal and external combustion engines.
4.	Apprehend the fundamentals of friction.
5.	Understand the different sources of energy.

COURSE OUTCOMES (COs)

CO1	Explain the basics of Mechanical Engineering.							
CO2	Apply various laws of mechanics on static and dynamic elements and bodies.							
CO3	Analyse various problems of mechanics related to static and dynamic bodies.							
CO4	Evaluate the real life problem related to mechanics and energy for its probable							
	solution.							

SYLLABUS

MODULE	(NO. OF LECTURE HOURS)
Module – I: System of Forces and Structure Mechanics Addition of Forces, Moment of a Force, Couple, Varignon's theorem, Free Body Diagram, Equilibrium in Two and Three Dimensions, Equivalent Forces and Moment. Types of Plane Trusses, Analysis of Plane Trusses by: Method of Joints and Method of Sections. Hooke's Law of elasticity, Stress and Strain, Relation between elastic constants.	8
Module – II: Kinematics & Kinetics of rigid bodies Types of rigid body motion— translation, rotation about fixed axis, equations defining the rotation of a rigid body about a fixed axis, plane motion, absolute and relative velocity in plane motion, instantaneous center of rotation. Equation of motion and D'Alembert's principle.	8
Module – III: Friction Interfacial Friction (a) Laws of dry friction, static & kinetic co-efficient of friction, Analysis of static, kinetic and rolling friction. (b) Analysis of frictional forces in inclined planes, wedges, screw jacks and belt drives.	8
Module – IV: Boilers and Internal Combustion Engine Classification of Boilers, Fire tube and Water Tube boilers. Boiler Mountings and Accessories. Boiler efficiency. Classification of I C Engines. Basic components and terminology of IC engines, working principle of four stroke and two stroke - petrol and diesel engine.	6
Module – V: Non-Conventional Energy Sources Renewable and Non-renewable Energy Resources, Advantages and Disadvantages of Renewable Resources, Renewable Energy Forms and Conversion- Solar Energy, Wind Energy, Hydro Energy.	5

TEXTBOOKS:

- 1. Engineering Mechanics, Irving H. Shames, P H I. ltd, 2011.
- 2. Boiler operator, Wayne Smith, LSA Publishers, 2013.
- 3. Internal Combustion Engines, M. L. Sharma and R. P. Mathur, Dhanpat Rai Publications, 2014.
- 4. Fundamentals of Renewable Energy Processes, Aldo Vieira Da Rosa, Elsevier publication, 2012.

REFERENCE BOOKS:

- 1. Engineering Mechanics: statics, James L. Meriam, L. G. Kraige, Wiley, 7th Edition, 2011.
- 2. Engineering Mechanics, S. Rajasekaran & G. Sankarasubramaniam, Vikash publishing house, 2018.
- 3. An Introduction to Steam Boilers, David Allan Low, Copper Press Publisher, 2012.
- 4. Internal Combustion Engines V Ganesan, McGraw hill, 2017.
- 5. Non Conventional Energy Resources, B. H. Khan, McGraw Hill Education Publisher, 2017.
- 6. Principles of Mechanical Engineering, R. P. Sharma & Chilkesh Ranjan, Global Academic Publishers, 2016.

GAPS IN THE SYLLABUS (TO MEET INDUSTRY/PROFESSION REQUIREMENTS) : NA

POS MET THROUGH GAPS IN THE SYLLABUS: NA

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN: NA

POS MET THROUGH TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN: NA

COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS & EVALUATION PROCEDURE

DIRECT ASSESSMENT

Assessment Tool	% Contribution during CO Assessment
Progressive Evaluation	50
End Semester Examination	50

Continuous Internal Assessment	% Distribution
Mid Semester Examination	25
Quiz	10
Assignment	10
Teacher's Assessment	5

Assessment Components	CO1	CO2	CO ₃	CO4
Continuous Internal Assessment	V	V	$\sqrt{}$	V
Semester End Examination	V	V	V	V

INDIRECT ASSESSMENT

1. Student Feedback on Course Outcome

COURSE DELIVERY METHODS

CD1	Lecture by use of boards/LCD projectors/OHP projectors	
CD2	Assignments/Seminars	V
CD3	Laboratory experiments/teaching aids	
CD4	Industrial/guest lectures	
CD5	Industrial visits/in-plant training	
CD6	Self- learning such as use of NPTEL materials and internets	$\sqrt{}$
CD7	Simulation	

MAPPING BETWEEN COURSE OUTCOMES AND POs and PSOs

	РО	PO	PO	PSO	PSO	PSO								
	1	2	3	4	5	6	7	8	9	10	11	1	2	3
CO1	3	2	1	1	1		2	1	1		2	2	1	2
CO2	3	3	2	2	2	1	1	2	1	1	2	2	1	2
CO3	3	3	3	3	2	1	1	2	2	2	2	2	2	2
CO4	2	3	3	3	3	2	2	2	2	2	3	2	2	2

Grading: No correlation - 0, Low correlation - 1, Moderate correlation - 2, High Correlation - 3

Course Outcomes	Course Delivery Method
CO1	CD1, CD2, CD 6
CO2	CD1, CD2, CD 6
CO3	CD1, CD2, CD 6
CO4	CD1, CD2, CD 6

Course code: CE24101

Course title: ENVIRONMENTAL SCIENCE

Pre-requisite(s): NA Co- requisite(s): NA

Credits: 3 L:3 T:0 P:0

Class schedule per week: 2

Class: B.TECH. Semester / Level: I1/1 Branch: ALL Name of Teacher:

COURSE OBJECTIVES

This course enables the students to:

1.	To develop basic knowledge of ecological principles and their applications in
	environment.
2.	To identify the structure and composition of the spheres of the earth, the only planet
	sustaining life.
3.	To analyse, how the environment is getting contaminated and probable control
	mechanisms for them.
4.	To generate awareness and become a sensitive citizen towards the changing
	environment.

COURSE OUTCOMES (COs)

CO ₁	Able to explain the structure and function of ecosystems and their importance in the
	holistic environment.
CO2	Able to identify the sources, causes, impacts and control of air pollution
CO3	Able to distinguish the various types of water pollution happening in the environment
	and understand about their effects and potential control mechanisms.
CO4	Able to judge the importance of soil, causes of contamination and need of solid waste
	management.
CO5	Able to know the impacts of noise pollution and its management.

SYLLABUS

MODULE	(NO. OF LECTURE HOURS)
Module – I: Ecosystem and Environment Concepts of Ecology and Environmental Science, ecosystem: structure, function and services, Biogeochemical cycles, energy and nutrient flow, ecosystem management. Concept of Biodiversity.	6
Module – II: Air Pollution Structure and composition of unpolluted atmosphere, classification of air pollution sources, types of air pollutants, effects of air pollution, monitoring of air pollution, Air pollution control and management.	6
Module – III: Water Pollution Water Resource; Water Pollution: types and Sources of Pollutants; effects of water pollution; Water quality monitoring, Water quality index, water and wastewater treatment: primary, secondary and tertiary.	6
Module – IV: Soil Pollution and Solid Waste Management Soil profile, soil properties, soil pollution, and Municipal solid waste management. MSW – Functional elements of MSW.	6
Module – V: Noise Pollution Noise pollution: introduction, sources, outdoor and indoor noise propagation, Effects of noise on health, criteria noise standards and limit values, Noise measurement techniques, prevention and control of noise pollution.	6

TEXTBOOKS:

- 1. A, K. De. (3rd Ed). 2008. Environmental Chemistry. New Age Publications India Ltd.
- 2. R. Rajagopalan. 2016. Environmental Studies: From Crisis to Future by, 3rd edition, Oxford University Press.
- 3. Eugene P. Odum. 1971. Fundamentals of Ecology (3rd ed.) -. WB Sunders Company, Philadelphia.
- 4. C. N. Sawyer, P. L. McCarty and G. F. Parkin. 2002. Chemistry for Environmental Engineering and Science. John Henry Press.
- 5. S.C. Santra. 2011. Environmental Science. New Central Book Agency.

REFERENCE BOOKS:

- 1. D.W. Conell. Basic Concepts of Environmental Chemistry, CRC Press.
- 2. Peavy, H.S, Rowe, D.R, Tchobanoglous, G. Environmental Engineering, Mc-Graw Hill International
- 3. G.M. Masters & Wendell Ela. 1991. Introduction to Environmental Engineering and Science, PHI Publishers.

GAPS IN THE SYLLABUS (TO MEET INDUSTRY/PROFESSION REQUIREMENTS): NA

POS MET THROUGH GAPS IN THE SYLLABUS: NA

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN: NA

POS MET THROUGH TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN: NA

COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS & EVALUATION PROCEDURE

DIRECT ASSESSMENT

Assessment Tool	% Contribution during CO Assessment
Mid Sem Examination	25
End Sem Examination	50
Quiz	10
Assignment	10
Teacher's assessment	05

Continuous Internal Assessment	% Distribution
Mid Sem Examination	50
Quiz and assignment	40
Teacher's assessment	10

Assessment Components	CO1	CO2	CO3	CO4	CO5
Continuous Internal Assessment	Y	Y	Y	Y	
Semester End Examination	Y	Y	Y	Y	Y

INDIRECT ASSESSMENT

1. Student Feedback on Course Outcome

COURSE DELIVERY METHODS

CD1	Lectures by use of boards/LCD projectors/OHP projectors			
CD2	Tutorials/Assignments			
CD3	Self- learning such as use of NPTEL materials and internet			

MAPPING BETWEEN COURSE OUTCOMES AND POs and PSOs

	РО	РО	PO	PO	PO	РО	PO	PO	PO	PO	РО	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	1	2	3
CO1	0	1	1	0	0	1	0	0	0	0	0			
CO2	0	1	1	0	0	1	0	0	0	0	0			
CO3	0	1	1	0	0	1	0	0	0	0	0			
CO4	0	1	1	0	0	1	0	0	0	0	0			
CO5	0	1	1	0	0	1	0	0	0	0	0			

Grading: No correlation - 0, Low correlation - 1, Moderate correlation - 2, High Correlation - 3

Course Outcomes	Course Delivery Method
CO1	CD1, CD2
CO2	CD1, CD2
CO3	CD1, CD2
CO4	CD1, CD2
CO5	CD1, CD2

Course Code: CH24102

Course Title: CHEMISTRY LABORATORY Pre-requisite(s): Intermediate level Chemistry

Co- requisite(s): NA

Credits: 1 L: 0 T: 0 P: 2

Class schedule per week: 2

Class: B.Tech.
Semester / Level: II
Branch: All
Name of Teacher:

COURSE OBJECTIVES

This course enables the students to:

1.	To gain an understanding of the synthesis of organic and inorganic compounds.					
2.	To interpret and analyze spectroscopic data effectively.					
3.	To develop a strong concept of potentiometric and pH-metric titrations of acids and					
	bases.					
4.	To understand and calculate the rate constant of chemical reactions.					
5.	To acquire knowledge of determining melting points and estimating eutectic and					
	transition temperatures.					

COURSE OUTCOMES (COs)

CO1	Able to perform the synthesis of organic and inorganic compounds.				
CO2	Able to interpret and analyze spectroscopic data.				
CO3	Able to carry out potentiometric and pH-metric titrations of acids and bases.				
CO4	Able to determine the rate constant of chemical reactions.				
CO5	Able to measure melting points and estimate eutectic and transition temperatures.				

SYLLABUS (List of experiments)

- 1. Gravimetric estimation of Nickel using Dimethylglyoxime.
- 2. Determination of total Hardness of a given water Sample (Complexometric Titration).
- 3. Verification of Beer's Law using Fe³⁺ solution by spectrophotometer/colorimeter, and determination of the concentration of an unknown Fe³⁺ solution.
- 4. Preparation of Diazoamino Benzene and reporting of its melting point and yield.
- 5. Construction of a melting point—mass percent composition diagram for a two-component mixture and determination of its eutectic temperature.
- 6. Study of the kinetics of acid-catalyzed hydrolysis of ethyl acetate and evaluation of the rate constant.
- 7. Determination of the strength of a strong acid using potentiometric titration with a strong base.
- 8. Determination of the transition temperature of a given salt hydrate.
- 9. Separation of binary organic mixture by acid-base extraction and analysis using given FTIR and NMR spectrum.
- 10. Construction of a pH-titration curve for a strong acid versus a strong base

REFERENCE MATERIALS:

- 1. https://bitmesra.ac.in/edudepartment/content/1/140/553 (link of Lab Manual)
- 2. Experimental Physical Chemistry B. Viswanathan, P. S. Raghavan, Narosa Publishing House (1997).
- 3. Vogel's Textbook of Practical Organic Chemistry
- 4. Experiments in General Chemistry C. N. R. Rao, U. C. Agarwal.
- 5. Experimental Organic Chemistry, Vol. 1 & 2 P. R. Singh, D. S. Gupta, K. S. Bajpai, Tata McGraw-Hill

GAPS IN THE SYLLABUS (TO MEET INDUSTRY/PROFESSION REQUIREMENTS)

POS MET THROUGH GAPS IN THE SYLLABUS

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

POS MET THROUGH TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS & EVALUATION PROCEDURE

DIRECT ASSESSMENT

Assessment Tool	% Contribution during CO Assessment
Lab Journal	30
Lab quizes	20
Progressive viva	20
End Sem Examination	30

Continuous Internal Assessment	% Distribution
Lab Journal	30
Lab quiz	10
Progressive viva	20

Assessment Components	CO1	CO2	CO3	CO4	CO5
Continuous Internal Assessment	Y	Y	Y	Y	Y
Semester End Examination	Y	Y	Y	Y	Y

INDIRECT ASSESSMENT

1. Student Feedback on Course Outcome

COURSE DELIVERY METHODS

CD1	Introductory lecture by use of boards/LCD projectors
CD2	Laboratory experiments/ teaching aid
CD3	Self- learning such as use of NPTEL materials and internets
CD4	Seminars (discussion of experimental results and error analysis).
CD5	Group discussions/problem-solving sessions (to analyze experimental
	data and calculations).
CD6	Industrial/guest lectures (applications of chemical analysis techniques in
	industry).
CD7	Industrial visits (exposure to real chemical laboratories and processes).

MAPPING BETWEEN COURSE OUTCOMES AND POS and PSOS

	РО	PO	РО	PO	РО	PSO	PSO	PSO						
	1	2	3	4	5	6	7	8	9	10	11	1	2	3
CO1	3	2	3	2	2	2	3	1	1	2	2			
CO2	3	2	2	3	3	2	1	1	3	2	3			
CO3	3	3	1	3	3	1	2	1	2	2	2			
CO4	3	3	1	3	2	1	1	1	1	2	3			
CO5	3	2	1	2	2	2	1	1	1	1	3			

Grading: No correlation - 0, Low correlation - 1, Moderate correlation - 2, High Correlation - 3

Course Outcomes	Course Delivery Method
CO1	CD1, CD2, CD3
CO2	CD1, CD2, CD3
CO3	CD1, CD2, CD3
CO4	CD1, CD2, CD3
CO5	CD1, CD2, CD3

Course Code: EC24102

Course Title: BASIC ELECTRONICS LABORATORY

Pre-requisite(s): NA Co- requisite(s): NA

Credits: L: 0 T: 0 P: 2 C:1

Class schedule per week: 2

Class: B. Tech.
Semester / Level: II/1
Branch: ALL B.TECH.

COURSE OBJECTIVES

This course enables the students to:

1.	To measure magnitude, time-period, frequency, phase of signals using CRO
2.	To know PN junction characteristics and its applications
3.	To understand the working of transistor amplifier
4.	To understand the working of operational amplifier and circuits
5.	To realize logic gates and implement simple Boolean expression

COURSE OUTCOMES (COs)

CO1	Familiarize with electronics components like diode, transistors, ICs
CO2	Make use of measuring instruments and function generators
CO3	Verify characteristics of diodes, transistors and op-amp
CO4	Design electronic circuits using diodes, transistors, op-amp for analog
- 15	applications
CO5	Design electronic circuits using logic gates for digital applications

SYLLABUS (List of experiments)

(A) HARDWARE BASED EXPERIMENTS

- 1. MEASURMENTS USING CRO
 - AIM-1: To understand the Measurement of voltage, time-period and frequency of different signals on CRO.
 - AIM-2: To measure the frequency and phase of two different signals using Lissajous pattern.
- 2. HALF-WAVE AND FULL WAVE RECTIFIER CIRCUITS
 - AIM-1: To understand the basic operation principle of Half-wave rectifier circuit and measurement of rectification efficiency and ripple factor with and without C-Filter.
 - AIM-2: To understand the basic operation principle of Full-wave rectifier circuit and measurement of rectification efficiency and ripple factor with and without C-Filter.
- 3. COMMON EMITTER (CE) TRANSISTOR AMPLIFIER
 - AIM-1: To understand the basic operation principle of CE transistor amplifier circuit and finding its frequency response.
 - AIM-2: To determine the gain bandwidth product of CE transistor amplifier from its frequency response.
- 4. INVERTING OPERATIONAL AMPLIFIER (OP-AMP)
 - AIM: To design the inverting operational amplifier using IC741 OP-AMP and find its Gain and Frequency Response.
- 5. DIFFERENTIAL AMPLIFIER
 - AIM-1: To design common mode and differential mode circuit using IC741 OP-AMP
 - AIM-2: To obtain common mode gain and differential mode gain and calculate CMRR.
- 6. REALIZATION OF LOGIC GATES
 - AIM-1: To understand basic Boolean logic functions (NOT, AND, OR).
 - AIM-2: To realize the basic logic gates (AND, OR, NOT) using NAND Gate (IC-7400).

(B) SOFTWARE BASED EXPERIMENTS

- 1. PN JUNCTION CHARACTERISTICS
 - AIM-1: To determine the forward bias V-I characteristics of PN junction diode and finding itsforward cut-in voltage.
 - AIM-2: To determine the reverse bias V-I characteristics of PN junction diode and finding its reverse breakdown voltage.
- 2. ZENER DIODECHARACTERISTICS
 - AIM-1: To design a basic voltage regulator circuit using Zener diode.
- AIM-2: To determine the reverse bias V-I characteristics of Zener diode and finding its reverse breakdown voltage.
- 3. FIELD EFFECT TRANSISTOR CHARACTERISTICS
 - AIM-1: To determine the output and transfer characteristics of JFET.
 - AIM-2: To measure the voltage, gain of JFET.
- 4. NON-INVERTING OPERATIONAL AMPLIFIER (OP-AMP)
 - AIM: To design the non-inverting operational amplifier using IC741 OP-AMP and find its Gain and Frequency Response.
- 5. DIFFERENTIATOR AND INTEGRATOR CIRCUITS USING OP-AMP
 - AIM-1: To design differentiator circuit using IC741 OP-AMP and observe waveforms.
 - AIM-2: To design integrator circuit using IC741 OP-AMP and observe waveforms.
- 6. IMPLEMENTATION OF BOOLEAN FUNCTION
 - AIM-1: To understand the AND Gate IC (IC 7408) and OR Gate IC (IC 7432)
 - AIM-2: To implement a given Boolean expression using logic gate ICs.

TEXTBOOKS:

- 1. Millman J., Halkias C.C., Parikh Chetan, "Integrated Electronics: Analog and Digital Circuits and Systems", Tata McGraw-Hill, 2/e.
- 2. Mano M.M., "Digital Logic and Computer Design", Pearson Education, Inc, Thirteenth Impression, 2011.

REFERENCE BOOK:

1. Boylstead R.L., Nashelsky L., "Electronic Devices and Circuit Theory", Pearson Education, Inc, 10/e.

GAPS IN THE SYLLABUS (TO MEET INDUSTRY/PROFESSION REQUIREMENTS)

POS MET THROUGH GAPS IN THE SYLLABUS

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

POS MET THROUGH TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS & EVALUATION PROCEDURE

DIRECT ASSESSMENT

Assessment Tool	% Contribution during CO Assessment
Lab Journal	30
Lab quizes	20
Progressive viva	20
End Sem Examination	30

Continuous Internal Assessment	% Distribution
Lab Journal	30
Lab quiz	10
Progressive viva	20

Assessment Components	CO1	CO2	CO3	CO4	CO5
Continuous Internal Assessment	Y	Y	Y	Y	Y
Semester End Examination	Y	Y	Y	Y	Y

INDIRECT ASSESSMENT

1. Student Feedback on Course Outcome

COURSE DELIVERY METHODS

CD1	Lecture by use of Boards/LCD Projectors
CD2	Tutorials/Assignments
CD3	Seminars/ Quiz (s)
CD4	Mini Projects/Projects
CD5	Laboratory Experiments/Teaching Aids
CD6	Industrial/Guest Lectures
CD7	Industrial Visits/In-plant Training
CD8	Self- learning such as use of NPTEL Materials and Internets
CD9	Simulation

MAPPING BETWEEN COURSE OUTCOMES AND POs and PSOs

	РО	PO	РО	РО	PSO	PSO	PSO							
	1	2	3	4	5	6	7	8	9	10	11	1	2	3
CO1	3	2	3	2	2	2	3	1	1	2	2			
CO2	3	2	2	3	3	2	1	1	3	2	3			
CO3	3	3	1	3	3	1	2	1	2	2	2			
CO4	3	3	1	3	2	1	1	1	1	2	3			
CO5	3	2	1	2	2	2	1	1	1	1	3			

Grading: No correlation – 0, Low correlation – 1, Moderate correlation – 2, High Correlation – 3

Course Outcomes	Course Delivery Method
CO1	CD1, CD5, CD9
CO2	CD1, CD5, CD9
CO3	CD1, CD5, CD9
CO4	CD1, CD5, CD9
CO5	CD1, CD5, CD9

Course Code: ME24102

Course Title: ENGINEERING GRAPHICS LABORATORY

Pre-requisite(s): NA Co- requisite(s): NA

Credits: 2 L:0 T: 0 P:4

Class schedule per week: 4

Class: B. Tech. Semester / Level: II

Branch: Mechanical Engineering

Name of Teacher:

COURSE OBJECTIVES

This course envisions to impart to students to:

1.	Understand the basic principles of Engineering Graphics, which include projections
	of 1D, 2D and 3D objects.
2.	Visualize a solid object (including sectioned) and convert it into drawing.
3.	Visualize different views of any object.
4.	Develop skill to draw objects using AutoCAD software.
5.	Inculcate the imagination and mental visualization capabilities for interpreting the
	geometrical details of common engineering objects.

COURSE OUTCOMES (COs)

CO1	Explain the fundamentals of Engineering Graphics and projection and acquire
	visualization skills.
CO2	Demonstrate the concept of projections of points and lines for various engineering
	applications.
CO3	Apply the concept of projections to construct planes and solids, and its orthographic
	projections which are positioned in various configurations
CO4	Demonstrate the understanding of AutoCAD software commands to draw projections
	of points, lines, planes and solids.

SYLLABUS

MODULE	(NO. OF LECTURE HOURS)
Module – I Introduction to Engineering Graphics, dimensioning and projections, orthographic projections, Fundamentals of First and Third Angle projection, Orthographic projections of points.	9
Module – II Orthographic projections of straight lines: lines parallel to HP and VP, lines inclined to HP and Parallel to VP, line inclined to VP and parallel to HP, line inclined to both reference planes. Orthographic projections of planes/lamina: lamina perpendicular to both HP and VP, lamina parallel to HP and perpendicular to VP (and vice versa), lamina inclined to HP and perpendicular to VP, lamina inclined to VP and perpendicular to HP, lamina inclined to both reference planes.	9
Module – III Projections of solids (cube, prism, pyramid, tetrahedron) - axis perpendicular to HP and inclined to VP and inclined to one or both planes. Section of solids: sectional plane perpendicular to one plane and parallel/inclined to another plane.	9
Module – IV Working with AutoCAD Commands, Cartesian Workspace, Basic Drawing & Editing Commands, Drawing: Lines, Rectangles, Circles, Arcs, Polylines, Polygons, Ellipses, Creating Fillets and Chamfers, Creating Arrays of Objects, Working with Annotations, Adding Text to a Drawing, Hatching, Adding Dimensions, Dimensioning Concepts, Adding Linear Dimensions, Adding Radial & Angular Dimensions, Editing the Dimensions.	9
Module – V Create views of points, lines, planes, and various types of solids (cube, prism, pyramid, tetrahedron, etc.) using AutoCAD software.	9

TEXTBOOKS:

- 1. Engineering Drawing by N. D. Bhatt, Charotar Publishing House Pvt.Ltd., 53rd, Edition, 2014.
- 2. Engineering Drawing and Graphics + AutoCAD by K. Venugopal, New Age International (P) Limited, 4th Reprint: June, 2017.

REFERENCE BOOKS:

1. Engineering Graphics with Autocad by J. D. Bethune, Prentice Hall, 2007.

 ${\bf GAPS\ IN\ THE\ SYLLABUS\ (TO\ MEET\ INDUSTRY/PROFESSION\ REQUIREMENTS): NA}$

POS MET THROUGH GAPS IN THE SYLLABUS: NA

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN: NA

POS MET THROUGH TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN: NA

COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS & EVALUATION PROCEDURE

DIRECT ASSESSMENT

Assessment Tool	% Contribution during CO Assessment
Progressive Evaluation	60
End Semester Test	40

Continuous Internal Assessment	% Distribution
Day to day performance & Lab files	30
Lab Quiz 1	10
Viva-voce	20
End Semester Examination	% Distribution
Examination: Experiment Performance	30
Lab Quiz 2	10

Assessment Components	CO1	CO2	CO3	CO4
Continuous Internal Assessment	V	V	V	
Semester End Examination	V	V	V	$\sqrt{}$

INDIRECT ASSESSMENT

1. Student Feedback on Course Outcome

COURSE DELIVERY METHODS

CD1	Lecture by use of boards/LCD projectors/OHP projectors	
CD2	Assignments/Seminars	
CD3	Laboratory experiments/teaching aids	$\sqrt{}$
CD4	Industrial/guest lectures	
CD5	Industrial visits/in-plant training	
CD6	Self- learning such as use of NPTEL materials and internets	
CD7	Simulation	

MAPPING BETWEEN COURSE OUTCOMES AND POs and PSOs

	PO	PSO	PSO	PSO										
	1	2	3	4	5	6	7	8	9	10	11	1	2	3
CO1	3	2	2		2				2		2	2	2	2
CO2	3	3	2		2				2		2	2	2	2
CO3	3	3	3	2	2			2	2		2	2	2	2
CO4	2	2	2	2	3			2	3	2	2	2	2	2

Grading: No correlation – 0, Low correlation - 1, Moderate correlation – 2, High Correlation - 3

MAPPING BETWEEN COURSE OUTCOMES AND COURSE DELIVERY METHOD

Course Outcomes	Course Delivery Method
CO1	CD3
CO2	CD3
CO3	CD3
CO4	CD3

COURSE INFORMATION SHEET

Course Code: PE24102

Course Title: WORKSHOP PRACTICE

Pre-requisite(s): NA Co-requisite(s): NA

Credits: 1 L:0 T:0 P: 2

Class schedule per week: 2

Class: B.Tech. Semester / Level: II

Branch: Production and Industrial Engineering

Name of Teacher:

COURSE OBJECTIVES

This course envisions to impart to students to:

1	Familiarize with the basics of manufacturing processes.
2	Impart knowledge and skill to use tools, machines, equipment, and measuring
	instruments.
3	Practice on manufacturing of components using workshop trades.
4	Educate students on the safe handling of machines and tools.
5	Exercise individual as well as group activity with hands-on training in different
	workshop trades.

COURSE OUTCOMES (COs)

CO1	Be conversant with the basic manufacturing processes.
CO2	Identify and apply suitable tools and instruments for carpentry, foundry, welding,
	fitting, and conventional and modern machining.
CO3	Manufacture different components using various workshop trades.
CO4	Take safety and precautionary measures for self and machines during operations.
CO5	Develop skills to work as an individual or in a team during trade practices.

SYLLABUS (List of experiments)

- 1. To study the various tools, instruments, and equipment used in carpentry practice.
- 2. To perform the carpentry work by making a wooden job using different tools.
- 3. To get acquainted with various tools and equipment used in making green sand mould (to practice green sand mould making with single-piece patterns).
- 4. To get acquainted with melting and pouring metal in a mould (given two-piece patterns of handle) and to make aluminium casting.
- 5. To study arc welding processes including arc welding machines (AC & DC), electrodes and equipment. To join two pieces of given metal by the arc welding process.
- 6. To study gas welding processes, including types of flames produced, filler metals and fluxes, etc. To join two pieces of given metal by the gas welding process.
- 7. To study the various tools used in the fitting shop and perform fitting operations (like marking, chipping, hack-sawing, filing, drilling, etc.)
- 8. To make a job clamping plate as per the given drawing by fitting operations and to check for its assembly with a given component.
- 9. To study lathe machine and to machine a given job on the center lathe as per drawing.
- 10. To study the Shaper machine and to machine a given job on the shaper as per drawing.
- 11. To provide an introduction to the functionality and operation of the CNC Lathe Machine through practical demonstration.
- 12. To provide an introduction to the functionality and operation of the CNC Surface Grinding Machine through practical demonstration

TEXTBOOKS:

- 1. S K Hajra Choudhury, A K. Hajra, "Elements of Workshop Technology: Vol- I and Vol -II", Media Promotors Pvt Ltd. (T1)
- 2. B S Raghuwanshi, "A course in Workshop Technology", Dhanpat Rai Publications. (T2)

REFERENCE BOOKS:

- 1. P.N. Rao, "Manufacturing Technology Vol-1 and Vol-II", Tata McGraw Hill. (R1)
- 2. Kalpakjian, "Manufacturing Engineering and Technology", Pearson. (R2)

GAPS IN THE SYLLABUS (TO MEET INDUSTRY/PROFESSION REQUIREMENTS)

POS MET THROUGH GAPS IN THE SYLLABUS

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

POS MET THROUGH TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS & EVALUATION PROCEDURE

DIRECT ASSESSMENT

Assessment Tool	% Contribution during CO Assessment
Continuous Internal Assessment	60
Semester End Examination	40

Continuous Internal Assessment	% Distribution
Day to day performance & Lab files	30
Quiz 1	10
Viva-voce	20

End Semester Examination	% Distribution
Examination: Experiment Performance	30
Quiz 2	10

Assessment Components	CO1	CO2	CO3	CO4	CO5
Continuous Internal Assessment	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
Examination: Experiment Performance	V		√	$\sqrt{}$	$\sqrt{}$

INDIRECT ASSESSMENT

1. Student Feedback on Course Outcome

COURSE DELIVERY METHODS

CD1	Lecture by use of boards/LCD projectors/OHP projectors	
CD2	Assignments/Seminars	
CD3	Laboratory experiments/teaching aids	V
CD4	Industrial/guest lectures	
CD5	Industrial visits/in-plant training	
CD6	Self- learning such as use of NPTEL materials and internets	
CD7	Simulation	V

MAPPING BETWEEN COURSE OUTCOMES AND POS and PSOS

									РО	РО	РО			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	9	10	11	PSO1	PSO2	PSO3
CO1	3	2	1	0	1	1	1	1	1	1	2	3	2	2
CO2	2	3	2	1	3	1	1	1	2	2	2	3	2	3
CO3	2	2	3	2	3	1	1	2	2	2	2	2	2	3
CO4	1	1	2	1	2	2	3	1	1	1	2	1	1	2
CO5	1	1	2	0	1	0	1	3	3	3	2	2	2	2

Grading: No correlation – 0, Low correlation – 1, Moderate correlation – 2, High Correlation – 3

Course Outcomes	Course Delivery Method
CO1	CD1, CD3, CD6
CO2	CD1, CD3
CO3	CD1, CD3
CO4	CD1, CD3
CO5	CD3

Course Code: MA24201

Course Title: NUMERICAL METHODS

Pre-requisite(s): NA

Co- requisite(s): Numerical Methods Lab. Credits: 2 L: 2 T: 0 P: 0

Class schedule per week: 2

Class: B.Tech.

Semester / Level: III / 2

Branch: All Name of Teacher:

COURSE OBJECTIVES

This course envisions to impart to students to:

1.	comprehend suitable numerical methods to solve algebraic and transcendental				
	equations				
2.	learn proper numerical methods to solve linear system of equations				
3.	approximate a function using various interpolation techniques				
4.	evaluation of derivatives and integrals using interpolating polynomials				
5.	find the numerical solutions of initial value problems				

COURSE OUTCOMES (COs)

CO1	solve algebraic and transcendental equations using numerical methods for real-world
	problem solving
CO2	apply numerical techniques to solve linear system of equations in scientific and
	engineering computations
CO3	use interpolation methods to approximate functions in data analysis and modeling
CO4	compute derivatives and integrals for complex mathematical and physical problems
CO5	solve ordinary differential equations numerically for dynamic system modeling and
	simulations

SYLLABUS

MODULE	(NO. OF LECTURE HOURS)
Module – I: ERRORS AND NONLINEAR EQUATIONS Types and sources of errors, Propagation of errors. Bisection method, Regula-Falsi method, Secant method, Newton-Raphson method and its variants, General Iterative method.	5
Module – II: SYSTEM OF LINEAR EQUATIONS Gaussian Elimination, Gauss-Jordan, LU Decomposition (Crout's method), Gauss-Jacobi and Gauss-Siedel methods to solve linear system of equations.	5
Module – III: INTERPOLATION Lagrange's interpolation, Newton's divided differences interpolation formulas, Interpolating polynomial using Newton forward and backward differences	5
Module – IV: DIFFERENTIATION AND INTEGRATION Differentiation using interpolation formulas, Integration using Newton-Cotes formulas: Trapezoidal rule, Simpson's one-third and three-eighth rules.	5
Module – V: SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS Euler's method, modified Euler's method, Runge-Kutta Methods of second and fourth order to solve initial value problems.	5

TEXTBOOKS:

- 1. M.K. Jain, S.R.K. Iyengar and R.K. Jain, Numerical Methods for Scientific and Engineering Computation, New Age Publications, Fourth Edition, 2004.
- 2. S.S. Sastry, Introductory Methods of Numerical Analysis, PHI, Fourth Edition, 2005.
- 3. E. Kreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons, 2006.

REFERENCE BOOKS:

- 1. S.C. Chapra and R. P. Canale, Numerical Methods for Engineers, McGraw Hill, Seventh Edition, 2014.
- 2. C.F. Gerald and P.O. Wheatley, Applied Numerical Analysis, Pearson Education, Seventh Edition, 2003.
- 3. R. W. Hamming, Numerical Methods for Scientists and Engineers, Second Edition, Dover Publications Inc. 1987

GAPS IN THE SYLLABUS (TO MEET INDUSTRY/PROFESSION REQUIREMENTS) --

POS MET THROUGH GAPS IN THE SYLLABUS --

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN ---

POS MET THROUGH TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN --

COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS & EVALUATION PROCEDURE

DIRECT ASSESSMENT

Assessment Tool	% Contribution during CO Assessment
Mid Sem Examination	25
End Sem Examination	50
Quiz	10
Assignment	10
Teacher's assessment	05

Continuous Internal Assessment	% Distribution
Mid Sem Examination	50
Quiz and assignment	40
Teacher's assessment	10

Assessment Components	CO1	CO2	CO3	CO4	CO5
Continuous Internal Assessment	Y	Y	Y	Y	
Semester End Examination	Y	Y	Y	Y	Y

INDIRECT ASSESSMENT

1. Student Feedback on Course Outcome

COURSE DELIVERY METHODS

CD1	Lectures by use of boards/LCD projectors/OHP projectors
CD2	Tutorials/Assignments
CD3	Self- learning such as use of NPTEL materials and internets
CD4	Laboratory experiments/teaching aids
CD5	Industrial/guest lectures
CD6	Industrial visits/in-plant training
CD7	Simulation

MAPPING BETWEEN COURSE OUTCOMES AND POS and PSOS

	PO	PSO	PSO	PSO										
	1	2	3	4	5	6	7	8	9	10	11	1	2	3
CO1	3	3	2	2	2	0	0	0	1	1	2			
CO2	3	3	2	2	2	0	0	0	1	1	2			
CO3	3	2	2	2	3	0	0	0	1	1	2			
CO4	3	2	2	2	3	0	0	0	1	1	2			
CO5	3	3	2	3	3	0	0	0	1	1	2			

Grading: No correlation – 0, Low correlation – 1, Moderate correlation – 2, High Correlation – 3

Course Outcomes	Course Delivery Method	
CO1	CD1, CD2, CD3	
CO2	CD1, CD2, CD3	
CO3	CD1, CD2, CD3	
CO4	CD1, CD2, CD3	
CO5	CD1, CD2, CD3	

Course Code: CE24201

Course Title: SOLID MECHANICS

Pre-requisite(s): NA Co- requisite(s): NA

Credits: 4 L: 4 T: 0 P: 0

Class schedule per week: 4

Class: B.Tech.

Semester / Level: III / 2

Branch: CIVIL ENGINEERING

Name of Teacher:

COURSE OBJECTIVES

This course envisions to impart to students:

1.	Develop basic knowledge of strength of material.
2.	Understand behaviour of different materials subjected to simple and complex mechanical stresses.
3.	Analyse structural members under different loading conditions.

COURSE OUTCOMES (COs)

CO1	Understand the fundamental concept of stress, strain and material properties of
	structural elements.
CO2	Understand the concept of transformation of stress and strain and evaluate
	principal stress and strain.
CO3	Evaluate the behaviour and strength of structural elements under flexural loading.
CO4	Evaluate the behaviour and strength of structural elements under torsional action.
CO5	Understand the concept of buckling and evaluate the behaviour and strength of
	structural elements under uni-axial and bi-axial loading.

SYLLABUS

MODULE	(NO. OF LECTURE HOURS)
Module – I: Stress and Strain Definition and concept of stress and strain, Stress at a point, Generalized Hooke's law, Poisson's ratio, Elastic constants and their relationship. Stress-Strain diagram (ductile and brittle), proof stress, true and engineering stress and strain, Thermal stress, Elongation of axially loaded bars.	10
Module – II: Transformation of stress Stress-strain matrix. Plane stress and plane strain condition, Transformation of stress and strain, Principal stress and strain, Maximum shear stress, Mohr's circle, Introduction to theories of Failure –(a) Maximum principal stress theory (Rankine's theory), (b) Maximum shearing stress theory (Tresca's theory), (c) Maximum strain energy theory and (e) Maximum strain theory (St. Venant's theory).	10
Module – III: Bending and Shear Stresses in Beams Bending moment and shear force of statically determinate beams. Euler-Bernoulli Beam theory (section modulus, flexural rigidity), Bending stress distribution, shear stress distribution, Shear centre.	10
Module – IV: Torsion Pure torsion, Assumptions, derivation of torsional equation for circular, rectangular, triangular and I section, torsional rigidity, and polar section modulus, Power transmitted by a shaft.	8
Module – V: Columns and Struts Short and long columns. Euler's Buckling theory, Uni-axial and Bi-axial Loading, Uni-axial and Biaxial bending, Limitations of Euler's theory	8

TEXTBOOKS:

- 1. Elements of Strength of Materials, D.H. Young, S.P. Timoshenko East West Press Pvt. Ltd.
- 2. Introduction to Textbook of Strength of materials by R. K. Bansal, Laxmi publications Pvt. Ltd., New Delhi.
- 3. Advanced Mechanics of Solids by L S Srinath, McGraw-Hill Education India
- 4. Engineering Mechanics of Solids by Egor P. Popov, Pearson India
- 5. Strength of materials by R. Subramanian, Oxford university press, New Delhi

REFERENCE BOOKS:

- 1. Introduction to Strength of Materials, William A. Nash, McGraw Hill.
- 2. Strength of Materials, Andrew Pytel, Ferdinand L. Singer, Harper & Row.
- 3. Mechanics of Materials, Ferdinand P. Beer, E. Russell Johnston Jr., John T. DeWolf, David F. Mazurek, McGraw Hill Education.
- 4. Mechanics of Materials, James M. Gere, Cengage Learning.

GAPS IN THE SYLLABUS (TO MEET INDUSTRY/PROFESSION REQUIREMENTS)

POS MET THROUGH GAPS IN THE SYLLABUS

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

POS MET THROUGH TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS & EVALUATION PROCEDURE

DIRECT ASSESSMENT

Assessment Tool	% Contribution during CO Assessment
Mid Sem Examination	25
End Sem Examination	50
Quiz	10
Assignment	10
Teacher's assessment	05

Continuous Internal Assessment	% Distribution
Md Sem Examination	50
Quiz and assignment	40
Teacher's assessment	10

Assessment Components	CO1	CO2	CO3	CO4	CO5
Continuous Internal Assessment	Y	Y	Y	Y	
Semester End Examination	Y	Y	Y	Y	Y

INDIRECT ASSESSMENT

1. Student Feedback on Course Outcome

COURSE DELIVERY METHODS

CD1	Lectures by use of boards/LCD projectors/OHP projectors
CD2	Assignments
CD3	Self- learning such as use of NPTEL materials and internets

MAPPING BETWEEN COURSE OUTCOMES AND POs and PSOs

	PO	PSO	PSO	PSO										
	1	2	3	4	5	6	7	8	9	10	11	1	2	3
CO1	3	2	0	0	2	0	0	0	0	0	0	3	0	2
CO2	3	3	0	0	2	0	0	0	0	0	0	3	0	2
CO3	3	3	2	0	2	0	0	0	0	0	0	3	2	3
CO4	3	3	2	0	2	0	0	0	0	0	0	3	2	3
CO5	3	3	2	0	2	0	0	0	0	0	0	3	2	3

Grading: No correlation – 0, Low correlation – 1, Moderate correlation – 2, High Correlation – 3

Course Outcomes	Course Delivery Method
CO1	CD1, CD2, CD3
CO2	CD1, CD2, CD3
CO3	CD1, CD2, CD3
CO4	CD1, CD2, CD3
CO5	CD1, CD2, CD3

Course Code: CE24202

Course Title: STRUCTURAL ANALYSIS - I

Pre-requisite(s): NA Co- requisite(s): NA

Credits: 3 L: 3 T: 0 P: 0

Class schedule per week: 3

Class: B.Tech.
Semester / Level: III
Branch: CEE
Name of Teacher:

COURSE OBJECTIVES

This course envisions to impart to students:

1.	Develop basic knowledge of structural analysis so that the students can solve real
	engineering problems. (K1, K2).
2.	Understand behaviour of different kinds of determinate structures subjected to simple
	and complex mechanical loadings. (K1, K2)
3.	Analyse and design safe and sound civil engineering structures. (K3, K4)

COURSE OUTCOMES (COs)

CO1	Evaluate the stability and determinacy of a given structure. (K1, K2, K3)
CO2	Evaluate safety of a proposed determinate structure before construction and
	manufacturing. (K4)
CO3	Evaluate the behaviour of determinate structures under the action of complex static
	loads. (K1, K2, K3, K4)
CO4	Evaluate the behaviour of determinate structures under the action of moving loads.
	(K1, K2, K3, K4)
CO5	Evaluate deflections in a given determinate structure. (K3, K4)

SYLLABUS

MODULE	(NO. OF LECTURE HOURS)
Module – I: Introduction Structure. Structural Elements, Types of Structures. Idealized structure. Equilibrium Static Equation. Principle of superposition. Determinacy and Stability.	8
Module – II: Analysis of statically determinate trusses and beams Trusses: Method of joints, Method of sections, Zero force members. Beams: Shear Force (SF) and Bending Moments (BM) diagrams under concentrated and uniformly distributed load (UDL) and their combinations with or without having internal hinges.	8
Module – III: Analysis of statically determinate cables and arches Cables subjected to concentrated loads and UDL. Catenary curve. Arches: Types of arches. Three hinged arch: Eddy's theorem; BM diagrams, Normal thrust and Radial shear at any c/s.	8
Module – IV: Deflection and Influence line diagrams for beams Deflection: Elastic curve, Double integration method, Moment area method, Conjugate beam method. Influence Line Diagram (ILD) for reaction, shear force, and bending moment for beams; Absolute maximum shear and moment in beam; ILD for trusses, Muller-Breslau principle for qualitative ILD.	8
Module – V: Energy methods External work: Force and Moment, Strain energy: Axial, Shear, Bending and Torsion. Maxwell-Betti law of reciprocal deflection, Principle of virtual work and Castiglano's Theorems: Application to determinate structures.	8

TEXTBOOKS:

- 1. Structural Analysis by Hibbeler, R.C. Pearson Publications.
- 2. Basic Structural Analysis by Reddy, C.S. The McGraw Hill Publications.

REFERENCE BOOKS:

- 1. Fundamentals of Structural Analysis Leet, K.M. McGraw Hill Publications.
- 2. Theory of Structures by Timoshekno S. P. & Young.
- 3. Mechanics of materials, by Ferdinand P. Beer and others, Tata McGraw Hill Publications.

GAPS IN THE SYLLABUS (TO MEET INDUSTRY/PROFESSION REQUIREMENTS)

POS MET THROUGH GAPS IN THE SYLLABUS

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

POS MET THROUGH TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS & EVALUATION PROCEDURE

DIRECT ASSESSMENT

Assessment Tool	% Contribution during CO Assessment
Mid Sem Examination	25
End Sem Examination	50
Quiz	10
Assignment	10
Teacher's assessment	05

Continuous Internal Assessment	% Distribution
Mid Sem Examination	50
Quiz and assignment	40
Teacher's assessment	10

Assessment Components	CO1	CO2	CO3	CO4	CO5
Continuous Internal Assessment	Y	Y	Y	Y	
Semester End Examination	Y	Y	Y	Y	Y

INDIRECT ASSESSMENT

1. Student Feedback on Course Outcome

COURSE DELIVERY METHODS

CD1	Lectures by use of boards/LCD projectors/OHP projectors
CD2	Tutorials/Assignments
CD3	Self- learning such as use of NPTEL materials and internets

MAPPING BETWEEN COURSE OUTCOMES AND POs and PSOs

	PO	РО	PSO	PSO	PSO									
	1	2	3	4	5	6	7	8	9	10	11	1	2	3
CO1	3	3	1					2	1			2		
CO2	3	3	1					2	1				2	
CO3	3	3	1					2	1					2
CO4	3	3	1					2	1			2	2	
CO5	3	3	1					2	1					2

Grading: No correlation – 0, Low correlation – 1, Moderate correlation – 2, High Correlation – 3

Course Outcomes	Course Delivery Method
CO1	CD1, CD2, CD3
CO2	CD1, CD2, CD3
CO3	CD1, CD2, CD3
CO4	CD1, CD2, CD3
CO5	CD1, CD2, CD3

Course Code: CE24203

Course Title: FLUID MECHANICS

Pre-requisite(s): NA Co- requisite(s): NA

Credits: 4 L: 4 T: 0 P: 0

Class schedule per week: 4

Class: B.Tech.

Semester / Level: III / 2

Branch: CIVIL ENGINEERING

Name of Teacher:

COURSE OBJECTIVES

This course envisions to impart to students:

1.	To get introduced about the concepts of fluid mechanics useful for civil engineering
	applications.
2.	To apply the concepts of fluid mechanics to analyse and solve engineering problems involving fluids such as flow in pipes, open channels, jets, turbines and pumps, hydraulic structures, rivers and in sub-surface both at static and dynamic conditions.
3.	To understand and analyse various types of flows in open channels.
4.	To study and design pumps and hydraulic turbines.

COURSE OUTCOMES (COs)

CO1	Understand the fluid properties and solve the engineering problems using principles of
	fluid statics. (K1, K2, K3)
CO2	Solve the engineering problems using principles of fluid kinematics and fluid
	dynamics. (K1, K2, K3)
CO3	Solve engineering problems using various applications of fluid dynamics. (K1, K2,
	K3)
CO4	Apply the principles of fluid mechanics to investigate open channel flows. (K1, K2,
	K3)
CO5	Analyse and design pumps and hydraulic turbines. (K1, K2, K3)

SYLLABUS

MODULE	(NO. OF LECTURE HOURS)
Module – I: Fluid Properties and Fluid Statics Fluid properties: Mass density, Specific weight, Specific gravity, Viscosity, Vapour pressure, Bulk modulus of elasticity, Surface tension, Capillarity Fluid Statics: Fluid pressure, Measurement of pressure, Manometers, Hydrostatic forces on surfaces, Horizontal plane surface, Vertical plane surface, Inclined plane surface, Curved surfaces, Buoyancy and floatation, Metacentre and metacentric height	10
Module – II: Fluid Kinematics and Fluid Dynamics Fluid kinematics: Velocity, Types of flow, Streamlines, Continuity equation, Acceleration, Velocity potential, Stream function, Flownet Fluid dynamics: Equation of motion, Euler's equation of motion, Bernoulli's energy equation, Kinetic energy correction factor, Applications of Bernoulli's energy equation, Venturimeter, Orificemeter, Pitot tube	10
Module – III: Fluid Dynamics (Continued) Fluid dynamics (continued): Impulse momentum equation, Momentum correction factor, Applications of impulse momentum equations, Force on a pipe bend, Orifice and mouthpiece, Notch and weir Laminar flow and turbulent flow: Laminar flow, Steady laminar flow in circular pipes, Hazen-Poiseuille equation, Laminar flow between parallel plates, Darcy's law, Stoke's law, Turbulent flow, Velocity distribution, Darcy-Weisbach equation, Flow through pipes Drag and lift: Boundary layer, Empirical equations for laminar and turbulent boundary layers, Drag on sphere, Drag on cylinder, Drag on flat plate, Drag on airfoil, Lift on cylinder, Lift on airfoil Dimensional analysis: Buckingham π Method, Dimensionless numbers, Models	10
Module – IV: Open Channel Flow Uniform Flow: Classification of channels, Types of flow, Geometrical properties of channel sections, Velocity distribution, Uniform flow, Chezy's formula, Manning's formula, Most economical channel section, Specific energy and critical depth, Specific force, Critical flow, Channel transitions, Measuring flumes, Estimation of mean velocity and discharge in channels Non-uniform flow: Gradually varied flow, Dynamic equation of GVF, Classification of channel slopes and surface profiles, Practical examples, Integration of GVF equation, Step method, Graphical method, Direct integration, Hydraulic jump, Assumptions, Hydraulic jump in rectangular channels, Loss of energy, Types of hydraulic jump, Applications of hydraulic jump, Waves and surges in open channels	10
Module – V: Hydraulic Machines Pump: Types of pumps, Reciprocating pump, Components and working, Indicator diagram, Centrifugal pump, Impeller, Priming, Minimum starting speed, Specific speed, Characteristic curves, Hydraulic turbines: Heads and efficiencies, Classification of turbines, Pelton turbine, Francis turbine, Kaplan turbine, Governing of turbines, Unit quantities, Specific speed, Characteristic curves, Cavitation, Selection of turbines	10

TEXTBOOKS:

- 1. Hydraulics and Fluid Machines, P. N. Modi and S. H. Seth, Standard Book House.
- 2. Fluid Mechanics and Hydraulic Machines, R. K. Bansal, Laxmi Publications.
- 3. Flow in Open Channels, K. Subramanya, Tata McGraw Hills.
- 4. Hydraulic Machines, Dr. Jagdish Lal, Metropolitan Book Company.
- 5. Fluid Mechanics, V. L. Streeter and E. B. White, McGraw Hill, New York.
- 6. Experimental Fluid Mechanics, Vol. 1, G. L. Asawa, Nemchand and Bros, Roorkee.
- 7. Flow through Open Channels, K.G. Ranga Raju, Tata McGraw Hills.

REFERENCE BOOKS:

- 1. Open Channel Hydraulics, V. T. Chow McGraw Hill.
- 2. Open Channel Hydraulics, French, McGraw Hill.
- 3. Fluid Machines through Problems, R. J. Garde, New Age International.

GAPS IN THE SYLLABUS (TO MEET INDUSTRY/PROFESSION REQUIREMENTS)

POS MET THROUGH GAPS IN THE SYLLABUS

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

POS MET THROUGH TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS & EVALUATION PROCEDURE

DIRECT ASSESSMENT

Assessment Tool	% Contribution during CO Assessment
Mid Sem Examination	25
End Sem Examination	50
Quiz	10
Assignment	10
Teacher's Assessment	05

Continuous Internal Assessment	% Distribution
Mid Sem Examination	50
Quiz and Assignment	40
Teacher's Assessment	10

Assessment Components	CO1	CO2	CO3	CO4	CO5
Continuous Internal Assessment	Y	Y	Y	Y	
Semester End Examination	Y	Y	Y	Y	Y

INDIRECT ASSESSMENT

1. Student Feedback on Course Outcome

COURSE DELIVERY METHODS

CD1	Lecture by use of boards/LCD projectors/OHP projectors			
CD2	Tutorials/Assignments			
CD3	Seminars			
CD4	Mini projects/Projects			
CD5	Laboratory experiments/teaching aids			
CD6	Industrial/guest lectures			
CD7	Industrial visits/in-plant training			
CD8	Self- learning such as use of NPTEL materials and internets			
CD9	Simulation			

MAPPING BETWEEN COURSE OUTCOMES AND POs and PSOs

	РО	PO	РО	PSO	PSO	PSO								
	1	2	3	4	5	6	7	8	9	10	11	1	2	3
CO1	3	3	3	2	1	0	0	0	1	0	0	3	2	1
CO2	3	3	3	2	1	0	0	0	1	0	0	3	2	1
CO3	3	3	3	2	1	0	0	0	1	0	0	3	2	1
CO4	3	3	3	2	1	0	0	0	1	0	0	3	2	1
CO5	3	3	3	2	1	0	0	0	1	0	0	3	2	1

 $Grading: No\ correlation-0, Low\ correlation-1, Moderate\ correlation-2, High\ Correlation-3$

Course Outcomes	Course Delivery Method
CO1	CD1, CD2, CD3
CO2	CD1, CD2, CD3
CO3	CD1, CD2, CD3
CO4	CD1, CD2, CD3
CO5	CD1, CD2, CD3

Course code: CE 24204

Course title: BUILDING MATERIALS AND CONSTRUCTION

Pre-requisite(s): NA
Co- requisite(s): NA

Credits: 3 L:3 T:0 P:0

Class schedule per week: 3
Class: B.Tech.
Semester / Level: III / 2

Branch: CIVIL ENGINEERING

Name of Teacher:

COURSE OBJECTIVES

This course envisions to impart to students to:

1.	To know the various types of building materials used in current construction practices and
	their associated manufacturing processes and properties (K1).
2.	To understand the choices designers make in choosing building materials based on
3.	properties of these materials (K1, K2)
4.	To get exposed to various quality control aspects of the civil engineering materials by
	performing different lab test on materials (K1, K2)

COURSE OUTCOMES (COs)

CO1	Able to explain the manufacturing process, physical and chemical properties and uses of			
	various building materials (K1).			
CO2	Able to analyze the suitability of different building materials and significance in using those			
	materials in relation with building's function (K1, K2).			
CO3	Able to perform quality control tests on different construction materials (K1, K2).			
CO4	Able to plan and execute construction of various components of substructure and			
	superstructure (K1, K2).			

SYLLABUS

MODULE	(NO. OF LECTURE HOURS)
Module – I: Building Stones, Bricks Classification of rocks, Varieties of Indian stones, Quarrying blasting, Dressings of stones, Characteristics of good building stones, uses, Testing and Preservation of stones, Constituents of brick earth and their properties, Manufacture of bricks, clamps & kilns, types of brick, defects in bricks, tests on bricks.	8
Module – II: Limes, Cements, Mortar, Timber Lime – Types, properties and uses. Cement – Composition, Varieties, Properties, Methods of manufacture; Tests on cement. Mortar-Lime mortar, Cement mortar, Surkhi mortar, Mud mortar, Gypsum and Plaster of Paris, Varieties of Indian timber, Characteristics and suitability for different uses, Defects in timber, Diseases and decay in timber, Preservation and Seasoning, Veneers, Fiber boards, Block boards; modern materials like fibre-reinforced plastics and introduction to composites.	8
Module – III: Foundation, Masonry Foundations: functions and different types, basic terminologies associated with stone and brick masonry, types of stone masonry and brick masonry bonds, brick laying, types of walls, load bearing walls, design considerations; cavity walls: general features and construction; partition walls: brick, concrete and glass partitions.	8
Module – IV: Concrete Technology, DPC and anti-termite works Concrete constituents, properties of concrete, batching, mixing, transporting, placing, compacting, curing of concrete; tests for quality control, different concrete mixes and uses; reinforcements in RCC; Design of Concrete Mixes: proportioning of aggregates and methods of mix design. Damp proofing: cause and effects of damping; materials and methods for damp proofing – DPC treatment. Anti-termite treatment.	8
Module – V: Plastering and pointing, plumbing types Types of mortar for plastering, terminology, tools, methods of plastering, defects in plastering; methods of pointing. Plumbing - water supply service connection for buildings, different types of traps, types of drainage pipes and systems of plumbing for wastewater drainage.	8

TEXTBOOKS:

- 1. Duggal S. K.: Building Materials (New Age International Publishers)
- 2. Punmia B.C., Jain A.K. and Jain A.K.: Building Construction (Laxmi Publications Pvt. Ltd)
- 3. Arora S.P. and Bindra S.P.: A Text Book of Building Construction (Dhanpat Rai Publications)

GAPS IN THE SYLLABUS (TO MEET INDUSTRY/PROFESSION REQUIREMENTS)

POS MET THROUGH GAPS IN THE SYLLABUS

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

POS MET THROUGH TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS & EVALUATION PROCEDURE

DIRECT ASSESSMENT

Assessment Tool	% Contribution during CO Assessment
Mid Sem Examination	25
End Sem Examination	50
Quiz	10
Assignment	10
Teacher's Assessment	05

Continuous Internal Assessment	% Distribution
Mid Sem Examination	50
Quiz and Assignment	40
Teacher's Assessment	10

Assessment Components	CO1	CO2	CO3	CO4	CO5
Continuous Internal Assessment	Y	Y	Y	Y	
Semester End Examination	Y	Y	Y	Y	Y

INDIRECT ASSESSMENT

- 1. Student Feedback on Faculty
- 2. Student Feedback on Course Outcome

COURSE DELIVERY METHODS

CD1	Lecture by use of boards/LCD projectors/OHP projectors
CD2	Tutorials/Assignments
CD3	Seminars
CD4	Mini projects/Projects
CD5	Laboratory experiments/teaching aids
CD6	Industrial/guest lectures
CD7	Industrial visits/in-plant training
CD8	Self- learning such as use of NPTEL materials and internets
CD9	Simulation

MAPPING BETWEEN COURSE OUTCOMES AND POS and PSOS

	РО	РО	РО	РО	РО	РО								
	1	2	3	4	5	6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	2	1			1	2	2	1			2	3	2	3
CO2	2	1				2	2			1	2	3	3	3
CO3		1			1	2		1		1		3	3	3
CO4	2	1	2	1			2	1		2		3	3	3

Grading: No correlation -0, Low correlation -1, Moderate correlation -2, High correlation -3

Course Outcomes	Course Delivery Method
CO1	CD1, CD2 and CD8
CO2	CD1, CD2 and CD8
CO3	CD1, CD2, CD5 and CD8
CO4	CD1, CD2, CD6, CD7 and CD8

Course Code: MT24131

Course Title: UHV2: UNDERSTANDING HARMONY

Pre-requisite(s): NIL Co- requisite(s): NIL

Credits: 3 (L: 3 T: 0 P: 0)

Class schedule per week: 3

Class: B. Tech.

Semester / Level: THIRD Branch: Biotechnology

Name of Teacher:

COURSE OBJECTIVES

This course envisions to impart to students to:

1.	Develop a holistic perspective based on self- exploration about themselves (human
	being), family,
	society and nature/existence.
2.	Understand (or developing clarity) of the harmony in the human being, family, society
	and nature/existence
3.	Strengthen of self-reflection
4.	Develop the commitment and courage to act

COURSE OUTCOMES (COs)

CO1	At the end of the course, students are expected to become more aware of themselves,
	and their surroundings (family, society, nature); they would become more responsible in
	life, and in handling
	problems

SYLLABUS

MODULE	(NO. OF LECTURE HOURS)
Module – I: Course Introduction - Need, Basic Guidelines, Content and Process for Value Education: 1.Purpose and motivation for the course, recapitulation from Universal Human Values-I. 2.Self-Exploration—what is it? - Its content and process; 'Natural Acceptance' and Experiential Validation- as the process for self-exploration. 3.Continuous Happiness and Prosperity- A look at basic Human Aspirations. 4.Right understanding, Relationship and Physical Facility- the basic requirements for fulfilment of aspirations of every human being with their correct priority. 5.Understanding Happiness and Prosperity correctly- A critical appraisal of the current scenario 6.Method to fulfil the above human aspirations: understanding and living in harmony at various levels. Include practice sessions to discuss natural acceptance in human being as the innate acceptance for living with responsibility (living in relationship, harmony and co- existence) rather than as arbitrariness in choice based on liking-disliking.	8
Module – II:	
Understanding Harmony in the Human Being - Harmony in Myself! 1.Understanding human being as a co-existence of the sentient 'I' and the material 'Body'. 2.Understanding the needs of Self ('I') and 'Body' - happiness and physical facility. 3.Understanding the Body as an instrument of 'I' (I being the doer, seer and enjoyer). 4.Understanding the characteristics and activities of 'I' and harmony in 'I'. 5.Understanding the harmony of I with the Body: Sanyam and Health; correct appraisal of Physical needs, meaning of Prosperity in detail. 6.Programs to ensure Sanyam and Health. Include practice sessions to discuss the role others have played in making material goods available tome. Identifying from one's own life. Differentiate between prosperity and	8
accumulation. Discuss program for ensuring health vs dealing with disease. Module – III:	
Understanding Harmony in the Family and Society- Harmony in Human- Human Relationship:	
1.Understanding values in human-human relationship; meaning of Justice (nine universal values in relationships) and program for its fulfilment to ensure mutual happiness; Trust and Respect as the foundational values of relationship 2.Understanding the meaning of Trust; Difference between intention and competence 3.Understanding the meaning of Respect, Difference between respect and differentiation; the other salient values in relationship 4.Understanding the harmony in the society (society being an extension of family): Resolution,	8
Prosperity, fearlessness (trust) and co-existence as comprehensive Human Goals	
5. Visualizing a universal harmonious order in society- Undivided Society, Universal Order-from family to world family.	
Include practice sessions to reflect on relationships in family, hostel and institute as extended family, real life examples, teacher-student relationship, goal of education etc. Gratitude as a universal value in relationships. Discuss with scenarios. Elicit examples from students' lives.	
Module – IV:	

	1
Understanding Harmony in the Nature and Existence - Whole existence as Coexistence:	
1.Understanding the harmony in the Nature	
2.Interconnectedness and mutual fulfilment among the four orders of nature- recyclability and	
self-regulation in nature.	8
3.Understanding Existence as Co-existence of mutually interacting units in all-pervasive	
space.	
4. Holistic perception of harmony at all levels of existence.	
5.Include practice sessions to discuss human being as cause of imbalance in nature (film	
"Home" can be used), pollution, depletion of resources and role of technology etc.	
Module – V	
Implications of the above Holistic Understanding of Harmony on Professional Ethics:	
1. Natural acceptance of human values	
2.Definitiveness of Ethical Human Conduct	8
3. Basis for Humanistic Education, Humanistic Constitution and Humanistic Universal Order	
4. Competence in professional ethics: a. Ability to utilize the professional competence for	
augmenting universal human order b. Ability to identify the scope and characteristics of	
people friendly and eco-friendly production systems, c. Ability to identify and develop	
appropriate technologies and management patterns for above production systems.	
5. Case studies of typical holistic technologies, management models and production systems	
6.Strategy for transition from the present state to Universal Human Order:	
a)At the level of individual: as socially and ecologically responsible engineers, technologists	
and managers	
b)At the level of society: as mutually enriching institutions and organizations	
7.Sum up.	
Include practice Exercises and Case Studies will be taken up in Practice (tutorial) Sessionse.g.	
to discuss the conduct as an engineer or scientist etc.	
to discuss the conduct as an engineer of scientist etc.	

TEXTBOOKS:

1. Human Values and Professional Ethics by R R Gaur, R Sangal, G P Bagaria, Excel Books, New Delhi, 2010

REFERENCE BOOKS:

- 1. Jeevan Vidya: EkParichaya, A Nagaraj, Jeevan Vidya Prakashan, Amarkantak, 1999.
- 2. Human Values, A.N. Tripathi, New Age Intl. Publishers, New Delhi, 2004.
- 3. The Story of Stuff (Book).
- 4. The Story of My Experiments with Truth by Mohandas Karamchand Gandhi.
- 5. Small is Beautiful E. F Schumacher.
- 6. Slow is Beautiful Cecile Andrews
- 7. Economy of Permanence J C Kumarappa
- 8. Bharat Mein Angreji Raj PanditSunderlal
- 9. Rediscovering India by Dharampal
- 10. Hind Swaraj or Indian Home Rule by Mohandas K. Gandhi
- 11. India Wins Freedom Maulana Abdul Kalam Azad
- 12. Vivekananda Romain Rolland (English)

GAPS IN THE SYLLABUS (TO MEET INDUSTRY/PROFESSION REQUIREMENTS)

POS MET THROUGH GAPS IN THE SYLLABUS

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

POS MET THROUGH TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS & EVALUATION PROCEDURE

DIRECT ASSESSMENT

Assessment Tool	% Contribution during CO Assessment
Mid Sem Examination	25
End Sem Examination	50
Quiz	10
Assignment	10
Teacher's assessment	05

Continuous Internal Assessment	% Distribution
Mid Sem Examination	50
Quiz and assignment	40
Teacher's assessment	10

Assessment Components	CO1
Continuous Internal Assessment	Y
Semester End Examination	Y

INDIRECT ASSESSMENT

1. Student Feedback on Course Outcome

COURSE DELIVERY METHODS

CD1	Lectures by use of boards/LCD projectors/OHP projectors
	Tutorials/Assignments
CD3	Self- learning such as use of NPTEL materials and internets
CD4	Seminar
CD5	
CD6	
CD7	

MAPPING BETWEEN COURSE OUTCOMES AND POs and PSOs

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PSO 1	PSO 2	PSO 3
CO1			2	1	1	3	3	3	2	2	1	1	2	2

Grading: No correlation – 0, Low correlation – 1, Moderate correlation – 2, High Correlation – 3

Course Outcomes	Course Delivery Method
CO1	CD1, CD2, CD3, CD4

Course Code: MA24202

Course Title: NUMERICAL METHODS LABORATORY

Pre-requisite(s): MA24201 Numerical Methods

Co- requisite(s): NA

Credits: 1 L: 0 T: 0 P: 2

Class schedule per week: 2

Class: B.Tech.

Semester / Level: III / 2

Branch: All Name of Teacher:

COURSE OBJECTIVES

This course envisions to impart to students to:

1								
1.	execute appropriate numerical methods to solve algebraic and transcendental							
	equations correct up to some certain level of significance							
2.	solve linear system of equations using direct and iterative methods							
3.	approximate a function by polynomial using various interpolation techniques along							
	with computation of derivatives and integrals							
4.	compute numerical solutions of initial value problems							
5.	handle numerical problems efficiently through programming languages like C, C++							
	etc. on computer							

COURSE OUTCOMES (COs)

CO1	employ numerical techniques to solve algebraic and transcendental equations						
CO2	analyze and implement numerical methods for solving systems of linear equations						
CO3	use interpolation methods to approximate functions in data analysis and modeling						
CO4	compute derivatives and definite integrals using numerical differentiation and						
	integration methods						
CO5	develop solutions of ordinary differential equations using appropriate numerical						
	schemes						

SYLLABUS (List of experiments)

- 1. Write a program to find a simple root of f(x) = 0 using Bisection method. Read the end points of the interval in which the root lies, maximum number of iterations and error tolerance eps.
- 2. Write a program to find a simple root of f(x) = 0 using Regula-Falsi method. Read the end points of the interval in which the root lies, maximum number of iterations and error tolerance eps.
- 3. Write a program to find a simple root of f(x) = 0 using Secant method. Read the end points of the interval in which the root lies, maximum number of iterations and error tolerance eps.
- 4. Write a program to find a simple root of f(x) = 0 using Newton Raphson method. Read any initial approximation, maximum number of iterations and error tolerance eps.
- 5. Write a program to find the solution of a system of linear equations using Gauss elimination method.
- 6. Write a program to find the solution of a system of linear equations using Gauss-Jordan method.
- 7. Write a program to find the solution of a system of linear equations using Jacobi method.
- 8. Write a program to find the solution of a system of linear equations using Gauss-Seidel method.
- 9. Write a program to approximate the function using Lagrange interpolation formula.
- 10. Write a program to approximate the function using Newton divided difference formula.
- 11. Write a program to approximate the function using Newton's forward and backward interpolation formulae.
- 12. Write a program to evaluate the integral using Trapezoidal rule.
- 13. Write a program to evaluate the integral using Simpson's one-third and three-eighth rules.
- 14. Write a program to solve an IVP, $\frac{dy}{dx} = f(x, y), y(x_0) = y_0$ using Euler method.

 15. Write a program to solve an IVP, $\frac{dy}{dx} = f(x, y), y(x_0) = y_0$ using the classical Runge-Kutta fourth order method.

TEXTBOOKS:

- 1. Jain M.K, S.R.K. Iyengar and R.K. Jain, Numerical Methods for Scientific and Engineering Computation, New Age Publications, 2004.
- 2. S.S. Sastry, Introductory Methods of Numerical Analysis, PHI, Fourth Edition, 2005.
- 3. Y. Kanetkar, Let Us C, BPB Publications, Fifteenth Edition, 2016.

REFERENCE BOOKS:

- 1. S.C. Chapra and R. P. Canale, Numerical Methods for Engineers, McGraw Hill, Seventh Edition, 2014.
- 2. R. W. Hamming, Numerical Methods for Scientists and Engineers, Second Edition, Dover Publications Inc. 1987.
- 3. H. Schildt, C++: The Complete Reference, McGraw-Hill Education, Fourth Edition, 2017.

GAPS IN THE SYLLABUS (TO MEET INDUSTRY/PROFESSION REQUIREMENTS) --

POS MET THROUGH GAPS IN THE SYLLABUS --

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN ---

POS MET THROUGH TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN --

COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS & EVALUATION PROCEDURE

DIRECT ASSESSMENT

Assessment Tool	% Contribution during CO Assessment
Lab Journal	30
Lab quizzes	20
Progressive viva	20
End Sem Examination	30

Continuous Internal Assessment	60 % Distribution
Lab Journal	30
Lab quiz	10
Progressive viva	20

Assessment Components	CO1	CO2	CO3	CO4	CO5
Continuous Internal Assessment	Y	Y	Y	Y	Y
Semester End Examination	Y	Y	Y	Y	Y

INDIRECT ASSESSMENT

1. Student Feedback on Course Outcome

COURSE DELIVERY METHODS

CD1	Lectures by use of boards/LCD projectors/OHP projectors
CD2	Tutorials/Assignments
CD3	Self- learning such as use of NPTEL materials and internets
CD4	Laboratory experiments/teaching aids
CD5	Industrial/guest lectures
CD6	Industrial visits/in-plant training
CD7	Simulation

MAPPING BETWEEN COURSE OUTCOMES AND POs and PSOs

	PO	PSO	PSO	PSO										
	1	2	3	4	5	6	7	8	9	10	11	1	2	3
CO1	3	2	1	2	3	0	0	1	1	1	2			
CO2	3	3	2	2	3	0	0	1	1	1	2			
CO3	3	2	2	2	3	0	0	1	1	1	2			
CO4	3	2	2	2	3	0	0	1	1	1	2			
CO5	3	3	2	3	3	0	0	1	1	2	3			

Grading: No correlation – 0, Low correlation – 1, Moderate correlation – 2, High Correlation – 3

Course Outcomes	Course Delivery Method	
CO1	CD2, CD3	
CO2	CD2, CD3	
CO3	CD2, CD3	
CO4	CD2, CD3	
CO5	CD2, CD3	

Course Code: CE 24205

Course Title: CIVIL ENGINEERING DRAWING

Pre-requisite(s):

Co- requisite(s): CE24204

CREDITS: 2 L: 0 T: 0 P: 4

Class schedule per week: 4

Class: B. Tech

Semester / Level: III / 2

Branch: CIVIL ENGINEERING

Name of Teacher:

COURSE OBJECTIVES

1.	To introduce types of drawing and standard practices in drawing different					
	components of the building.					
2.	To introduce the students to draft the plan, elevation, and sectional views of					
	buildings following development and control rules, satisfying orientation and					
	functional requirements.					

COURSE OUTCOMES

CO1	Apply various types of scales as per the need for preparing various types of
	drawings.
CO2	Prepare, read, and interpret, component drawing, building drawings, and layout.
CO3	Execute and supervise the construction work for buildings based on provided
	Engineering drawings.
CO4	Analyze types of staircase, plan and section details of buildings.
CO5	Prepare detailed drawings of water supply and drainage connections to the
	buildings.

SYLLABUS (List of experiments)

- 1. Types of drawing- Index map, key plan, village map, site plan, layout plan with appropriate scale & uses. Sizes of various standard papers.
- 2. Symbols of Engineering materials, Electrical Installations, Water supply, and Sanitary fixtures.
- 3. Different masonry bonds.
- 4. Load-bearing wall and shallow Foundations.
- 5. Plan, Elevation and Section of the residential building.
- 6. Types of staircase, Plan and Section details.
- 7. Detailed drawings of water supply and drainage connections to the building.
 - a) The layout of Single Storey Building Drainage System
 - b) The layout of Water supply in Single Storey Building
 - c) The layout of the Drainage system in Multi storeyed Building
- 8. Student Activity: Visit a construction site and collect drawings for the project

TEXTBOOKS:

- 1. Building Planning & Drawing Kumaraswamy N., Kameswara Rao A., Charotar Publishing
- 2. Civil Engg. Drawing and House Planning Verma B. P., Khanna Publishers
- 3. Building Drawing & Detailing Balagopal & T.S. Prabhu, Spades Publishers
- 4. Building Planning and Drawing S.S. Bhavikatti & M.V Chitawadagi, I.K International Publishing House Pvt.Ltd

REFERENCE BOOKS:

1. National Building Code, BIS, New Delhi

Gaps in the syllabus (to meet Industry/Profession requirements) POs met through Gaps in the Syllabus Topics beyond syllabus/Advanced topics/Design POs met through Topics beyond syllabus/Advanced topics/Design

Course Delivery methods	
Lecture by use of boards/LCD projectors/OHP projectors	
Tutorials/Assignments	
Seminars	
Mini projects/Projects	
Laboratory experiments/teaching aids	✓
Industrial/guest lectures	
Industrial visits/in-plant training	✓
Self- learning such as use of NPTEL materials and internets	✓
Simulation	

Course Outcome (CO) Attainment Assessment tools & Evaluation procedure

Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Progressive Evaluation Marks	60
End Examination Marks	40

Assessment Components	CO1	CO2	CO3	CO4	CO5
Progressive Evaluation	√	✓	✓	✓	✓
End Sem Examination	√	✓	✓	✓	✓

Indirect Assessment –

- 1. Student feedback on teaching quality and teaching methods adopted
- 2. Student feedback on course syllabus and course outcome

Mapping of Course Outcomes onto Program Outcomes and Program Specific Outcomes

TI S		Program Outcomes											Program Specific Outcome		
Course Outcome	1	2	3	4	5	6	7	8	9	10	11	1	2	3	
1	3	2	2	3	2	3	2	3	2	3	3	3	2	3	
2	3	3	2	3	2	3	2	3	3	3	3	3	3	3	
3	3	3	2	2	3	3	2	3	3	3	3	3	3	3	
4	3	3	3	3	2	3	2	2	3	2	3	2	3	3	
5	3	3	3	2	3	2	2	2	2	2	3	2	2	3	

Mapping Between COs and Course Delivery (CD) methods											
CD	Course Delivery methods		Course Outcome	Course Delivery Method							
CD1	Lecture by use of boards/LCD projectors/OHP projectors		CO1	CD5, CD8							
CD2	Tutorials/Assignments		CO2	CD5, CD8							
CD3	Seminars		CO3	CD4, CD5, CD7, CD8							
CD4	Mini projects/Projects										
CD5	Laboratory experiments/teaching aids										
CD6	Industrial/guest lectures										
CD7	Industrial visits/in-plant training										
CD8	Self-learning such as use of NPTEL materials and internets										
CD9	Simulation										

Course Code: CE24206

Course Title: FLUID MECHANICS LABORATORY

Pre-requisite(s): NA Co- requisite(s): NA

Credits: 1 L: 0 T: 0 P: 2

Class schedule per week: 2

Class: B.Tech.

Semester / Level: III / 2

Branch: CIVIL ENGINEERING

Name of Teacher:

COURSE OBJECTIVES

This course enables the students to:

1.	To understand the basic concepts of fluid statics and fluid kinematics.
2.	To find the coefficient of discharge of various flow measuring devices.
3.	To study various applications of the basic concepts of fluid dynamics such as
	Bernoulli's energy equation and impulse momentum equation.
4.	To study and draw characteristic curves of hydraulic machines like pumps and
	turbines.

COURSE OUTCOMES (COs)

CO1	Understand and perform experiments based on the basic concepts of fluid statics and
	fluid kinematics. (K1, K2, K3)
CO2	Able to calibrate various discharge measuring devices and use them for determination
	of discharge. (K1, K2, K3)
CO3	Apply the basic concepts of fluid dynamics and understand their applications in real
	life situations. (K1, K2, K3)
CO4	Understand the fluid mechanics and working of pumps and draw their characteristic
	curves. (K1, K2, K3)
CO5	Understand the fluid mechanics and working of hydraulic turbines and draw their
	characteristic curves. (K1, K2, K3)

SYLLABUS (List of Experiments: A minimum ten experiments may be selected from the list given below)

- 1. Hydrostatic force and centre of pressure.
- 2. Metacentric height of a floating vessel.
- 3. Verification of Bernoulli's energy equation.
- 4. Coefficient of discharge of venturimeter, orificemeter, and rotameter.
- 5. Water surface profile for forced vortex motion.
- 6. Coefficient of velocity, coefficient of contraction, and coefficient of discharge of an orifice.
- 7. Coefficient of discharge of a mouthpiece.
- 8. Coefficient of discharge of a triangular notch.
- 9. Reynold's experiment.
- 10. Friction factor for flow through commercial pipes.
- 11. Impact of jet.
- 12. Reciprocating pump.
- 13. Centrifugal pump.
- 14. Pelton turbine.
- 15. Francis turbine.
- 16. Kaplan turbine.

REFERENCE BOOKS:

- 1. Hydraulics and Fluid Machines, P. N. Modi and S. H. Seth, Standard Book House.
- 2. Hydraulic Machines, Dr. Jagdish Lal, Metropolitan Book Company.
- 3. Fluid Mechanics, V. L. Streeter and E. B. White, McGraw Hill, New York.
- 4. Experimental Fluid Mechanics, G. L. Asawa, Nemchand and Bros, Roorkee.

GAPS IN THE SYLLABUS (TO MEET INDUSTRY/PROFESSION REQUIREMENTS)

POS MET THROUGH GAPS IN THE SYLLABUS

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

POS MET THROUGH TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS & EVALUATION PROCEDURE

DIRECT ASSESSMENT

Assessment Tool	% Contribution during CO Assessment
Lab Journal	30
Lab Quizzes	20
Progressive Viva	20
End Sem Examination	30

Continuous Internal Assessment	% Distribution
Lab Journal	50
Lab Quiz	16.7
Progressive Viva	33.3

Assessment Components	CO1	CO2	CO3	CO4	CO5
Continuous Internal Assessment	Y	Y	Y	Y	Y
Semester End Examination	Y	Y	Y	Y	Y

INDIRECT ASSESSMENT

1. Student Feedback on Course Outcome

COURSE DELIVERY METHODS

CD1	Lecture by use of boards/LCD projectors/OHP projectors
CD2	Tutorials/Assignments
CD3	Seminars
CD4	Mini projects/Projects
CD5	Laboratory experiments/teaching aids
CD6	Industrial/guest lectures
CD7	Industrial visits/in-plant training
CD8	Self-learning such as use of NPTEL materials and internets
CD9	Simulation

MAPPING BETWEEN COURSE OUTCOMES AND POs and PSOs

	РО	РО	PO	PO	РО	PO	РО	PO	РО	РО	РО	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	1	2	3
CO1	3	2	2	2	1	0	0	3	2	0	0	3	1	1
CO2	3	2	2	2	1	0	0	3	2	0	0	3	2	1
CO3	3	2	2	2	1	0	0	3	2	0	0	3	2	1
CO4	3	2	2	2	1	0	0	3	2	0	0	3	2	1
CO5	3	2	2	2	1	0	0	3	2	0	0	3	2	1

Grading: No correlation – 0, Low correlation - 1, Moderate correlation – 2, High Correlation - 3

Course Outcomes	Course Delivery Method
CO1	CD5, CD8
CO2	CD5, CD8
CO3	CD5, CD8
CO4	CD5, CD8
CO5	CD5, CD8

Course Code: CE24207

Course Title: STRUCTURAL ANALYSIS - II

Pre-requisite(s): NA Co- requisite(s): NA

Credits: 3 L: 3 T: 0 P: 0

Class schedule per week: 3

Class: B.Tech. Semester / Level: IV Branch: CEE Name of Teacher:

COURSE OBJECTIVES

This course envisions to impart to students:

1.	Develop basic knowledge of structural analysis so that the students can solve real
	engineering problems. (K1, K2)
2.	Understand behaviour of different kinds of indeterminate structures subjected to
	simple and complex mechanical loadings. (K1, K2)
3.	Analyse and design safe and sound civil engineering structures. (K3, K4)

COURSE OUTCOMES (COs)

CO1	Evaluate the stability and determinacy of a given structure. (K1, K2, K3)
CO2	Evaluate safety of a proposed indeterminate structure before construction and
	manufacturing. (K4)
CO3	Evaluate the behaviour of indeterminate structures under the action of complex static
	loads. (K1, K2, K3, K4)
CO4	Evaluate the behaviour of indeterminate structures using advanced numerical
	techniques (K1, K2, K3, K4)
CO5	Evaluate deflections in a given indeterminate structure. (K3, K4)

SYLLABUS

MODULE	(NO. OF LECTURE HOURS)
Module – I: Introduction Indeterminate structures: Advantages and disadvantages. Force and displacement method of analysis. Analysis procedure for indeterminate structure.	8
Module – II: Force method of analysis for indeterminate structures Method of consistent deformations/compatibility method: Beams, frames and trusses. Muller-Breslau principle: ILD for reactions, SF and BM for indeterminate beams/continuous beams.	8
Module – III: Displacement method of analysis for indeterminate structures Degrees of freedom. Slope-deflection method: Beams and frames (with or without sway). Moment distribution method: Beams and frames (with or without sway).	8
Module – IV: Matrix method of analysis Introduction: Flexibility and Stiffness matrix method. Truss and beam member: Stiffness matrix; Displacement and force transformation matrix; Global stiffness matrix.	8
Module – V: Indeterminate Arches Analysis of symmetrical 2-hinged and fixed arches. ILD for B.M, S.F. and Normal thrust for parabolic arches	8

TEXTBOOKS:

- 1. Structural Analysis by Hibbeler, R.C. Pearson Publications.
- 2. Basic Structural Analysis by Reddy, C.S. The McGraw Hill Publications.

REFERENCE BOOKS:

- 1. Fundamentals of Structural Analysis Leet, K.M. McGraw Hill Publications.
- 2. Theory of Structures by Timoshenko S. P. & Young.
- 3. KINNEY: Statically Indeterminate Structures
- 4. Indeterminate Structural Analysis by C.K. Wang Tata McGraw Hill Education Private Limited

GAPS IN THE SYLLABUS (TO MEET INDUSTRY/PROFESSION REQUIREMENTS)

POS MET THROUGH GAPS IN THE SYLLABUS

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

POS MET THROUGH TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS & EVALUATION PROCEDURE

DIRECT ASSESSMENT

Assessment Tool	% Contribution during CO Assessment
Mid Sem Examination	25
End Sem Examination	50
Quiz	10
Assignment	10
Teacher's assessment	05

Continuous Internal Assessment	% Distribution
Mid Sem Examination	50
Quiz and assignment	40
Teacher's assessment	10

Assessment Components	CO1	CO2	CO3	CO4	CO5
Continuous Internal Assessment	Y	Y	Y	Y	
Semester End Examination	Y	Y	Y	Y	Y

INDIRECT ASSESSMENT

1. Student Feedback on Course Outcome

COURSE DELIVERY METHODS

CD1	Lectures by use of boards/LCD projectors/OHP projectors			
CD2	Tutorials/Assignments			
CD3	Self- learning such as use of NPTEL materials and internets			

MAPPING BETWEEN COURSE OUTCOMES AND POs and PSOs

	РО	РО	РО	РО	РО	РО	PO	РО	РО	РО	РО	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	1	2	3
CO1	3	3	1					2	1			3	1	
CO2	3	3	1					2	1			3	1	
CO3	3	3	1					2	1			3	1	
CO4	3	3	1					2	1			3	1	
CO5	3	3	1					2	1			3	1	

Grading: No correlation – 0, Low correlation – 1, Moderate correlation – 2, High Correlation – 3

Course Outcomes	Course Delivery Method
CO1	CD1, CD2, CD3
CO2	CD1, CD2, CD3
CO3	CD1, CD2, CD3
CO4	CD1, CD2, CD3
CO5	CD1, CD2, CD3

Course Code: CE24208 Course Title: SURVEYING Pre-requisite(s): NA

Co- requisite(s): NA

Credits: 3 L:3 T:0 P:0

Class schedule per week: 4

Class: B.TECH. Semester / Level: IV / 2

Branch: CIVIL ENGINEERING

Name of Teacher:

COURSE OBJECTIVES

This course envisions to impart to students to:

1.	Obtain knowledge about uses and applications of chain and compass survey. (K1,
	K2)
2.	Learn about plane table survey, levelling and contouring. (K2, K4)
3.	Know about theodolite and different types of curves. (K3)
4.	Learn triangulation, and geodetic levelling. (K2, K4)
5.	Learn modern surveying instruments and astronomy. (K2, K4)

COURSE OUTCOMES (COs)

CO1	Perform chain and compass survey. (K1, K2)
CO2	Carry out plane table survey, levelling and contouring. (K2, K4)
CO3	Measurement of angles with theodolite and Set different types of curves in the field.
	(K3)
CO4	Perform triangulation survey and geodetic levelling. (K2, K4)
CO5	Handle modern instruments like Total station, Auto level, GPS and explain basic
	astronomical terms. (K2, K4)

MODULE	(NO. OF LECTURE HOURS)
Module – I: Chain and Compass Survey Introduction, Principle of survey, Errors and Obstacles in chain survey; Bearings, Traversing, Local attraction, Magnetic declination.	8
Module – II: Plane Table Survey, Levelling and Contouring Methods of plane table survey, Principle of Levelling, Curvature and Refraction corrections, Reciprocal levelling, Contouring.	8
Module – III: Theodolite, Curves and Curve Setting Measurement of angles with theodolite, Types of curves, Simple curves – Chain & Tape methods, Rankine's method' Obstacles in curve setting, Compound curve, Reverse curve, Introduction to Transition curve and Vertical curve.	8
Module – IV: Triangulation and Geodetic Levelling Scope and classification of triangulation, Satellite station; Corrections to geodetic levelling, Single angle and reciprocal observations.	8
Module – V: Introduction to Modern surveying equipments and Astronomy Total station, Auto level, GPS; Introduction to astronomy and different astronomical terms.	8

TEXTBOOKS:

- Punmia, B.C., Jain, A.K., Jain, A.K. "Surveying" Vol. 1 and 2, Laxmi Publications (P) Ltd.
 Kanetkar, T.P., Kulkarni S.V. "Surveying and Levelling." Part 1 and 2, Pune Vidyarthi Griha Prakashan.

REFERENCE BOOKS:

- Duggal, S.K. "Surveying" Vol. 1 and 2, The McGraw-Hill Companies, New Delhi.
 Arora, K.R. "Surveying" Vol. 1 and 2, Standard Book House, New Delhi.

GAPS IN THE SYLLABUS (TO MEET INDUSTRY/PROFESSION REQUIREMENTS)

POS MET THROUGH GAPS IN THE SYLLABUS

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

POS MET THROUGH TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS & EVALUATION PROCEDURE

Assessment Tool	% Contribution during CO Assessment
Mid Sem Examination	25
End Sem Examination	50
Quiz	10
Assignment	10
Teacher's assessment	05

% Distribution
50
40
10
ALL PROBLEM

Assessment Components	CO1	CO2	CO3	CO4	CO5
Continuous Internal Assessment	Y	Y	Y	Y	
Semester End Examination	Y	Y	Y	Y	Y

INDIRECT ASSESSMENT

1. Student Feedback on Course Outcome

COURSE DELIVERY METHODS

CD1	Lecture by use of boards/LCD projectors/OHP projectors
CD2	Tutorials/Assignments
CD3	Seminars
CD4	Mini projects/Projects
CD5	Laboratory experiments/teaching aids
CD6	Industrial/guest lectures
CD7	Industrial visits/in-plant training
CD8	Self- learning such as use of NPTEL materials and internets

MAPPING BETWEEN COURSE OUTCOMES AND POS and PSOS

	РО	PO1	PO1	PSO	PSO	PSO								
	1	2	3	4	5	6	7	8	9	0	1	1	2	3
CO1	3	3	1	3	2	2	2	2	3	3	2	3	3	2
CO2	3	3	1	3	2	2	2	2	3	3	2	3	3	2
CO3	3	3	1	3	2	2	3	2	3	3	2	3	3	2
CO4	3	3	1	3	2	2	2	3	3	3	2	3	3	2
CO5	3	3	1	3	2	3	3	3	3	3	2	3	3	2

Grading: No correlation – 0, Low correlation – 1, Moderate correlation – 2, High correlation – 3

Course Outcomes	Course Delivery Method
CO1	CD1, CD2, CD3, CD5, CD8
CO2	CD1, CD2, CD3, CD5, CD8
CO3	CD1, CD2, CD3, CD4, CD5, CD8
CO4	CD1, CD2, CD3, CD5, CD6, CD8
CO5	CD1, CD2, CD3, CD4, CD5, CD6, CD7, CD8

Course Code: CE24209

Course Title: CONSTRUCTION ENGINEERING AND MANAGEMENT

Pre-requisite(s): NA Co- requisite(s): NA

Credits: 3 L:3 T:0 P:0

Class schedule per week: 3

Class: B.Tech.

Semester / Level: IV / 2

Branch: CIVIL ENGINEERING

Name of Teacher:

COURSE OBJECTIVES

This course envisions to impart to students to:

1.	Obtain knowledge about basics of construction project management and ethical
	conduct for engineers.
2.	Learn about construction economics.
3.	Know about construction planning.
4.	Learn construction contracts, and construction quality management.
5.	Learn construction equipment management

COURSE OUTCOMES (COs)

CO1	Explain about construction project management and its relevance as well as ethical
	conduct of engineers. (K3)
CO2	Work out economics of the construction project. (K3,K4,K5)
CO3	Work with techniques like PERT and CPM. (K3,K4,K5)
CO4	Prepare contract documents, carry out quality control of the project. (K3,K4)
CO5	Solve problems involving construction equipment management. K3

MODULE	(NO. OF LECTURE HOURS)
Module – I: Introduction Phases of a construction project, Construction project management and its relevance, Stakeholders of a construction project, Forms of business organizations, Different organizational structures, Important traits of a project coordinator, Ethical conduct for engineers.	8
Module – II: Construction Economics Economic decision making, Time value of money, Cash-flow diagrams, Using interest tables, Present worth comparison, Future worth comparison, Annual cost and Worth comparison, Rate of return method, Effect of taxation on comparison of alternatives, Effect of inflation on cash flow.	8
Module – III: Construction Planning Types of project plans- Time/ Manpower/ Material/ Construction equipment/ Finance plans, Work-Breakdown structure, Event and activity, Dummy activity, Network, Precedence, Network logic, Duration of an activity, Start and Finish times of activity, Forward and backward pass, Float/ Slack time, Bar charts, PERT, CPM, Ladder network, Precedence network, Line-of-Balance.	8
Module – IV: Construction Contract, Construction Quality Management Contract document – Contract drawings, Specifications, General / Special conditions of contract, Bill of quantities; Classification of contracts - Separated/ Management/ Integrated/ Discretionary contracts; Bidding process – Pre- qualification, Notice inviting tender, Bid submission, Letter of intent, Work order, Agreement; Subcontracting. Construction quality, Inspection, Quality control and Quality Assurance in projects.	8
Module – V: Construction Equipment Management Classification of construction equipment, Factors behind the selection of construction equipment, Earthwork equipment, Concreting equipment, Hoisting equipment, Equipment Acquisition, Depreciation.	8

TEXTBOOKS:

- 1. Construction Project Management Theory and Practice Kumar Neeraj Jha, Pearson
- 2. Project Planning and Control with PERT and CPM B.C. Punmia & K.K. Khandelwal, Laxmi Publications (P) Ltd.

REFERENCE BOOKS:

1. Construction Project Management – Planning, Scheduling and Controlling – K.K. Chitkara, McGraw Hill Education (India) Private Limited

GAPS IN THE SYLLABUS (TO MEET INDUSTRY/PROFESSION REQUIREMENTS)

POS MET THROUGH GAPS IN THE SYLLABUS

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

POS MET THROUGH TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS & EVALUATION PROCEDURE

Assessment Tool	% Contribution during CO Assessment
Mid Sem Examination	25
End Sem Examination	50
Quiz	10
Assignment	10
Teacher's assessment	05

Continuous Internal Assessment	% Distribution
Mid Sem Examination	50
Quiz and assignment	40
Teacher's assessment	10

Assessment Components	CO1	CO2	CO3	CO4	CO5
Continuous Internal Assessment	Y	Y	Y	Y	
Semester End Examination	Y	Y	Y	Y	Y

INDIRECT ASSESSMENT

1. Student Feedback on Course Outcome

COURSE DELIVERY METHODS

CD1	Lecture by use of boards/LCD projectors/OHP projectors
CD2	Seminars/Assignments
CD3	Laboratory experiments/teaching aids
CD4	Industrial/guest lectures
CD5	Industrial visits/in-plant training
CD6	Self- learning such as use of NPTEL materials and internets
CD7	Industrial visits/in-plant training
CD8	Self- learning such as use of NPTEL materials and internet
CD9	Simulation

MAPPING BETWEEN COURSE OUTCOMES AND POs and PSOs

	PO	PSO	PSO	PSO										
	1	2	3	4	5	6	7	8	9	10	11	1	2	3
CO1	2	1	2	3	2	3	3	3	3	1	3	3	3	3
CO2	3	3	3	3	3	3	0	1	0	3	3	3	3	3
CO3	3	3	3	3	3	3	0	2	2	2	3	3	3	3
CO4	3	2	2	2	2	3	0	3	2	2	3	3	3	3
CO5	2	2	3	2	3	2	0	2	2	2	3	3	3	3

Grading: No correlation -0, Low correlation -1, Moderate correlation -2, High correlation -3

MINITING DET WEEK CO	MAITING BETWEEN COURSE OF TOMES AND COURSE BEETVERT METHOD									
Course	Course Delivery Method									
Outcomes										
CO1	CD1, CD2, CD3, CD4, CD5, CD6, CD7, CD8									
CO2	CD1, CD2, CD3, CD4, CD5, CD6, CD7, CD8									
CO3	CD1, CD2, CD3, CD4, CD5, CD6, CD7, CD8									
CO4	CD1, CD2, CD3, CD4, CD5, CD6, CD7, CD8									
CO5	CD1, CD2, CD3, CD4, CD5, CD6, CD7, CD8									

Course Code: CE24210

Course Title: EARTHQUAKE ENGINEERING AND DISASTER MANAGEMENT

Pre-requisite(s): NA Co- requisite(s): NA

Credits: 2 L: 2 T: 0 P: 0

Class schedule per week: 2

Class: B.Tech.
Semester / Level: IV
Branch: CEE
Name of Teacher:

COURSE OBJECTIVES

This course envisions to impart to students:

1.	Obtain knowledge about uses and applications of chain and compass survey. (K1, K2)
2.	Learn about plane table survey, levelling and contouring. (K2, K4)
3.	Know about theodolite and different types of curves. (K3)

COURSE OUTCOMES (COs)

CO1	To develop dynamic equations of motion and perform analysis for dynamic systems.
	(K1, K2, K3, K4)
CO2	To apply the basic principles for seismic design and construction of structures. (K3)
CO3	Apply the concepts of Earthquake Resistant Design to real life structures. (K1, K3)
CO4	Understand the concepts of disaster management. (K1, K2)

MODULE	(NO. OF LECTURE HOURS)
Module – I Concepts and definitions: disaster, disaster, hazard, vulnerability, risks severity, frequency and details, capacity, impact, prevention, mitigation. Plate Tectonics and related Hazards, Earthquakes and their causes, Measurement of Earthquakes.	8
Module – II Equations of Motion for SDOF and MDOF Systems; Undamped Free Vibration of SDOF and MDOF Systems, Mode Shapes and Frequencies of MDOF System	8
Module – III Concept of earthquake Resistant design, design philosophy, Four virtues of EQRD: Stiffness, Strength, ductility and Configurations, Introduction to Capacity design concepts.	8
Module – IV Natural disasters, manmade disasters, hazard and vulnerability profile of India, mountain and coastal areas, ecological fragility.	8
Module – V Disaster Preparedness, monitoring of phenomena triggering a disaster, Evaluation of risk.	8

TEXTBOOKS:

- 1. Pankaj Agarwal and Manish Shrikhande, 'Earthquake Resistant Design of Structures', PHI, 2008
- 2. S.K.Duggal; Earthquake resistance design of structures; Oxford University Press, New Delhi.
- 3. R. Nishith, Singh AK, "Disaster Management in India: Perspectives, issues and strategies", New Royal book Company.
- 4. Ghosh G.K., 2006, Disaster Management, APH Publishing Corporation
- 5. http://ndma.gov.in/ (Home page of National Disaster Management Authority)
- 6. http://www.ndmindia.nic.in/ (National Disaster management in India, Ministry of HomeAffairs).

REFERENCE BOOKS:

- 1. Singh B.K., 2008, Handbook of Disaster Management: Techniques & Guidelines, Rajat Publication
- 2. Ellis L. Krinitzsky, J.M. Gould and Peter H. Edinger, 'Fundamentals of Earthquake Resistant Construction', John Wiley, 1993
- 3. Newmark N.M. and Rosenblueth E., 'Fundamentals of Earthquake Engg.,' Prentice Hall, 1971.

GAPS IN THE SYLLABUS (TO MEET INDUSTRY/PROFESSION REQUIREMENTS)

POS MET THROUGH GAPS IN THE SYLLABUS

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

POS MET THROUGH TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS & EVALUATION PROCEDURE

DIRECT ASSESSMENT

Assessment Tool	% Contribution during CO Assessment
Mid Sem Examination	25
End Sem Examination	50
Quiz	10
Assignment	10
Teacher's assessment	05

Continuous Internal Assessment	% Distribution
Mid Sem Examination	50
Quiz and assignment	40
Teacher's assessment	10

Assessment Components	CO1	CO2	CO3	CO4	CO5
Continuous Internal Assessment	Y	Y	Y	Y	
Semester End Examination	Y	Y	Y	Y	Y

INDIRECT ASSESSMENT

1. Student Feedback on Course Outcome

COURSE DELIVERY METHODS

CD1	ectures by use of boards/LCD projectors/OHP projectors									
CD2	Tutorials/Assignments									
CD3	Self- learning such as use of NPTEL materials and internets									

MAPPING BETWEEN COURSE OUTCOMES AND POs and PSOs

	PO	PSO	PSO	PSO										
	1	2	3	4	5	6	7	8	9	10	11	1	2	3
CO1	3	3	1					2	1		1	3		
CO2	3	3	1					2	1		1	3	2	
CO3	3	3	1					2	1		1	3		3
CO4	3	3	1					2	1		1	3		3

Grading: No correlation - 0, Low correlation - 1, Moderate correlation - 2, High Correlation - 3

Course Outcomes	Course Delivery Method
CO1	CD1, CD2, CD3
CO2	CD1, CD2, CD3
CO3	CD1, CD2, CD3
CO4	CD1, CD2, CD3
CO5	CD1, CD2, CD3

COURSE INFORMATION SHEET (PE1)

Course Code: CE24251

Course Title: ADVANCED SOLID MECHANICS Pre-requisite(s): CE24201, CE24202, CE24207

Co- requisite(s): NA

Credits: 3 L: 3 T: 0 P: 0

Class schedule per week: 3

Class: B.Tech.
Semester / Level: VI

Branch: CIVIL ENGINEERING

Name of Teacher:

COURSE OBJECTIVES

This course envisions to impart to students:

1. Apply the concepts of elasticity and plasticity to analyse the engineering problems

COURSE OUTCOMES (COs)

CO1	Interpret the theory of elasticity including strain/displacement and Hooke's law				
	relationships.				
CO2	Analyse principal stresses and strains using theories of failure.				
CO3	Analyse the two-dimensional problems using Airy's stress function.				
CO4	Explain linearly elastic bodies behaviour using Hooke's law.				
CO5	Asses torsional stresses developed in thin walled sections.				
CO6	Apply various failure criteria for general stress states at points				

MODULE	(NO. OF LECTURE HOURS)
Module – I: Introduction Displacement, Strain and Stress Fields, Constitutive Relations, Cartesian Tensors and Equations of Elasticity. Elementary Concept of Strain, Stain at a Point, Principal Strains and Principal Axes, Compatibility Conditions, Stress at a Point, Stress Components on an Arbitrary Plane, Differential Equations of Equilibrium.	8
Module – II: Equations of Elasticity Equations of Equilibrium, Stress- Strain relations, Strain Displacement and Compatibility Relations, Boundary Value Problems.	8
Module – III: Two-Dimensional Problems of Elasticity Plane Stress and Plane Strain Problems, Airy's sstress Function, Two-Dimensional Problems in Polar Coordinates.	8
Module – IV: Torsion of Prismatic Bars Saint Venant's Method, Prandtl's Membrane Analogy, Torsion of Rectangular Bar, Torsion of Thin Tubes.	8
Module – V: Theories of Failure or Yield Criteria Maximum principal stress theory, Maximum shear stress theory, Maximum elastic strain theory, Significance of the various theories of failure, Use of factor of safety in design.	8

TEXTBOOKS:

- 1. Advanced Mechanics of Solids, Srinath L.S., Tata McGraw Hill, 2000.
- 2. Elements of Strength of Materials, D.H. Young, S.P. Timoshenko East West Press Pvt. Ltd.
- 3. Theory of Elasticity, Timoshenko S. and Goodier J. N., McGraw Hill, 1961.
- 4. Solid Mechanics, Kazimi S. M. A., Tata McGraw Hill, 1994.
- 5. Theory of Elasticity, Sadhu Singh, Khanna Publishers, 2003.
- 6. Engineering Mechanics of Solids by Egor P. Popov, Pearson India

REFERENCE BOOKS:

- 1. Elasticity, Sadd M.H., Elsevier, 2005.
- 2. Engineering Solid Mechanics, Ragab A.R., Bayoumi S.E., CRC Press, 1999.
- 3. Computational Elasticity, Ameen M., Narosa, 2005

GAPS IN THE SYLLABUS (TO MEET INDUSTRY/PROFESSION REQUIREMENTS)

POS MET THROUGH GAPS IN THE SYLLABUS

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

POS MET THROUGH TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

${\bf COURSE\ OUTCOME\ (CO)\ ATTAINMENT\ ASSESSMENT\ TOOLS\ \&\ EVALUATION\ PROCEDURE$

DIRECT ASSESSMENT

Assessment Tool	% Contribution during CO Assessment
Mid Sem Examination	25
End Sem Examination	50
Quiz	10
Assignment	10
Teacher's assessment	05

Continuous Internal Assessment	% Distribution
Mid Sem Examination	50
Quiz and assignment	40
Teacher's assessment	10

Assessment Components	CO1	CO2	CO3	CO4	CO5	CO6
Continuous Internal Assessment	Y	Y	Y	Y	Y	Y
Semester End Examination	Y	Y	Y	Y	Y	Y

INDIRECT ASSESSMENT

1. Student Feedback on Course Outcome

COURSE DELIVERY METHODS

CD1	Lectures by use of boards/LCD projectors/OHP projectors			
CD2	Assignments			
CD3	Self- learning such as use of NPTEL materials and internets			

MAPPING BETWEEN COURSE OUTCOMES AND POS and PSOS

	РО	РО	PO	PO	РО	PSO	PSO	PSO						
	1	2	3	4	5	6	7	8	9	10	11	1	2	3
CO1	3	2	0	0	2	0	0	0	0	0	0	3	0	2
CO2	3	3	2	0	2	0	0	0	0	0	0	3	0	3
CO3	3	3	2	0	2	0	0	0	0	0	0	3	0	2
CO4	3	2	0	0	2	0	0	0	0	0	0	3	0	2
CO5	3	3	2	0	2	0	0	0	0	0	0	3	2	3
CO6	3	3	2	0	2	0	0	0	0	0	0	3	0	3

Grading: No correlation – 0, Low correlation – 1, Moderate correlation – 2, High Correlation – 3

Course Outcomes	Course Delivery Method
CO1	CD1, CD2, CD3
CO2	CD1, CD2, CD3
CO3	CD1, CD2, CD3
CO4	CD1, CD2, CD3
CO5	CD1, CD2, CD3
CO6	CD1, CD2, CD3

Course Code: CE24252

Course Title: CONCRETE TECHNOLOGY

Pre-requisite(s): Co- requisite(s): NA

Credits: 3 L: 3 T: 0 P: 0

Class schedule per week: 3

Class: B.Tech.
Semester / Level: / 4

Branch: CIVIL ENGINEERING

Name of Teacher:

COURSE OBJECTIVES

This course envisions to impart to students:

To provide a comprehensive understanding of concrete technology, covering the properties, testing, and design of concrete materials, fresh and hardened concrete behaviour, mix design methodologies, and non-destructive testing techniques for quality assessment.

COURSE OUTCOMES (COs)

CO1	Recall the chemical composition, manufacturing processes, and types of cement, as well as the
	properties and roles of concrete ingredients such as aggregates, water, and admixtures.
CO ₂	Explain the factors affecting workability, strength, and durability of concrete, and interpret
	the relationships between compressive strength, tensile strength, and modulus of elasticity
	in hardened concrete.
CO3	Apply the principles of concrete mix design as per IS 10262-2019 to determine the
	proportions of ingredients for specific exposure conditions and strength requirements.
CO4	Know the principles and applications of non-destructive testing methods, such as ultrasonic
	pulse velocity and rebound hammer tests, for assessing the quality of concrete structures.

MODULE	(NO. OF LECTURE HOURS)
Module – I: Concrete ingredients Cement- chemical composition, manufacture of OPC by wet and dry process, hydration of cement, types of cement. Testing of cement. Fine aggregate- grading analysis, specific gravity, bulking, moisture content, deleterious materials. Coarse aggregate- Importance of size, shape and texture. Grading of aggregates. Fineness modulus. Water- qualities of water. Use of sea water for mixing concrete. Admixtures – chemical admixtures- Plasticizers, accelerators, retarders and air entraining agents. Mineral admixtures- Fly ash, silica fumes and rice husk ash.	8
Module – II: Fresh Concrete Workability – factors affecting workability, Measurement of workability – slump, compaction factor, vee-bee and flow tests. Segregation and bleeding. Process of manufacturing of concrete – Batching, Mixing, transporting, Placing and compaction. Curing – methods of curing- Water curing, membrane curing, steam curing. Accelerated curing; Ready Mix Concrete.	8
Module – III: Hardened concrete Factors affecting strength, w/c ratio, gel-space ratio. Maturity concept Effect of aggregate properties, Relations between compressive strength, tensile strength and bond strength and modulus of rupture. Elasticity – Relation between modulus of elasticity and strength, Factors affecting modulus of elasticity, Poison's ratio. Creep – measurement of creep, factors affecting creep, effect of creep Shrinkage of concrete- plastic shrinkage and drying shrinkage, factors affecting shrinkage, moisture movement. Durability – definition and significance of durability. Permeability. Sulphate attack, chloride attack, carbonation, freezing and thawing.	8
Module – IV: Concrete Mix Design Concept of Mix design, Variables in proportioning and exposure conditions. Procedure of mix design as per IS 10262-2009. Numerical examples of Mix design	8
Module – V: Non-Destructive Testing of Concrete Penetration and pull out test, rebound hammer test, ultrasonic pulse velocity – Principles, applications and limitations.	8

TEXTBOOKS:

- 1. Properties of Concrete, Neville, A.M., (2011), Pearson Education Ltd., England.
- 2. Concrete Technology (Theory and Practice), Shetty, M.S. (1982), S. Chand and company, New Delhi.
- 3. Concrete Technology, Gambhir, M.L. (2004), Tata McGraw-Hill Education, New Delhi

REFERENCE BOOKS:

- 1. Concrete Technology, Neville, A.M. and Brooks J.J. (2010), Prentice Hall, England.
- 2. Concrete Manual, Gambhir, M.L. (1992), Dhanpat Rai& Sons, New Delhi.
- 3. IS: 10262-2019: Indian Standard Concrete Mix Proportioning-Guidelines, BIS, New Delhi.
- 4. SP 23 (1982), Handbook on Concrete Mixes, BIS, New Delhi.
- 5. Manual of Concrete Practice (2015), ACI, USA.

GAPS IN THE SYLLABUS (TO MEET INDUSTRY/PROFESSION REQUIREMENTS)

POS MET THROUGH GAPS IN THE SYLLABUS

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

POS MET THROUGH TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS & EVALUATION PROCEDURE

DIRECT ASSESSMENT

Assessment Tool	% Contribution during CO Assessment
Mid Sem Examination	25
End Sem Examination	50
Quiz	10
Assignment	10
Teacher's assessment	05

Continuous Internal Assessment	% Distribution
Mid Sem Examination	50
Quiz and assignment	40
Teacher's assessment	10

Assessment Components	CO1	CO2	CO3	CO4
Continuous Internal Assessment	Y	Y	Y	Y
Semester End Examination	Y	Y	Y	Y

INDIRECT ASSESSMENT

1. Student Feedback on Course Outcome

COURSE DELIVERY METHODS

CD1	Lectures by use of boards/LCD projectors/OHP projectors
CD2	Assignments
CD3	Self- learning such as use of NPTEL materials and internets
CD4	Laboratory Demonstration

MAPPING BETWEEN COURSE OUTCOMES AND POs and PSOs

	РО	PSO	PSO	PSO										
	1	2	3	4	5	6	7	8	9	10	11	1	2	3
CO1	3	0	0	0	2	0	0	0	0	0	0	3	0	2
CO2	3	2	0	0	2	2	0	0	0	0	0	3	0	2
CO3	3	3	3	0	2	2	0	0	0	2	0	3	2	3
CO4	3	2	0	2	2	2	0	0	0	0	0	3	2	3

Grading: No correlation – 0, Low correlation - 1, Moderate correlation – 2, High Correlation - 3

Course Outcomes	Course Delivery Method
CO1	CD1, CD3, CD4
CO2	CD1, CD2, CD3, CD4
CO3	CD1, CD3, CD4
CO4	CD1, CD2, CD3, CD4

COURSE INFORMATION SHEET (PE1)

Course Code: CE24253

Course Title: OPEN CHANNEL HYDRAULICS

Pre-requisite(s): NA Co- requisite(s): NA

Credits: 3 L: 3 T: 0 P: 0

Class schedule per week: 3

Class: B.Tech.

Semester / Level: IV / 2

Branch: CIVIL ENGINEERING

Name of Teacher:

COURSE OBJECTIVES

This course envisions to impart to students:

1.	To understand the basic concepts of the movement of water in open channels.
2.	To identify the characteristics of the flow and distinguish different kinds of flow in
	open channels.
3.	To develop necessary knowledge, skills and techniques for analysis of practical
	channel flow problems.
4.	To analyse the hydrodynamic aspects of water flow in natural or artificial channels.

COURSE OUTCOMES (COs)

CO1	Understand and analyse basics of open channel flows. (K1, K2, K3)
CO ₂	Understand and analyse uniform flow in channels. (K1, K2, K3)
CO3	Understand and analyse gradually varied flow in channels. (K1, K2, K3)
CO4	Understand and investigate hydraulic jumps and surges. (K1, K2, K3)
CO5	Understand and analyse unsteady flow in channels. (K1, K2, K3)

MODULE	(NO. OF LECTURE HOURS)
Module – I: Introduction Open channel flow, Geometrical parameters of a channel, Classification of open channels, Classification of open channel flow, Velocity distribution, Resistance relationships, Energy depth relationships, Specific energy and specific force, Normal and critical depths, Pressure, velocity and discharge measurements.	8
Module – II: Uniform Flow Continuity equation, Energy and momentum equation, Characteristics of uniform flow, Chezy's formula, Manning's formula, Factors affecting manning's roughness coefficient, Computation of uniform flow, Most efficient channel section.	8
Module – III: Non-Uniform Flow in Open Channel Specific energy curve, Discharge curve, Specific force curve, Alternate depths, Critical flow, Critical depth, Measurement of discharge and velocity. Gradually varied flow: Equation of gradually varied flow, Classification of channel bottom slopes, Classification of surface profiles, Characteristics of surface profiles, Computation of water surface profiles by graphical, numerical and analytical methods, Direct step method, Standard step method, Graphical integration method and direct integration method.	8
Module – IV: Hydraulic Jump, Surges and Water Waves Elements and characteristics of hydraulic jump, Classical hydraulic jump, Length, height and location of jump, Types of hydraulic jump, Applications and use of hydraulic jump, Energy dissipation, Evaluation of the jump elements in rectangular and nonrectangular channels, Open channel surge, Positive and negative surges, Celerity of gravity wave, Deep and shallow water waves, Hydraulic jump in channel transitions, Control of hydraulic jump, Momentum principle and its applications.	8
Module – V: Unsteady Flows Saint Venant's equations, Basics of Finite Difference Method, Solution of Saint Venant's equations using method of characteristics and finite difference schemes, Dam break problem, Hydraulic flood routing.	8

TEXTBOOKS:

- 1. Open Channel Flow by K. Subramanya, Tata McGraw Hill.
- 2. Open Channel Flows by M. H. Choudhary, Prentice-Hall.
- 3. Open Channel Hydraulics by Ven Te Chow, Tata McGraw Hill.

REFERENCE BOOKS:

- Flow through Open Channels by K. G. Ranga Raju, Tata McGraw Hill.
 The Hydraulics of Open Channel Flow: An Introduction by H. Chanson, Elsevier.
- 3. Open Channel Hydraulics by R. H. French, McGraw Hill.

GAPS IN THE SYLLABUS (TO MEET INDUSTRY/PROFESSION REQUIREMENTS)

POS MET THROUGH GAPS IN THE SYLLABUS

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

POS MET THROUGH TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS & EVALUATION PROCEDURE

DIRECT ASSESSMENT

Assessment Tool	% Contribution during CO Assessment
Mid Sem Examination	25
End Sem Examination	50
Quiz	10
Assignment	10
Teacher's Assessment	05

Continuous Internal Assessment	% Distribution
Mid Sem Examination	50
Quiz and Assignment	40
Teacher's Assessment	10

Assessment Components	CO1	CO2	CO3	CO4	CO5
Continuous Internal Assessment	Y	Y	Y	Y	
Semester End Examination	Y	Y	Y	Y	Y

INDIRECT ASSESSMENT

1. Student Feedback on Course Outcome

COURSE DELIVERY METHODS

CD1	Lecture by use of boards/LCD projectors/OHP projectors			
CD2	Tutorials/Assignments			
CD3	Seminars			
CD4	Mini projects/Projects			
CD5	Laboratory experiments/teaching aids			
CD6	Industrial/guest lectures			
CD7	Industrial visits/in-plant training			
CD8	Self-learning such as use of NPTEL materials and internets			
CD9	Simulation			

MAPPING BETWEEN COURSE OUTCOMES AND POs and PSOs

	РО	PO	РО	PSO	PSO	PSO								
	1	2	3	4	5	6	7	8	9	10	11	1	2	3
CO1	3	3	3	3	2	0	0	0	1	0	0	3	2	1
CO2	3	3	3	3	2	0	0	0	1	0	0	3	2	1
CO3	3	3	3	3	2	0	0	0	1	0	0	3	2	1
CO4	3	3	3	3	2	0	0	0	1	0	0	3	2	1
CO5	3	3	3	3	2	0	0	0	1	0	0	3	2	1

Grading: No correlation – 0, Low correlation - 1, Moderate correlation – 2, High Correlation - 3

Course Outcomes	Course Delivery Method
CO1	CD1, CD2, CD3
CO2	CD1, CD2, CD3
CO3	CD1, CD2, CD3
CO4	CD1, CD2, CD3
CO5	CD1, CD2, CD3

Course code: CE 24211

Course title: STRUCTURAL ENGINEERING LABORATORY I

Pre-requisite(s): Co-requisite(s):

Credits: 1 L: 0 T: 0 P: 2

Class schedule per week: 2

Class: B. Tech

Semester / Level: IV / 2

Branch: CIVIL ENGINEERING

Name of Teacher:

COURSE OBJECTIVES

This course enables the students to:

1.	To give the basic understanding of structural member behavior under the action
	of loads.
2.	To verify theoretical formulas of linear elastic structural elements by conducting
	experiments.

COURSE OUTCOMES (COs)

CO1	Evaluate the behavior of different structures when loaded with various kinds of
	loading conditions
CO2	Correlate the theoretical and experiment values on structural behavior.
CO3	Solve a real-life structures project to satisfy functional and strength requirements.

SYLLABUS (List of experiments)

- 1. To verify the Maxwell-Bett's Law.
- 2. To determine the flexural rigidity of the beam and its comparison with the theoretical value.
- 3. To determine the deflection in a pin-jointed truss and its verification with the theoretical results.
- 4. To study the behavior of different types of columns and find Euler's buckling load for each case.
- 5. To study the two hinged arches for the horizontal displacement of the roller end for a given system of loading and to compare the same with those obtained analytically.
- 6. To study the behavior of a portal frame under different end conditions.
- 7. To verify the Muller-Breslau theorem by using Begg's deformator set.
- 8. To verify the moment area theorem regarding the slopes and deflections of the beam.
- 9. To determine the moment required to produce a given rotation (rotational stiffness) at one end of the beam when the other end is pinned.
- 10. To determine the deflection and unsymmetrical bending of a cantilever beam Experimentally and to compare the same with those obtained theoretically.
- 11. Virtual Labs http://bsa-iiith.vlabs.ac.in/

TEXTBOOKS:

1. Laboratory Manual for Civil Engineering Students (In S.I. units) by K.K. Pant – KATSON Books publication

GAPS IN THE SYLLABUS (TO MEET INDUSTRY/PROFESSION REQUIREMENTS)

POS MET THROUGH GAPS IN THE SYLLABUS

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

POS MET THROUGH TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS & EVALUATION PROCEDURE

Course Delivery methods	
Lecture by use of boards/LCD projectors/OHP projectors	
Tutorials/Assignments	✓
Seminars	
Mini projects/Projects	
Laboratory experiments/teaching aids	✓
Industrial/guest lectures	
Industrial visits/in-plant training	
Self- learning such as use of NPTEL materials and internet	
Simulation	√

Course Outcome (CO) Attainment Assessment tools & Evaluation procedure Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Progressive Evaluation Marks	60
End Examination Marks	40

Assessment Components	CO1	CO2	CO3
Progressive Evaluation Marks	✓	✓	✓
End Examination Marks	✓	✓	✓

Indirect Assessment

- 1. Student feedback on teaching quality and teaching methods adopted
- 2. Student feedback on course syllabus and course outcome

Mapping of Course Outcomes onto Program Outcomes and Program Specific Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	3	1	2	2	1					2	1		
CO2	3	2	3	3	2	1		1			2	3	2	
CO3	3	3	3	3	2	2		2			1	2	2	3

	Mapping Between COs and Course Delivery (CD) methods								
CD	Course Delivery methods	Course Outcome	Course Delivery Method						
CD1	Lecture by use of boards/LCD projectors/OHP projectors	CO1	CD5, CD9						
CD2	Tutorials/Assignments	CO2	CD5, CD9						
CD3	Seminars	CO3	CD5, CD9						
CD4	Mini projects/Projects								
CD5	Laboratory experiments/teaching aids								
CD6	Industrial/guest lectures								
CD7	Industrial visits/in-plant training								
CD8	Self-learning such as use of NPTEL materials and internet								
CD9	Simulation								

Course code: CE24212

Course title: SURVEYING FIELDWORK Pre-requisite(s): CE24152 SURVEYING

Co- requisite(s): NA

Credits: 2 L: 0 T: 0 P: 4

Class schedule per week: 4

Class: B. Tech

Semester / Level: IV/ 2

Branch: CIVIL ENGINEERING

Name of Teacher:

COURSE OBJECTIVES

This course enables the students to:

1.	Execute chain and compass survey.
2.	Perform plane table surveying.
3.	Carry out levelling works and take measurements by theodolite.
4.	Set out different types of curves.
5.	Learn about modern surveying instruments.

COURSE OUTCOMES (COs)

CO1	Perform chain and compass survey.						
CO2	Perform plane table surveying.						
CO3	Carry out levelling work and take measurement of angles with theodolite.						
CO4	Set different types of curves in the field.						
CO5	Handle modern instruments like Total Station, Auto Level and Digital Theodolite.						

SYLLABUS (List of experiments)

- 1. Perform survey for an area using chain and compass
- 2. Perform survey for an area using plane table.
- 3. Carry out profile leveling and cross-sectioning work along a road.
- 4. Measurement of horizontal and vertical angles with a theodolite.
- 5. Set out horizontal curves on the field.
- 6. Perform traversing using Total Station.
- 7. Handling Digital Theodolites and AutoLevels.

TEXTBOOKS:

- 1. Punmia, B.C., Jain, A.K., Jain, A.K. "Surveying" Vol. 1 and 2, Laxmi Publications (P) Ltd.
- 2. Kanetkar, T.P., Kulkarni S.V. "Surveying and Levelling." Part 1 and 2, Pune Vidyarthi Griha Prakashan.

REFERENCE BOOKS:

- 1. Duggal, S.K. "Surveying" Vol. 1 and 2, Tata McGraw-Hill Companies, New Delhi.
- 2. Arora, K.R. "Surveying" Vol. 1 and 2, Standard Book House, New Delhi.

GAPS IN THE SYLLABUS (TO MEET INDUSTRY/PROFESSION REQUIREMENTS)

POS MET THROUGH GAPS IN THE SYLLABUS

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

POS MET THROUGH TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS & EVALUATION PROCEDURE

DIRECT ASSESSMENT

Assessment Tool	% Contribution during CO Assessment
Lab Journal	30
Lab quizes	20
Progressive viva	20
End Sem Examination	30

Continuous Internal Assessment	% Distribution
Lab Journal	30
Lab quiz	10
Progressive viva	20

Assessment Components	CO1	CO2	CO3	CO4	CO5
Continuous Internal Assessment	Y	Y	Y	Y	Y
Semester End Examination	Y	Y	Y	Y	Y

INDIRECT ASSESSMENT

- 1. Student feedback on teaching quality and teaching methods adopted
- 2. Student feedback on course syllabus and course outcome

COURSE DELIVERY METHODS

CD1	Lecture by use of boards/LCD projectors/OHP projectors
CD2	Tutorials/Assignments
CD3	Seminars
CD4	Mini projects/Projects
CD5	Laboratory experiments/teaching aids
CD6	Industrial/guest lectures
CD7	Industrial visits/in-plant training
CD8	Self- learning such as use of NPTEL materials and internets
CD9	Simulation

MAPPING BETWEEN COURSE OUTCOMES AND POs and PSOs

	PO	РО	PO	РО	РО	PSO	PSO	PSO						
	1	2	3	4	5	6	7	8	9	10	11	1	2	3
CO1	3	3	2	2	2	2	2	1	3	3	2	3	3	3
CO2	3	3	2	2	2	2	2	1	3	3	2	3	3	3
CO3	3	3	2	2	2	2	2	1	3	3	2	3	3	3
CO4	3	3	2	2	2	2	2	1	3	3	2	3	3	3
CO5	3	3	2	2	3	2	2	1	3	3	2	2	3	3

Grading: No correlation – 0, Low correlation – 1, Moderate correlation – 2, High Correlation – 3

Course Outcomes	Course Delivery Method
CO1	CD1, CD2, CD6, CD8
CO2	CD1, CD2, CD6, CD8
CO3	CD1, CD2, CD6, CD8
CO4	CD1, CD2, CD6, CD8
CO5	CD1, CD2, CD6, CD8

Course Code: CE24213

Course Title: SPECIFICATIONS, ESTIMATION AND COSTING

Pre-requisite(s): Co- requisite(s):

Credits: 2 L: 1 T: 0 P: 2

Class schedule per week: 3

Class: B.Tech.

Semester / Level: IV/II

Branch: CIVIL ENGINEERING

Name of Teacher:

COURSE OBJECTIVES

This course enables the students to:

1.	Understand the importance of estimation in civil engineering works and the different
	types of estimations and perform approximate estimation calculations.
2.	Understand the methodology for performing detailed estimations for building
	constructions.
3.	Understand the method for calculating reinforcement steel required in RCC works.
4.	Understand how to analyse rates of different items of work.
5.	Learn about writing specifications for different items of work.

COURSE OUTCOMES (COs)

CO1	Perform approximate estimate for a building to be constructed.
CO2	Perform detailed estimate for a building to be constructed.
CO3	Calculate amount of reinforcement required in RCC works in a building construction.
CO4	Perform rate analysis for various items of work.
CO5	Fix specifications (and workmanship) required for the execution of different items of
	work.

MODULE	(NO. OF LECTURE HOURS)
Module – I Estimation Fundamentals Importance of estimation, different types of estimates; Revised estimate, Supplementary estimate, how to prepare detailed estimate; abstract of estimate; contingencies; work-charged establishment; Tools & plants; market rate; lump-sum item, schedule of rates; substituted item, other definitions; general and detailed specifications. Importance of approximate estimate; methods of approximate estimation; approximate cost for water supply, sanitary and electrification works.	8
Module – II Detailed Estimation of Buildings General items of work for building estimates; principal units for various items of work; limits of measurement and degree of accuracy in estimation; method/mode of measurement for different items of works commonly encountered in building construction; detailed estimates of a single roomed and a two roomed single storey residential building; estimation of an underground tank; symmetrical and unsymmetrical boundary walls; principle of estimate for a two-roomed building having different crosssections to that of the main wall; principle of estimate of a single-roomed building with verandah dwarf wall and pillars having different cross-sections and when the same footing joins with several footings of the main wall.	8
Module – III RCC works and bar bending schedule Measurement of materials; reinforcement; MS and TOR steel; binding wires; developmental length; end anchorage; hook and bend allowance; estimation of reinforcement bars in slabs, beams, columns, lintel and footing.	8
Module – IV Analysis of Rates What is analysis of rates and how it is to be prepared; quantify of materials per unit rate of work; estimating labour; calculating quantity of materials required for different items of work; rate of materials and labour; material and other cost considerations. Market rates; Schedule of Rates. Rate analysis for different items of work commonly done in building construction.	8
Module – V Specification Purpose, necessity of specification; how to write specifications; types of specifications; standard specification; special specifications; brief and detailed specifications and workmanship for common items of work in building construction.	8

REFERENCE MATERIALS:

- 1. Chakraborty M., "Estimating costing and valuation in Civil Engg., Principle and applications (Authors Publication, Kolkata).
- 2. B.N. Dutta "Estimating & Costing in Civil Engineering," UBS Publishers & Distributors Pvt. Ltd. New Delhi.
- 3. CPWD Works Manual 2014 published under the authority of Director General CPWD.
- 4. CPWD Specifications 2009 published by Director General of Works, CPWD.
- 5. CPWD DSR 2016 published by Director General of Works, CPWD.

GAPS IN THE SYLLABUS (TO MEET INDUSTRY/PROFESSION REQUIREMENTS)

POS MET THROUGH GAPS IN THE SYLLABUS

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

POS MET THROUGH TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS & EVALUATION PROCEDURE

DIRECT ASSESSMENT

Assessment Tool	% Contribution during CO Assessment
Lab Journal	30
Lab quizes	20
Progressive viva	20
End Sem Examination	30

Continuous Internal Assessment	% Distribution
Lab Journal	30
Lab quiz	10
Progressive viva	20

Assessment Components	CO1	CO2	CO3	CO4	CO5
Continuous Internal Assessment	Y	Y	Y	Y	Y
Semester End Examination	Y	Y	Y	Y	Y

INDIRECT ASSESSMENT

1. Student Feedback on Course Outcome

COURSE DELIVERY METHODS

CD1	Lecture by use of boards/LCD projectors/OHP projectors.	
CD2	Tutorials/Assignments.	
CD3	Report writing, viva-voce	

MAPPING BETWEEN COURSE OUTCOMES AND POS and PSOS

	PO	PSO	PSO	PSO										
	1	2	3	4	5	6	7	8	9	10	11	1	2	3
CO1	2	2	2	0	1	1	0	0	0	0	0	2	1	0
CO2	2	3	3	0	2	1	0	0	0	0	0	3	2	1
CO3	2	2	3	2	2	0	0	0	0	0	0	3	2	1
CO4	2	2	2	1	3	1	0	0	0	2	0	2	3	1
CO5	1	1	2	0	1	2	3	0	1	0	0	1	2	3

Grading: No correlation - 0, Low correlation - 1, Moderate correlation - 2, High Correlation - 3

Course Outcomes	Course Delivery Method
CO1	CD1, CD2, CD3
CO2	CD1, CD2, CD3
CO3	CD1, CD2, CD3
CO4	CD1, CD2, CD3
CO5	CD1, CD2, CD3

Course Code: CE24214

Course Title: SOLID MECHANICS LABORATORY

Pre-requisite(s): CE24201

Co- requisite(s):

Credits: 1 L: 0 T: 0 P: 2

Class schedule per week: 2

Class: B.Tech.

Semester / Level: IV / 2

Branch: CIVIL ENGINEERING

Name of Teacher:

COURSE OBJECTIVES

This course enables the students to:

4	
1.	To develop practical understanding of stress, strain, and material properties through
	laboratory testing
2.	To enable students to experimentally evaluate the mechanical behaviour of structural
	elements under tension, compression, bending, torsion, and buckling.
3.	To familiarize students with material testing equipment and standard test procedures
	(IS codes)
4.	To strengthen analytical and problem-solving skills by correlating theoretical
	concepts with experimental outcomes.
5.	Develop engineering judgment, reporting skills, and teamwork in conducting
	experiments.

COURSE OUTCOMES (COs)

CO1	Conduct tensile and compression tests to determine mechanical properties of ductile
	and brittle materials.
CO2	Perform bending and deflection experiments on beams to evaluate flexural
	behaviour and stiffness.
CO3	Determine impact strength and hardness of engineering materials and relate to
	material toughness and strength.
CO4	Perform torsion tests to determine modulus of rigidity and torsional behaviour of
	structural elements.
CO5	Evaluate buckling behaviour of columns under different end conditions and compare
	with theoretical predictions.

SYLLABUS (List of experiments)

- 1. Tensile Test on Mild Steel
- 2. Compression Test on Brittle Material
- 3. Bending Test on Beams
- 4. Impact Test (Izod / Charpy)
- 5. Hardness Test (Brinell / Rockwell / Vickers)
- 6. Torsion Test on Mild Steel
- 7. Deflection of Beams (Simply Supported/ Cantilever)
- 8. Column Buckling Test (Euler's Theory Various End Conditions)

REFERENCE MATERIALS:

1. Lab manuals (available on department website)

GAPS IN THE SYLLABUS (TO MEET INDUSTRY/PROFESSION REQUIREMENTS)

POS MET THROUGH GAPS IN THE SYLLABUS

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

POS MET THROUGH TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS & EVALUATION PROCEDURE

DIRECT ASSESSMENT

Assessment Tool	% Contribution during CO Assessment
Lab Journal	30
Lab quizzes	20
Progressive viva	20
End Sem Examination	30

Continuous Internal Assessment	% Distribution
Lab Journal	30
Lab quiz	10
Progressive viva	20

Assessment Components	CO1	CO2	CO3	CO4	CO5
Continuous Internal Assessment	Y	Y	Y	Y	Y
Semester End Examination	Y	Y	Y	Y	Y

INDIRECT ASSESSMENT

1. Student Feedback on Course Outcome

COURSE DELIVERY METHODS

CD1	Laboratory demonstrations by faculty.
CD2	Hands-on experimental performance in groups.
CD3	Data recording, analysis, Report writing, viva-voce

MAPPING BETWEEN COURSE OUTCOMES AND POs and PSOs

	РО	PSO	PSO	PSO										
	1	2	3	4	5	6	7	8	9	10	11	1	2	3
CO1	3	2	0	0	2	0	0	0	0	0	0	3	1	2
CO2	3	3	2	0	2	0	0	0	0	0	0	3	2	3
CO3	3	2	0	0	2	0	0	0	0	0	0	3	1	2
CO4	3	3	2	0	2	0	0	0	0	0	0	3	2	3
CO5	3	3	2	0	2	0	0	0	0	0	0	3	2	3

 $Grading: No\ correlation-0, Low\ correlation-1, Moderate\ correlation-2, High\ Correlation-3$

Course Outcomes	Course Delivery Method
CO1	CD1, CD2, CD3
CO2	CD1, CD2, CD3
CO3	CD1, CD2, CD3
CO4	CD1, CD2, CD3
CO5	CD1, CD2, CD3

Course Code: CE24301

Course Title: STRUCTURAL DESIGN – I Pre-requisite(s): CE24201, CE24202

Co- requisite(s): NA

Credits: 4 L: 4 T: 0 P: 0

Class schedule per week: 4

Class: B.Tech.

Semester / Level: V / 3

Branch: CIVIL ENGINEERING

Name of Teacher:

COURSE OBJECTIVES

This course envisions to impart to students:

1. Equip students with the fundamental principles and design methodologies of Reinforced Concrete Structures using the Limit State Design approach as per standard codes, ensuring safety, serviceability, and structural efficiency.

COURSE OUTCOMES (COs)

CO1	Explain the principles of Limit State Design, including design loads, material
	properties, stress block parameters, and codal safety requirements.
CO2	Design a simple reinforced concrete structural element following codal provisions.
CO3	Recall and interpret key provisions of IS 456:2000 relevant to Limit State Design.

MODULE	(NO. OF LECTURE HOURS)
Module – I: Introduction to Limit State Design of RCC Design Loads, Materials for Reinforced Concrete and Code requirements, Factor of Safety, Characteristic and design loads, Characteristic and design strength, Design Philosophy, Principles of limit states, Stress block parameters for limit state of collapse.	8
Module – II: Design of Beams Design of beams for rectangular and flanged sections for moment and shears, Reinforcement requirements Anchorages of bars, check for development length, Design of RC members for combined bending shear and torsion	14
Module – III: Design of Slabs General consideration of design of slabs, rectangular slabs spanning one direction, rectangular slabs spanning in two directions for various boundary conditions. Circular slab; Slab type staircase.	10
Module – IV: Design of Columns General consideration of design of column, Columns with uni-axial and bi-axial bending, use of design charts.	10
Module – V: Design of Footings Loads on footing, Design basis for limit state method, Design of wall footing, Design of isolated rectangular footing for axial load and uniaxial moment, design of pedestal.	12

TEXTBOOKS:

- 1. Subramanian, N., "Design of Reinforced Concrete Structures", Oxford University Press, New Delhi, 2013.
- 2. Punmia.B.C., Ashok Kumar Jain, Arun Kumar Jain, "Limit State Design of Reinforced Concrete", Laxmi Publication Pvt. Ltd., New Delhi, 2007.
- 3. Varghese, P.C., "Limit State Design of Reinforced Concrete", Prentice Hall of India, Pvt. Ltd., New Delhi, 2002.
- 4. Gambhir.M.L., "Fundamentals of Reinforced Concrete Design", Prentice Hall of India Private Limited, New Delhi, 2006.

REFERENCE BOOKS:

- 1. IS456:2000, Code of practice for Plain and Reinforced Concrete, Bureau of Indian Standards, New Delhi, 2000
- 2. SP16, IS456:1978 "Design Aids for Reinforced Concrete to Bureau of Indian Standards, New Delhi, 1999

GAPS IN THE SYLLABUS (TO MEET INDUSTRY/PROFESSION REQUIREMENTS)

POS MET THROUGH GAPS IN THE SYLLABUS

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

POS MET THROUGH TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS & EVALUATION PROCEDURE

DIRECT ASSESSMENT

Assessment Tool	% Contribution during CO Assessment			
Mid Sem Examination	25			
End Sem Examination	50			
Quiz	10			
Assignment	10			
Teacher's assessment	05			

Continuous Internal Assessment	% Distribution
Mid Sem Examination	50
Quiz and assignment	40
Teacher's assessment	10

Assessment Components	CO1	CO2	CO3
Continuous Internal Assessment	Y	Y	Y
Semester End Examination	Y	Y	Y

INDIRECT ASSESSMENT

1. Student Feedback on Course Outcome

COURSE DELIVERY METHODS

CD1	Lectures by use of boards/LCD projectors/OHP projectors
CD2	Assignments
CD3	Self- learning such as use of NPTEL materials and internets

MAPPING BETWEEN COURSE OUTCOMES AND POs and PSOs

	РО	PO	РО	PO	PO	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	1	2	3
CO1	3	2	2	0	2	2	2	0	0	0	0	3	0	3
CO2	3	3	3	0	2	2	1	0	0	2	0	3	2	3
CO3	3	2	2	0	2	1	1	0	0	0	0	3	0	3

Grading: No correlation - 0, Low correlation - 1, Moderate correlation - 2, High Correlation - 3

Course Outcomes	Course Delivery Method
CO1	CD1, CD2, CD3
CO2	CD1, CD2, CD3
CO3	CD1, CD2, CD3

Course Code: CE24302

Course Title: WATER RESOURCES ENGINEERING

Pre-requisite(s): NA Co- requisite(s): NA

Credits: 3 L: 3 T: 0 P: 0

Class schedule per week: 3

Class: B.Tech.

Semester / Level: V / 3

Branch: CIVIL ENGINEERING

Name of Teacher:

COURSE OBJECTIVES

This course envisions to impart to students:

1.	To acquire the knowledge of hydrology that deals with the occurrence, distribution
	and movement of water on the earth.
2.	To understand the concepts of surface water and groundwater hydrology.
3.	To know about water distribution systems and their designing aspects.
4.	To analyse and design the dams and reservoirs.

COURSE OUTCOMES (COs)

CO1	Understand the hydrologic cycle and investigate various processes of surface water
	hydrology. (K1, K2, K3)
CO2	Understand and analyse the flood routing and ground water hydrology. (K1, K2, K3)
CO3	Understand the basics of irrigation engineering and design the alluvial canal. (K1, K2,
	K3)
CO4	Understand and design various irrigation structures. (K1, K2, K3)
CO5	Analyse and design various types of dams and reservoirs. (K1, K2, K3)

MODULE	(NO. OF LECTURE HOURS)
Module – I: Hydrology Engineering hydrology: Hydrologic cycle, Water budget equation, World water inventory, Precipitation, Forms of precipitation, Measurement of precipitation, Rainfall data, Hyetograph, Mean precipitation over an area, Losses from precipitation, Initial losses, Evapotranspiration, Measurement of evapotranspiration, Blaney Criddle method, Infiltration, Horton's equation, Infiltration index, Runoff, Direct runoff, hydrograph and stream characteristics, Rainfall runoff modelling, Flood hydrograph, Separation of base flow, Unit hydrograph, S-curve	8
Module – II: Hydrology (Continued) Floods and flood routing: Floods, Estimation of flood discharge, Flood routing, Hydrologic flood routing, Storage routing using modified Pul's method, Channel routing using Muskingham method, Hydraulic flood routing Groundwater hydrology: Saturated and unsaturated groundwater, Aquifers, Unconfined and confined aquifers, Steady radial flow to a well in an unconfined aquifer, Steady radial flow to a well in a confined aquifer, Open well, Yield of a well, Recuperation test	8
Module – III: Irrigation Engineering Irrigation: Necessity of irrigation, Advantages and disadvantages of irrigation, Classification of irrigation, Methods of irrigation, Soil water, depth of water and frequency of irrigation, Duty and delta, Factors affecting duty, Consumptive use of water, Irrigation requirements Canals: Classification of canals, Alluvial canal, Design of alluvial canal, Kennedy's method, Lacey's method, Sediment transport theory	8
Module – IV: Irrigation Engineering (Continued) Diversion head work: Component parts, Weir and barrage, Types of weirs, Causes of failure of weirs, Design of impervious floor, Bligh's creep theory Cross drainage work: Necessity of cross drainage work, Types of cross drainage works, Aqueduct, Syphon aqueduct, Superpassage, Syphon, Level crossing, Canal inlet, Classification of aqueduct Canal fall and regulator: Canal fall, Necessity of canal fall, Types of falls, Canal regulators, Distributary head regulator, Cross regulator Canal outlet and escape: Canal outlet, Types of outlets, non-modular outlet, Semi-module, Rigid outlet, Flexibility, Proportionality, Setting, Sensitivity, Canal escape	8
Module – V: Dam and Reservoir Dam and reservoir: Multi-purpose projects, Storage zones of reservoir, Reservoir yield, Rule curve, Storage capacity determination, Reservoir sedimentation Earth dam: Types of earth dams, Design criteria, Dam section, Slope protection, Phreatic line in earth dam, Casagrande's method, Flownet, Seepage in earth dam Gravity dam: Selection of dam site, Forces acting on gravity dam, Combination of forces, Modes of failure of gravity dam, Safety criteria, Principal stress and shear stress, Elementary profile of a gravity dam, Low and high gravity dam, Practical profile of a gravity dam Arch dam: Types of arch dams, Constant radius arch dam, Variable radius arch dam, Constant angle arch dam, Forces acting on arch dam, Design of arch dam	8

TEXTBOOKS:

- 1. Irrigation and Water Power Engineering, B.C. Punmia, Pande B.B. Lal, Ashok Kumar Jain, Arun Kumar Jain, Laxmi Publications.
- 2. Engineering Hydrology, K. Subramanya, Tata McGraw Hill.
- 3. Applied Hydrology, K. N. Muthreja, Tata Mc-Graw Hill.
- 4. Water Resources Engineering through Objective Questions, K. Subramanya, Tata McGraw Hill.
- 5. Irrigation Engineering, G. L. Asawa, Wiley Eastern.

REFERENCE BOOKS:

- 1. Water Resources Engineering, L. W. Mays, Wiley.
- 2. Irrigation, J. D. Zimmerman, John Wiley & Sons.
- 3. Engineering Hydrology, C. S. P. Ojha, R. Berndtsson and P. Bhunya, Oxford.

GAPS IN THE SYLLABUS (TO MEET INDUSTRY/PROFESSION REQUIREMENTS)

POS MET THROUGH GAPS IN THE SYLLABUS

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

POS MET THROUGH TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS & EVALUATION PROCEDURE

DIRECT ASSESSMENT

Assessment Tool	% Contribution during CO Assessment
Mid Sem Examination	25
End Sem Examination	50
Quiz	10
Assignment	10
Teacher's Assessment	05

Continuous Internal Assessment	% Distribution
Mid Sem Examination	50
Quiz and Assignment	40
Teacher's Assessment	10

Assessment Components	CO1	CO2	CO3	CO4	CO5
Continuous Internal Assessment	Y	Y	Y	Y	
Semester End Examination	Y	Y	Y	Y	Y

INDIRECT ASSESSMENT

1. Student Feedback on Course Outcome

COURSE DELIVERY METHODS

CD1	Lecture by use of boards/LCD projectors/OHP projectors					
CD2	Tutorials/Assignments					
CD3	Seminars					
CD4 Mini projects/Projects						
CD5	CD5 Laboratory experiments/teaching aids					
CD6	Industrial/guest lectures					
CD7	Industrial visits/in-plant training					
CD8	Self- learning such as use of NPTEL materials and internets					
CD9	Simulation					

MAPPING BETWEEN COURSE OUTCOMES AND POs and PSOs

	РО	РО	РО	PO	РО	РО	РО	РО	PO	РО	РО	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	1	2	3
CO1	3	3	3	2	1	0	0	0	1	0	0	3	2	2
CO2	3	3	3	2	1	0	0	0	1	0	0	3	2	1
CO3	3	3	3	2	1	0	0	0	1	0	0	3	2	2
CO4	3	3	3	2	1	0	0	0	1	0	0	3	3	3
CO5	3	3	3	2	1	0	0	0	1	0	0	3	3	3

Grading: No correlation – 0, Low correlation – 1, Moderate correlation – 2, High Correlation – 3

Course Outcomes	Course Delivery Method	
CO1	CD1, CD2, CD3	
CO2	CD1, CD2, CD3	
CO3	CD1, CD2, CD3	
CO4	CD1, CD2, CD3	
CO5	CD1, CD2, CD3	

COURSE INFORMATION SHEET

Course Code: CE24303

Course Title: GEOTECHNICAL ENGINEERING

Pre-requisite(s): NA Co- requisite(s): NA

Credits: 3 L: 3 T: 0 P: 0

Class schedule per week: 3

Class: B.Tech.
Semester / Level: V
Branch: All
Name of Teacher:

COURSE OBJECTIVES

This course envisions to impart to students:

1.	To understand the index properties of soil, its relationships, its determination and
	classification of soil
2.	To know the behaviour of soils when exposed to water by studying permeability,
	seepage, compaction and consolidation parameters
3.	To estimate the shear strength parameters under the application of load for different
	conditions
4.	To determine the bearing capacity of soil by various theories
5.	To have knowledge of various types of foundation and the factors governing the
	choice of a suitable type of foundation for specific projects.

CO1	Classify soil from its index properties. (K1, K2, K3)							
CO2	Solve practical problems related to permeability and seepage, evaluate settlement							
	problems due to consolidation and appreciate the importance of soil water interaction.							
	(K1, K2, K3, K4)							
CO3	Compute soil shear strength parameters for different field conditions. (K1, K2, K3)							
CO4	Estimate bearing capacity of foundations. (K1, K2, K3)							
CO5	Select suitable foundation types as per requirement & perform basic analysis for							
	foundation systems including understanding their limitations together with							
	proportioning different shallow foundations & estimate pile load carrying capacity.							
	(K1, K2, K3, K4)							

MODULE	(NO. OF LECTURE HOURS)
Module – I: Fundamentals of Soil Mechanics Introduction: Three-phase system: – soil solids, water and air; Basic definitions and functional relationships: -Specific gravity; Void ratio; Porosity; water content; Unit Weights & Density: -bulk, dry, saturated, submerged and natural; Degree of saturation & Density index; Structure of soil; soil texture:- Size, range and shapes of individual soil particles; field identification of soils, Particles size distribution: Sieve analysis; distribution curve characteristics; grain size analysis for fine-grained and mixed soils; use of hydrometer; Consistency limits and indices; Activity and Sensitivity of clays. Classification of Soils: based on soil type; by origin; by structure; Textural, Unified and Indian Standard Classifications	8
Module – II: Soil Moisture Relationships Capillarity in soils; Free and adsorbed water; Permeability of soils: Darcy's Law; Determination of coefficient of permeability by constant head & falling head tests, Permeability of stratified soil deposits. Factors affecting permeability; Seepage Analysis: Head, Gradient & Potential, Seepage pressure. Two dimensional flow -Laplace equation; Phreatic line in Earth dams; Graphical method of flow net construction: for flow below sheet piles, earth dams with or without core / filter; Seepage discharge across hydraulic structures; Flow net – electrical analogy; Pore water pressure and the concept of effective stress; Quick sand condition, Difference between Compaction and Consolidation; Compaction tests: Standard and Modified Proctor; Factors affecting compaction; Field compaction; One- dimensional consolidation –spring analogy; Terzaghi's theory of one-dimensional consolidation; Consolidation of undisturbed & remoulded soils; Laboratory consolidation test –analysis and results; Coefficient of volume change, Coefficient of consolidation, Compression index, Degree of consolidation; Secondary consolidation	8
Module – III: Shear Strength Measurement of shear strength –Unconfined strength test; Direct shear tests; Vane shear test and Triaxial tests –strain-controlled tests; Concepts of both Unconsolidated and Consolidated specimens subjected to shear without drainage (with or without pore water pressure measurement); drained shear; Mohr strength envelopes for Total and Effective stresses; Mohr-Coulomb failure theory	8
Module – IV: Bearing Capacity Terminology: Ultimate and Safe Bearing Capacities; Allowable Bearing Pressure Gross and Net Bearing Capacities; Net Soil pressure for a specified settlement; Bearing capacity from equations of Terzaghi, Skempton, and Meyerhoff; I. S. Code of Practice; Bearing capacity from N-values; Effect of ground water table, Plate Load test: Procedure& Limitations, determination of permissible bearing capacity for footings in sand and clay soils, Eccentrically loaded footings – useful width concept	8
Module – V: Shallow Foundations and Pile Foundations Type of foundations: Isolated and combined footings; Rafts foundations Proportioning of footings for even settlement, Types of piles; Pile construction; Load carrying capacity of piles: Dynamic and static formulae; Group action and efficiency; Under-reamed piles; Negative skin friction – cause and prevention of its effect on piles; factor of safety of pile subjected to negative skin friction, Pile load tests	8

TEXTBOOKS:

- 1. Soil Mechanics and Foundations by Dr. B.C. Punmia, Ashok Kumar Jain, Arun Kumar Jain
- 2. Geotechnical Engineering by C. Venkataramaiah
- 3. Soil Mechanics and Foundation Engineering by Santhosh Kumar Garg

REFERENCE BOOKS:

- 1. Textbook of Soil Mechanics by V.N.S.Murthy
- 2. Basic & Applied Soil Mechanics by Ranjan Gopal and A. S. R. Rao

GAPS IN THE SYLLABUS (TO MEET INDUSTRY/PROFESSION REQUIREMENTS) NA

POS MET THROUGH GAPS IN THE SYLLABUS NA

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

Design of Foundations, Retaining walls ,Report writing

POS MET THROUGH TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN PO8 & PO9

COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS & EVALUATION PROCEDURE

DIRECT ASSESSMENT

Assessment Tool	% Contribution during CO Assessment
Mid Sem Examination	25
End Sem Examination	50
Quiz	10
Assignment	10
Teacher's assessment	05

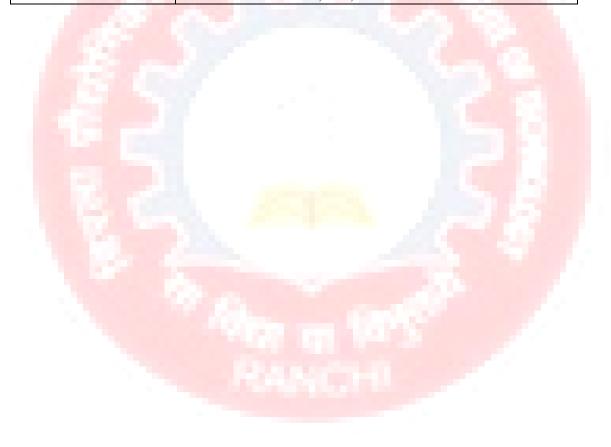
Continuous Internal Assessment	% Distribution
Mid Sem Examination	50
Quiz and assignment	40
Teacher's assessment	10

Assessment Components	CO1	CO2	CO3	CO4	CO5
Continuous Internal Assessment	Y	Y	Y	Y	
Semester End Examination	Y	Y	Y	Y	Y

INDIRECT ASSESSMENT

1. Student Feedback on Course Outcome

COURSE DELIVERY METHODS


CD1	Lectures by use of boards/LCD projectors/OHP projectors
CD2	Tutorials/Assignments
CD3	Self- learning such as use of NPTEL materials and internets

MAPPING BETWEEN COURSE OUTCOMES AND POs and PSOs

	РО	PSO	PSO	PSO										
	1	2	3	4	5	6	7	8	9	10	11	1	2	3
CO1	3	3	1	1	2	2	1	1	1	0	0	3	3	3
CO2	3	3	1	1	2	2	1	1	1	0	0	3	3	3
CO3	3	3	1	1	2	2	1	1	1	0	0	3	3	3
CO4	3	3	1	1	2	2	1	1	1	0	0	3	3	3
CO5	3	3	1	1	2	2	1	1	1	0	0	3	3	3

 $Grading: No\ correlation-0, Low\ correlation-1, Moderate\ correlation-2, High\ Correlation-3$

Course Outcomes	Course Delivery Method
CO1	CD1, CD2, CD3
CO2	CD1, CD2, CD3
CO3	CD1, CD2, CD3
CO4	CD1, CD2, CD3
CO5	CD1, CD2, CD3

COURSE INFORMATION SHEET

Course Code: CE24304

Course Title: ENVIRONMENTAL ENGINEERING

Pre-requisite(s): None Co-requisite(s): None

Credits: 3 L: 3 T: 0 P: 0

Class schedule per week: 3

Class: B.Tech.
Semester / Level: V
Branch: All
Name of Teacher:

COURSE OBJECTIVES

This course envisions to impart to students:

1.	Have knowledge about the importance of water quality and quantity and to study about
	various population forecasting methods
2.	Study about the different water treatment process
3.	Design the various components of water supply system
4.	Know about the various aspects of sewage, sewers and design of sewerage systems
5.	Study about different sewage treatment processes and sludge management

COURSE OUTCOMES (COs)

CO1	Able to understand the importance of water quality and estimate the quantity of water as per
	demands and population. (K ₁ , K ₂ , K ₃)
CO2	Able to know about various water treatment processes (K ₁ , K ₂)
CO3	Know how to design the various components of water supply system (K_1, K_2, K_3, K_4)
CO4	Have knowledge about sewage, sewers, sewerage system and sewer appurtenances(K ₁ ,K ₂)
CO5	Have knowledge about various sewage treatment process and sludge management (K_1, K_2)

MODULE	(NO. OF LECTURE HOURS)
Module – I: Water Sources of water, water quality requirement for different applications, water quality standards, water quality indices, water demand, population forecasting methods.	8
Module – II: Water Treatment Processes Aeration, sedimentation, coagulation flocculation, filtration, disinfection, advanced treatments like adsorption, ion exchange, membrane processes.	8
Module – III: Water Supply Systems Components of water supply system, conveyance of water, distribution system, water supply appurtenances, service reservoirs and design.	8
Module – IV: Sewage Need for conveyance and treatment of sewage, domestic wastewater and storm water estimation, conveyance of sewage - sewers, shapes design parameters, operation and maintenance of sewers, sewage pumping, sewer appurtenances, design of sewerage systems.	8
Module – V: Sewage treatment Physico-chemical and biological treatment, aerobic and anaerobic treatment systems, suspended and attached growth systems, sewage sludge management	8

TEXTBOOKS:

- 1. Water Supply Engineering: Environmental Engineering Vol. I, S.K. Garg
- 2. Sewage Disposal and Air Pollution Engineering: Environmental Engineering Vol. II, S.K. Garg.
- 3. Introduction to Environmental Engineering and Science, G.M. Masters & Wendell Ela.
- 4. Environmental Engineering, Peavy, H., Rowe, D.R, Tchobanoglous, G

REFERENCE BOOKS:

- 1. Manual on Water Supply and Treatment. Ministry of Urban Development, New Delhi.
- 2. Manual on Sewerage and Sewage Treatment Systems, Part A, B and C. Central Public Health and Environmental Engineering Organization, Ministry of Urban Development.
- 3. Metcalfe and Eddy. Wastewater Engineering, Treatment, Disposal and Reuse.
- 4. Water and Wastewater Engineering designs, principle and practice, Mackenzie L. Davis.

GAPS IN THE SYLLABUS (TO MEET INDUSTRY/PROFESSION REQUIREMENTS) Real- time problem and case studies

POS MET THROUGH GAPS IN THE SYLLABUS PO7&PO9

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

POS MET THROUGH TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS & EVALUATION PROCEDURE

DIRECT ASSESSMENT

Assessment Tool	% Contribution during CO Assessment
Mid Sem Examination	25
End Sem Examination	50
Quiz	10
Assignment	10
Teacher's assessment	05

Continuous Internal Assessment	% Distribution
Mid Sem Examination	50
Quiz and assignment	40
Teacher's assessment	10

Assessment Components	CO1	CO2	CO3	CO4	CO5
Continuous Internal Assessment	Y	Y	Y	Y	
Semester End Examination	Y	Y	Y	Y	Y

INDIRECT ASSESSMENT

1. Student Feedback on Course Outcome

COURSE DELIVERY METHODS

CD1	Lectures by use of boards/LCD projectors/OHP projectors
CD2	Tutorials/Assignments
CD3	Self- learning such as use of NPTEL materials and internets

MAPPING BETWEEN COURSE OUTCOMES AND POS and PSOS

	PO	PO	РО	РО	PO	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	1	2	3
CO1	3	3	2	0	3	3	1	0	0	0	0	3	3	3
CO2	3	3	2	0	3	3	1	0	0	0	0	3	3	3
CO3	3	3	2	0	3	3	1	0	0	0	0	3	3	3
CO4	3	3	2	0	3	3	1	0	0	0	0	3	3	3
CO5	3	3	2	0	3	3	1	0	0	0	0	3	3	3

Grading: No correlation – 0, Low correlation – 1, Moderate correlation – 2, High Correlation – 3

Course Outcomes	Course Delivery Method
CO1	CD1, CD2, CD3
CO2	CD1, CD2, CD3
CO3	CD1, CD2, CD3
CO4	CD1, CD2, CD3
CO5	CD1, CD2, CD3

COURSE INFORMATION SHEET

Course Code: CE24305

Course Title: TRANSPORTATION ENGINEERING

Pre-requisite(s): NA Co- requisite(s): NA

Credits: 3 L:3 T:0 P:0

Class schedule per week: 3

Class: B.TECH. Semester / Level: V / 3

Branch: CIVIL ENGINEERING

Name of Teacher:

COURSE OBJECTIVES

This course envisions to impart to students to:

1.	To understand the fundamentals of highway planning, highway alignment and
	concepts of geometric design of highways (K1, K2, K3, K4, K6).
2.	To analyse traffic flow fundamentals and plan traffic management (K2, K4).
3.	To design flexible and rigid pavements and execute construction and maintenance
	of highways (K2, K4, K6).
4.	To understand the various components of railway and fundamentals of railway
	engineering (K1, K2, K3)
5.	To study the concepts of geometric design of railway track and design of turn out,
	cross-overs and crossings (K4)

COURSE OUTCOMES (COs)

CO1	Able to execute highway planning, alignment and design highway geometrics (K1,						
	K2, K3, K4, K5, K6).						
CO2	Able to understand traffic flow fundamentals and plan traffic management and						
	control (K2, K4).						
CO3	Able to design flexible and rigid pavements and apply quality control in						
	construction / maintenance works (K2, K4, K6).						
CO4	Able to understand the various components in railway engineering and its						
	maintenance (K1, K2, K3).						
CO5	Able to design curves, crossings and turn-overs (K4).						

MODULE	(NO. OF LECTURE HOURS)
Module – I: Highway Planning, Highway Alignment and Geometric Design of Highways Road pattern, Fundamental Principles of Highway Alignment, Factors controlling the selection of alignment, Engineering Surveys for a Highway Project; Road Cross-sectional Elements: Width of Carriageway, Formation Width, Right of Way, Camber, Shoulder, Kerb, Road Margins, Design Speed, Sight Distances, Design of Horizontal curves, Super elevation, Extra widening on Horizontal curves, Transition curves, Set back distance at curves, Gradient, Design of Vertical curves – Summit and Valley curves	8
Module – II: Traffic Engineering Traffic Volume and Speed Studies, peak hour factor, Travel Time and Delay Studies, O-D studies, Statistical analysis of traffic data, Traffic flow elements and their inter-relationship, Traffic Capacity and LOS concept, PCU concept, Traffic Control Devices, Parking Studies, Accident studies, Intersections — At grade and Grade Separated Intersections and channelization, Traffic Control Devices, Traffic Signs, Traffic Signal Systems (Trail Cycle Method and Webster's Method), Traffic Islands, Road Markings; Trip generation, Trip distribution and Modal Split.	8
Module – III: Pavement Design and Construction Types of Pavements, Flexible and Rigid pavement, Pavement composition, Stresses in flexible pavements, concept of ESWL, EAL, VDF, Flexible Pavement Design as per IRC, Stresses in Concrete Pavements, Modulus of subgrade reaction, Design of rigid pavements as per IRC; Desirable properties and quality control tests of highway materials, bituminous mix design; constructions of cement concrete pavement and their joints (brief); and overlay design by IRC method	8
Module – IV: Fundamentals of Railway Engineering Common terminologies, Permanent way, Gauge, Stresses in Railway Track, Traction and Tractive Resistances, Coning of Wheels, Function of Rails, Type of rail sections, wear on rails, rail failures, Rail flaw detection, Creep of rails, Rail Joints, Function of sleepers, Types of sleepers, sleeper density, Ballast, Rail fixtures and fastenings, Formation and subgrade, Failures in rail embankment and measures, Location surveys and alignment, Signaling and interlocking.	8
Module – V: Geometric Design of Railway Tracks, Points and Crossings and Junctions Cross-sectional Elements of a railway track, Horizontal curves, Super elevation or Cant, Equilibrium Cant, Cant deficiency, Cant excess, Negative superelevation, Gradients, Vertical curves, Turnouts, Points and switches, Crossings, Type of Crossings.	8

TEXTBOOKS:

- 1. Khanna S. K., Justo C. E. G., and Veeraraghavan A.: Highway Engineering (Nem Chand & Bros.)
- 2. Garber N. J. and Hoel L.: Traffic & Highway Engineering (Cengage Learning)
- 3. Chandra S. and Agrawal M.M.: Railway Engineering (Oxford University Press)
- 4. Saxena S.C. and Arora S.P.: A Text Book of Railway Engineering (DhanpatRai Publications)

REFERENCE BOOKS:

- 1. Yoder, E. J., Witczak, M.W.: Principles of Pavement Design (Wiley)
- 2. Ministry of Road Transport and Highways (5th Rev): Specifications for Road and Bridge Works (Indian Road Congress)

GAPS IN THE SYLLABUS (TO MEET INDUSTRY/PROFESSION REQUIREMENTS)

POS MET THROUGH GAPS IN THE SYLLABUS

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

POS MET THROUGH TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS & EVALUATION PROCEDURE

DIRECT ASSESSMENT

Assessment Tool	% Contribution during CO Assessment
Mid Sem Examination	25
End Sem Examination	50
Quiz	10
Assignment	10
Teacher's assessment	05

Continuous Internal Assessment	% Distribution
Mid Sem Examination	50
Quiz and assignment	40
Teacher's assessment	10

Assessment Components	CO1	CO2	CO3	CO4	CO5
Continuous Internal Assessment	Y	Y	Y	Y	
Semester End Examination	Y	Y	Y	Y	Y

INDIRECT ASSESSMENT

1. Student Feedback on Course Outcome

COURSE DELIVERY METHODS

CD1	Lectures by use of boards/LCD projectors/OHP projectors
CD2	Tutorials/Assignments
CD3	Seminars
CD4	Mini projects/Projects
CD5	Laboratory experiments/teaching aids
CD6	Industrial/guest lectures
CD7	Industrial visits/in-plant training
CD8	Self- learning such as use of NPTEL materials and internets
CD9	Simulation

MAPPING BETWEEN COURSE OUTCOMES AND POs and PSOs

	PO	PO1	PO1	PSO	PSO	PSO								
	1	2	3	4	5	6	7	8	9	0	1	1	2	3
CO1	3	3	3	2	2	1	2	2	2	2	3	3	3	3
CO2	3	3	2	1	2	1	2	3	2	2	2	3	3	3
CO3	3	3	3	3	1	2	2	3	2	1	2	3	3	3
CO4	3	3	1	1	2	2	2	3	2	2	2	3	3	3
CO5	3	3	3	2	2	2	2	3	2	1	2	3	3	3

Grading: No correlation - 0, Low correlation - 1, Moderate correlation - 2, High correlation - 3

Course Outcomes	Course Delivery Method
CO1	CD1, CD2 and CD8
CO2	CD1, CD2 and CD8
CO3	CD1, CD2, CD4, CD5
CO4	CD8
CO5	CD1, CD2 and CD8

COURSE INFORMATION SHEET

Course Code: CE24306

Course Title: WATER RESOURCES ENGINEERING LABORATORY

Pre-requisite(s): NA Co- requisite(s): NA

Credits: 1 L: 0 T: 0 P: 2

Class schedule per week: 2

Class: B.Tech.

Semester / Level: V/3

Branch: CIVIL ENGINEERING

Name of Teacher:

COURSE OBJECTIVES

This course enables the students to:

1.	To study flow over notches, weirs, and spillways and compare it for various shapes of
	these flow measuring devices and structures.
2.	To study and investigate the flow in open channels.
3.	To apply the concepts of hydrology in solving real life problems.
4.	To analyse and design hydraulic structures.

COURSE OUTCOMES (COs)

CO1	Understand and compare the flow over various discharge measuring devices and
	structures. (K1, K2, K3)
CO ₂	Apply the basic concepts of fluid dynamics in solving the real life problems. (K1, K2,
	K3)
CO3	Understand and apply the basic concepts of hydrology in solving real life problems.
	(K1, K2, K3)
CO4	Understand and analyse the groundwater flow and its analogy. (K1, K2, K3)
CO5	Analyse and design gravity dams and other hydraulic structures. (K1, K2, K3)

SYLLABUS (List of Experiments: A minimum ten experiments may be selected from the list given below)

- 1. Comparison of coefficient of discharge for various shapes of notches.
- 2. Comparison of coefficient of discharge for various shapes of weirs.
- 3. Flow over a model of spillway.
- 4. Losses in commercial pipes and pipe fittings.
- 5. Roughness coefficients of channel.
- 6. Hydraulic jump in rectangular channel.
- 7. Mean precipitation over an area by Thiessen polygon method.
- 8. Unit hydrograph and S-curve.
- 9. Flow through model of an earth dam.
- 10. Hele-Shaw apparatus.
- 11. Analysis of forces on a gravity dam.
- 12. Design of a vertical drop weir.
- 13. Design of a canal fall.
- 14. Design of canal regulators.
- 15. Design of syphon aqueduct.

REFERENCE MATERIALS:

- 1. Hydraulics and Fluid Machines, P. N. Modi and S. H. Seth, Standard Book House.
- 2. Flow in Open Channels, K. Subramanya, Tata McGraw Hills.
- 3. Engineering Hydrology, K. Subramanya, Tata McGraw Hill.
- 4. Irrigation and Water Power Engineering, B.C. Punmia, Pande B.B. Lal, Ashok Kumar Jain, Arun Kumar Jain, Laxmi Publications.
- 5. Experimental Fluid Mechanics, G. L. Asawa, Nemchand and Bros, Roorkee.

GAPS IN THE SYLLABUS (TO MEET INDUSTRY/PROFESSION REQUIREMENTS)

POS MET THROUGH GAPS IN THE SYLLABUS

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

POS MET THROUGH TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS & EVALUATION PROCEDURE

DIRECT ASSESSMENT

Assessment Tool	% Contribution during CO Assessment
Lab Journal	30
Lab Quizzes	20
Progressive Viva	20
End Sem Examination	30

Continuous Internal Assessment	% Distribution
Lab Journal	50
Lab Quiz	16.7
Progressive Viva	33.3

Assessment Components	CO1	CO2	CO3	CO4	CO5
Continuous Internal Assessment	Y	Y	Y	Y	Y
Semester End Examination	Y	Y	Y	Y	Y

INDIRECT ASSESSMENT

1. Student Feedback on Course Outcome

COURSE DELIVERY METHODS

CD1	Lecture by use of boards/LCD projectors/OHP projectors			
CD2	Tutorials/Assignments			
CD3	Seminars			
CD4	Mini projects/Projects			
CD5	Laboratory experiments/teaching aids			
CD6	Industrial/guest lectures			
CD7	Industrial visits/in-plant training			
CD8	Self- learning such as use of NPTEL materials and internets			
CD9	Simulation			

MAPPING BETWEEN COURSE OUTCOMES AND POS and PSOS

	РО	PO	PO	РО	РО	PO	PO	PO	PO	PO	РО	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	1	2	3
CO1	3	2	2	2	1	0	0	3	2	0	0	3	1	1
CO2	3	2	2	2	1	0	0	3	2	0	0	3	2	1
CO3	3	3	2	2	1	1	0	3	2	0	0	3	2	2
CO4	3	3	2	3	2	0	0	3	2	0	0	3	1	1
CO5	3	3	3	2	1	1	0	3	2	0	0	3	3	2

Grading: No correlation – 0, Low correlation - 1, Moderate correlation – 2, High Correlation - 3

Course Outcomes	Course Delivery Method
CO1	CD5, CD8
CO2	CD5, CD8
CO3	CD5, CD8
CO4	CD5, CD8
CO5	CD5, CD8

COURSE INFORMATION SHEET

Course Code: CE24307

Course Title: ENVIRONMENTAL ENGINEERING LABORATORY

Pre-requisite(s): NA Co- requisite(s): NA

Credits: 1 L: 0 T: 0 P: 2

Class schedule per week: 2

Class: B.Tech.
Semester / Level: I
Branch: All
Name of Teacher:

COURSE OBJECTIVES

This course enables the students to:

1.	To describe the concept of water quality with reference to different standards (K1,
	K2)
2.	To apply different procedures for physico-chemical analysis of water (K3)
3.	To interpret and write water and wastewater quality analysis report (K2, K3)
4.	To assess optimum dosing of chemicals for water treatment (K4)
5.	To assess bacteriological quality of water (K4)

COURSE OUTCOMES (COs)

CO1	Explain the importance of water quality and various standards (K1, K2)
CO2	Choose different procedures for physico-chemical analysis of water samples (K3)
CO3	Prepare report on water and wastewater quality (K2, K3)
CO4	Illustrate the process of optimizing chemical dosing for water treatment (K4)
CO5	Outline the testing of bacteriological quality of water (K4)

SYLLABUS (List of experiments)

- 1. Determination of pH, EC and turbidity of water
- 2. Determination of total solids, total dissolved solids and total suspended solids of water
- 3. Determination of acidity, alkalinity and total hardness of water
- 4. Determination of dissolved oxygen (DO) and BOD of water and wastewater
- 5. Determination of COD of water and wastewater
- 6. Determination of chloride and residual chlorine of water
- 7. Determination of nitrate, phosphate and sulphate in water
- 8. Determination of fluoride in water
- 9. Chemicals dose optimisation for water treatment
- 10. Coliform count of water and wastewater samples by the MPN method

REFERENCE MATERIALS:

- 1. Lab manuals (available on department website)
- 2. Standard Methods of Testing of Water and Wastewater" Use by APHA, AWWA, AND WPCF (USA)
- 3. Chemistry for Environmental Engineering, Clair N. Sawyer, Perry Mccarty, Gene F. Parkin, McGraw Hill Inc. New York, USA

GAPS IN THE SYLLABUS (TO MEET INDUSTRY/PROFESSION REQUIREMENTS)

POS MET THROUGH GAPS IN THE SYLLABUS

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

POS MET THROUGH TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS & EVALUATION PROCEDURE

DIRECT ASSESSMENT

Assessment Tool	% Contribution during CO Assessment
Lab Journal	30
Lab quizzes	20
Progressive viva	20
End Sem Examination	30

Continuous Internal Assessment	% Distribution
Lab Journal	30
Lab quiz	10
Progressive viva	20

Assessment Components	CO1	CO2	CO3	CO4	CO5
Continuous Internal Assessment	Y	Y	Y	Y	Y
Semester End Examination	Y	Y	Y	Y	Y

INDIRECT ASSESSMENT

1. Student Feedback on Course Outcome

COURSE DELIVERY METHODS

CD1	Introductory lecture by use of boards/LCD projectors
CD2	Laboratory experiments/ teaching aid
CD3	Self- learning such as use of NPTEL materials and internets

MAPPING BETWEEN COURSE OUTCOMES AND POs and PSOs

	РО	PO	РО	PSO	PSO	PSO								
	1	2	3	4	5	6	7	8	9	10	11	1	2	3
CO1	1	1	3	3	0	3	0	1	1	0	1	3	0	3
CO2	2	1	3	3	0	3	0	1	1	0	1	3	0	3
CO3	2	1	3	3	0	3	0	1	2	0	1	3	0	3
CO4	2	1	3	3	2	3	0	1	1	0	1	3	0	3
CO5	2	1	3	3	0	3	0	1	1	0	1	3	0	3

Grading: No correlation – 0, Low correlation - 1, Moderate correlation – 2, High Correlation - 3

Course Outcomes	Course Delivery Method
CO1	CD1, CD2, CD3
CO2	CD1, CD2, CD3
CO3	CD1, CD2, CD3
CO4	CD1, CD2, CD3
CO5	CD1, CD2, CD3

COURSE INFORMATION SHEET

Course Code: CE 24308

Course Title: STRUCTURAL DESIGN II

Pre-requisite(s): NA Co- requisite(s): NA

Credits: 4 L:4 T:0 P:0

Class schedule per week: 4

Class: B.Tech.

Semester / Level: VI / 3

Branch: CIVIL ENGINEERING

Name of Teacher:

COURSE OBJECTIVES

This course envisions to impart to students to:

This course enables the students to develop an understanding of structural steel properties, design approaches, and loading standards, apply IS 800:2007 provisions for designing structural elements and their connections, and enhance analytical and problem-solving skills for real-world steel structure applications.

COURSE OUTCOMES (COs)

CO1	Apply fundamental concepts of structural steel properties, design approaches, and
	loading standards to analyze and assess lateral loads based on IS codes. (K1, K2,
	K3)
CO3	Design structural connections using bolts and welds, considering both direct and
	eccentric loading, ensuring compliance with relevant IS standards.(K3, K4)
CO2	Utilize IS 800:2007 provisions to design various structural steel elements, including
	tension members, compression members, beams, and their connections, ensuring
	compliance with codal requirements. (K3, K4)

MODULE	(NO. OF LECTURE HOURS)
Module – I: Structural Steel and Design Approaches Engineering properties and characteristics of structural steel, Types of sections, Rolling process – necessity and importance. Loads and loading standards, assessment of lateral loads as per IS codes. Introduction to Plastic analysis, Methods of design – working stress, LRFD and Limit state design.	10
Module – II: Connections Bolted connections - Design of bolted connections subjected to direct and eccentric loadings. Welded connections - Design of welded connections subjected to direct and eccentric loadings.	10
Module – III: Design of Tension Members Types of tension members, sectional areas, types of failure, design strength, design of tension members, lug angles and splices.	10
Module – IV: Compression Members and foundation design Types of section, section classification, column formulae, buckling classification. Design strength of simple members and struts, Design of built up and compound members including splicing, lacing and battening, Design of column bases and foundation.	10
Module – V: Design of Flexural Members Concept of lateral restraint, laterally supported and unsupported beams, section classification, Elastic and plastic sections modulus, Determination plastic section modulus of sections, IS criteria for design, Design of simple and plated beams	10

TEXTBOOKS:

- 1. Design of Steel Structures, N. Subramanyam, Oxford University Press, New Delhi, India, 2008
- 2. Limit State Design of Steel Structures, S. K. Duggal, Tata McGraw Hill Education Private Limited, New Delhi, India, 2015
- 3. Design of Steel Structures, P. Dayarathnam, Prentice Hall India, New Delhi, India, 2011

REFERENCE BOOKS:

- 1. IS: 800 2007 Code of Practice for General Construction in Steel
- 2. SP: 6(1) 1964 Handbook for Structural Engineers: I. Structural Steel Sections
- 3. Teaching Resources for Structural Steel Design Vol. I & II, INSDAG, Kolkatta.
- 4. Gaylord, E.H., Gaylord, N.C., and Stallmeyer, J.E., Design of Steel Structures, 3rd edition, McGraw-Hill Publications.

GAPS IN THE SYLLABUS (TO MEET INDUSTRY/PROFESSION REQUIREMENTS)

POS MET THROUGH GAPS IN THE SYLLABUS

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

POS MET THROUGH TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS & EVALUATION PROCEDURE

DIRECT ASSESSMENT

Assessment Tool	% Contribution during CO Assessment
Continuous Internal Assessment	25
Mid Sem Exam	25
Semester End Examination	50

Continuous Internal Assessment	% Distribution
Quiz	10
Assignment	10
Teachers Assesment	5

Assessment Components	CO1	CO2	CO3
Continuous Internal Assessment	1	✓	1
Mid Sem Exam	1	✓	
Semester End Examination	✓	✓	1

INDIRECT ASSESSMENT

- 1. Student Feedback on Faculty
- 2. Student Feedback on Course Outcome

COURSE DELIVERY METHODS

CD1	Lecture by use of boards/LCD projectors/OHP projectors
CD2	Tutorials/Assignments
CD3	Seminars
CD4	Mini projects/Projects
CD5	Laboratory experiments/teaching aids
CD6	Industrial/guest lectures
CD7	Industrial visits/in-plant training
CD8	Self- learning such as use of NPTEL materials and internets
CD9	Simulation

MAPPING BETWEEN COURSE OUTCOMES AND POS and PSOS

	PO	PO	PO	PO	PO						PO	PS	PS	
	1	2	3	4	5	PO6	PO7	PO8	PO9	PO10	11	O1	O2	PSO3
CO1	3	3	3	1	1	2		2		2	1	3		
CO2	3	3	3	1	2	3		3		1		3		3
CO3	3	3	3	1	2	3		3		1	1	3		3

Grading: No correlation – 0, Low correlation - 1, Moderate correlation – 2, High correlation - 3

Course Course Delivery Method Outcomes		
CO1	CD1, CD8	
CO2	CD1, CD2, CD4, CD8	
CO3	CD1, CD2, CD4, CD8	

COURSE INFORMATION SHEET (PE2)

Course Code: CE 24351

Course Title: ADVANCED STRUCTURAL ANALYSIS

Pre-requisite(s): CE24202, CE24207

Co- requisite(s): NA

Credits: 3 L:3 T:0 P:0

Class schedule per week: 3

Class: B.Tech.

Semester / Level: VI / 4

Branch: CIVIL ENGINEERING

Name of Teacher:

COURSE OBJECTIVES

This course envisions to impart to students to:

1.	Develop basic knowledge of structural analysis so that the students can solve real						
	engineering problems. (K1, K2)						
2.	Understand behaviour of different kinds of framed structures subjected to simple						
	and complex mechanical loadings. (K1, K2)						
3.	Analyse and design safe and sound civil engineering structures. (K3, K4)						

COURSE OUTCOMES (COs)

After the completion of this course, students will be able to:

CO ₁	Evaluate the stability and determinacy of a given structure. (K1, K2, K3)								
CO ₂	Evaluate safety of a proposed framed structure before construction and								
	manufacturing.(K4)								
CO3	Evaluate the behaviour of framed structures under the action of complex static								
	loads.(K1, K2, K3, K4)								
CO4	Evaluate the behaviour of framed structures using advanced numerical								
	techniques.(K1, K2, K3, K4)								
CO5	Evaluate deflections in framed structure. (K3, K4)								

K1- Remember; K2- Understand; K3- Apply; K4- Analyse; K5- Evaluate; K6- Create

MODULE	(NO. OF LECTURE HOURS)
Module – I: Introduction Static and Kinematic Indeterminacy, Stability of Structures, Flexibility and Stiffness Matrix Methods. Matrix Algebra and Gauss Jordan Elimination Method.	8
Module – II: Matrix Method of Analysis Coordinate Systems; Degree of freedom; Displacement and Force Transformation Matrices	8
Module – III: Stiffness Matrix Method for Trusses Member stiffness relations: local and global. Structural stiffness relation. Analysis of trusses.	8
Module – IV: Stiffness Matrix Method for Beams Conventional and reduced Beam Element Stiffness relations (4 and 2 DOF); Structural stiffness relation. Analysis of beams and continuous beams.	8
Module – V: Stiffness Matrix Method for Plane Frames Beam Element Stiffness relations (6 DOF): local and global; Structural stiffness relation. Analysis of plane frames.	8

TEXTBOOKS:

- 1. Devdas Menon, "Advanced Structural Analysis", Narosa Publishing House, 2009.
- Asslam Kassimali, "Matrix Analysis of Structures", Brooks/Cole Publishing Co., USA, 1999.
 Amin Ghali, Adam M Neville and Tom G Brown, "Structural Analysis: A Unified Classical and Matrix Approach", Sixth Edition, 2007, Chapman & Hall.

REFERENCE BOOKS:

1. Matrix analysis of framed structures, Weaver and Gere.

GAPS IN THE SYLLABUS (TO MEET INDUSTRY/PROFESSION REQUIREMENTS)

POS MET THROUGH GAPS IN THE SYLLABUS

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

POS MET THROUGH TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS & EVALUATION PROCEDURE

DIRECT ASSESSMENT

Assessment Tool	% Contribution during CO Assessment
Continuous Internal Assessment	25
Mid Sem Examination Marks	25
End Sem Examination Marks	50

Continuous Internal Assessment	% Distribution
Quiz	10
Assignment	10
Teacher Assessment	5

Assessment Components	CO1	CO2	CO3	CO4	CO5
Continuous Internal Assessment	✓	✓	✓	✓	✓
Mid Sem Exam	✓	✓			
Semester End Examination	✓	✓	✓	✓	✓

INDIRECT ASSESSMENT

- 1. Student feedback on teaching quality and teaching methods adopted
- 2. Student feedback on course syllabus and course outcome

COURSE DELIVERY METHODS

CD1	Lectures by use of boards/LCD projectors/OHP projectors
CD2	Tutorials/Assignments
CD3	Seminars
CD4	Mini projects/Projects
CD5	Laboratory experiments/teaching aids
CD6	Industrial/guest lectures
CD7	Industrial visits/in-plant training
CD8	Self- learning such as use of NPTEL materials and internets
CD9	Simulation

MAPPING BETWEEN COURSE OUTCOMES AND POs and PSOs

	PO	РО	PO	РО	PO	PO	PO	РО	PO	PO1	PO1	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	0	1	1	2	3
CO1	3	2	3	2	2							3	1	
CO2	3	2	3	2	2						1	3	1	
CO3	3	2	3	2	2						1	3	1	
CO4	3	2	3	2	2						1	3	1	
CO5	3	2	3	2	2							3	1	

Grading: No correlation - 0, Low correlation - 1, Moderate correlation - 2, High correlation - 3

Course Outcomes	Course Delivery Method
CO1	CD1, CD2, CD8
CO2	CD1, CD4, CD8
CO3	CD1, CD2, CD8
CO4	CD1, CD2, CD8
CO5	CD1, CD2, CD8

COURSE INFORMATION SHEET (PE2)

Course Code: CE24352

Course Title: FINITE ELEMENT METHOD

Pre-requisite(s): NA Co- requisite(s): NA

Credits: 3 L: 3 T: 0 P: 0

Class schedule per week: 3

Class: B.Tech.
Semester / Level: VI
Branch: CEE
Name of Teacher:

COURSE OBJECTIVES

This course envisions to impart to students:

1.	To understand the fundamental concepts of finite element approximation for
	solid mechanics problems
2.	To understand the basic function approximation techniques commonly used for
	finite element simulations
3.	To apply the finite element formulation for solving bar problems
4.	To solve tensile bar, column, 2D truss problems using finite element method
5.	To solve deflection of 2D beams using finite element method

COURSE OUTCOMES (COs)

CO1	Understand the fundamental concepts of finite element method, and elasticity
	(K1, K2)
CO2	Understand different functional approximation techniques using finite element
	formulation (K1, K2)
CO3	Apply the knowledge of FEM to solve problems of displacement of bar elements
	(K1, K2)
CO4	Apply FEM to solve tension bars, columns, 2D truss structures (K2, K3)
CO5	Apply FEM to solve simple beam deflection problems (K2, K3)

MODULE	(NO. OF LECTURE HOURS)
Module – I: Introduction to the Stiffness Method General description and analysis procedure; Basic equations in elasticity, Linear constitutive Laws; Concept of element and node, Element aspect ratio, Nodal degree of freedom, Coordinate systems, Generalized coordinate form of displacement, Convergence requirements. Matrix Displacement Formulation: Matrix displacement equation, Stiffness matrix and its properties, Stiffness matrices for bar element, truss element, beam element; Use of symmetry and partitioning of matrix	8
Module – II: Variational formulation and Shape function General variational method in elasticity, Potential energy in elastic bodies, Principle of minimum potential energy, Rayleigh-Ritz method. Polynomial shape functions, Shape functions in Cartesian coordinates and Natural co-ordinates, Shape functions using Lagrange polynomials, Shape functions for serendipity family elements	8
Module – III: Strain Displacement Matrix and Stiffness Equation Assembly Strain displacement matrices for bar element, CST element, beam element; Stiffness matrix for CST element for direct approach, Iso-parametric formulations, Jacobian matrix.	8
Module – IV: Analysis of Bars and Trusses Analysis of tension bars/columns. Two dimensional trusses, Calculation of reactions.	8
Module – V: Analysis of Beams and Rigid Frames Beam analysis, Moment curvature relation, Strain energy, Analysis of two-dimensional rigid frames.	8

TEXTBOOKS:

- 1. An Introduction to the Finite Element, J. N. Reddy, McGraw-Hill, Inc.
- 2. Fundamentals of Finite Element Analysis, David V. Hutton, McGraw-Hill Inc.
- 3. Finite Element Modelling for Stress Analysis, Robert D. Cook, John Wiley & Sons, Inc.

REFERENCE BOOKS:

- 1. Finite Element Analysis, S. S. Bhavikatti, New Age International Publishers
- 2. The Finite Element Method for Solid and Structural Mechanics, O. C. Zienkiewicz & R. L. Taylor, Butterworth-Heinemann
- 3. Finite Element Procedures, Klaus-Jurgen Bathe, Prentice-hall of India Pvt Ltd.
- 4. The Finite Element Method: Linear Static and Dynamic Finite Element Analysis, Thomas J. R. Huges, Dover Publications Inc.

GAPS IN THE SYLLABUS (TO MEET INDUSTRY/PROFESSION REQUIREMENTS)

POS MET THROUGH GAPS IN THE SYLLABUS

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

POS MET THROUGH TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS & EVALUATION PROCEDURE

DIRECT ASSESSMENT

Assessment Tool	% Contribution during CO Assessment
Mid Sem Examination	25
End Sem Examination	50
Quiz	10
Assignment	10
Teacher's assessment	05

Continuous Internal Assessment	% Distribution
Mid Sem Examination	50
Quiz and assignment	40
Teacher's assessment	10

Assessment Components	CO1	CO2	CO3	CO4	CO5
Continuous Internal Assessment	Y	Y	Y	Y	
Semester End Examination	Y	Y	Y	Y	Y

INDIRECT ASSESSMENT

1. Student Feedback on Course Outcome

COURSE DELIVERY METHODS

CD1	Lectures by use of boards/LCD projectors/OHP projectors
CD2	Tutorials/Assignments
CD3	Self- learning such as use of NPTEL materials and internets

MAPPING BETWEEN COURSE OUTCOMES AND POs and PSOs

	PO	РО	РО	РО	PO	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	1	2	3
CO1	3	3	1					1	1			2		
CO2	3	3	1						1					
CO3	3	3	1											
CO4	3	3	1					2	1					3
CO5	3	3	1					2	1					3

Grading: No correlation - 0, Low correlation - 1, Moderate correlation - 2, High Correlation - 3

Course Outcomes	Course Delivery Method
CO1	CD1, CD2, CD3
CO2	CD1, CD2, CD3
CO3	CD1, CD2, CD3
CO4	CD1, CD2, CD3
CO5	CD1, CD2, CD3

COURSE INFORMATION SHEET(PE2)

Course Code: CE24353

Course Title: STRCUTURAL DYNAMICS Pre-requisite(s): CE24201, CE24202, CE24207

Co- requisite(s): NA

Credits: 3 L: 3 T: 0 P: 0

Class schedule per week: 3

Class: B.Tech. Semester / Level: VI Branch: CEE Name of Teacher:

COURSE OBJECTIVES

This course envisions to impart to students:

1.	To study dynamic performance of a structure with idealization of structure as single degree of					
	freedom, multiple degree of freedom system and to determine the response to free and forced					
	vibrations. (K2, K3, K4, K5)					
2.	To analyse structural behaviour subjected to earthquake loading. (K3, K4)					

COL	Able to calculate response of SDOE and MDOE systems (V2 V2 V4)					
CO1	Able to calculate response of SDOF and MDOF systems. (K2, K3, K4)					
CO ₂	Able to find out mode shape, frequencies and amplitude for motion of two/three DOF systems. (K2,					
	K3, K4)					
CO3	Apply the knowledge of FEM to solve problems of displacement of bar elements (K1, K2)					
CO4	Able to analyse structure for earthquake forces according to IS code provisions. (K2, K3, K4)					

MODULE	(NO. OF LECTURE HOURS)
Module – I Introduction: Overview of Structural Dynamics, Single Degree of Freedom Systems – Analysis of Free Vibrations – undamped and damped systems, estimation of damping by logarithmic decrement method.	8
Module – II Formulation of equation of motion for generalized SDOF dynamic problems using virtual work method, Response of SDOF systems to Harmonic, Periodic, Impulse Loads	8
Module – III Formulation of equation of motion for two/three DOF systems, finding mode shapes and frequencies by solving the determinantal equation and iterative techniques, use of sweeping matrices for obtaining higher modes, Modal superposition.	8
Module – IV Response of single and multiple DOFS systems to Earthquake Loading using Time-Stepping Methods based on Forward Cauchy Euler, Backward Cauchy Euler, Central Difference Method, Newmark-Beta Method and Trapezoidal Rule, Accuracy, stability of numerical methods.	8
Module – V Earthquake response analysis of multi-DOF systems subjected to earthquake ground motion, Concept of modal mass and mode participation factors, Response Spectrum Analysis, Introduction to IS code provisions regarding earthquake.	8

TEXTBOOKS:

- 1. Chopra, A.K., "Dynamics of Structures Theory and Applications to Earthquake Engineering", Second Edition, Pearson Education, 2003.
- 2. Patrick Paultre, "Dynamics of Structures", John Willey & Sons, 2008.
- 3. Paz, M., "Structural Dynamics Theory & Computation", CSB Publishers & Distributors, Shahdara, Delhi, 1985

REFERENCE BOOKS:

1. Ray W. Clough & Penzien, "Dynamics of Structures", McGraw Hill, 1993.

GAPS IN THE SYLLABUS (TO MEET INDUSTRY/PROFESSION REQUIREMENTS)

POS MET THROUGH GAPS IN THE SYLLABUS

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

POS MET THROUGH TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS & EVALUATION PROCEDURE

DIRECT ASSESSMENT

Assessment Tool	% Contribution during CO Assessment
Mid Sem Examination	25
End Sem Examination	50
Quiz	10
Assignment	10
Teacher's assessment	05

Continuous Internal Assessment	% Distribution
Mid Sem Examination	50
Quiz and assignment	40
Teacher's assessment	10

Assessment Components	CO1	CO2	CO3	CO4
Continuous Internal Assessment	Y	Y	Y	Y
Semester End Examination	Y	Y	Y	Y

INDIRECT ASSESSMENT

1. Student Feedback on Course Outcome

COURSE DELIVERY METHODS

CD1	CD1 Lectures by use of boards/LCD projectors/OHP projectors			
CD2 Tutorials/Assignments				
CD3	Self- learning such as use of NPTEL materials and internets			

MAPPING BETWEEN COURSE OUTCOMES AND POs and PSOs

	РО	РО	РО	PO	РО	РО	РО	РО	РО	PO	РО	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	1	2	3
CO1	3	3	1			1						2		
CO2	3	3	1			1						2		3
CO3	3	3	1			1						2		
CO4	3	3	1			1		2				2		3

Grading: No correlation - 0, Low correlation - 1, Moderate correlation - 2, High Correlation - 3

Course Outcomes	Course Delivery Method
CO1	CD1, CD2, CD3
CO2	CD1, CD2, CD3
CO3	CD1, CD2, CD3
CO4	CD1, CD2, CD3

COURSE INFORMATION SHEET (PE3)

Course Code: CE24354

Course Title: TRANSPORTATION PLANNING

Pre-requisite(s): NA Co- requisite(s): NA

Credits: 3 L:3 T:0 P:0

Class schedule per week: 3

Class: B.TECH. Semester / Level: VI / 4

Branch: CIVIL ENGINEERING

Name of Teacher:

COURSE OBJECTIVES

This course envisions to impart to students to:

1. Analysis and Planning of various transportation planning process in urban context

COURSE OUTCOMES (COs)

CO1	Able to understand the urban activity systems, types and classification of urban road				
	system.				
CO ₂	Able to analyze and modelling of urban goods transportation system.				
CO3	Able to implement planning processes of urban transportation system.				
CO4	Assess the applicability of various transportation survey for planning process.				
CO5	Able to understand the various land use models for transportation system.				

MODULE	(NO. OF LECTURE HOURS)
Module – I: Introduction Transportation in cities, Future developments, Urban structure, Urban activity systems, Classification of roads, Types of road system	8
Module – II: Urban goods movements Classification of urban goods movements, Analysis of goods movements, Modelling demand for urban goods transport	8
Module – III: Urban transportation system planning process: Trip generation analysis, Mode choice modelling, Trip distribution, Traffic assignment	8
Module – IV: Transportation survey Introduction, Types of movement, Types of survey, Cordon line survey	8
Module – V: Transport related land use models Introduction, Types of models, Components of transportation	8

TEXTBOOKS:

- 1. Kadiyali, L.R., Traffic Engineering and Transport Planning, Khanna publishers, 1999
- 2. Papacostas, C. S., Prevedouros, P. D., Transportation Engineering and Planning, PHI publication, 2015

REFERENCE BOOKS:

- 1. Ponnuswamy, S., Victor, J., Urban Transportation: Planning, Operation and Management, McGraw Hill Publisher, 2012
- 2. Khisty, C. J., Lall, B.K., An Introduction to Transportation Engineering, Pearson Publications, 2017

GAPS IN THE SYLLABUS (TO MEET INDUSTRY/PROFESSION REQUIREMENTS)

POS MET THROUGH GAPS IN THE SYLLABUS

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

POS MET THROUGH TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

DIRECT ASSESSMENT

Assessment Tool	% Contribution during CO Assessment
Mid Sem Examination	25
End Sem Examination	50
Quiz	10
Assignment	10
Teacher's assessment	05

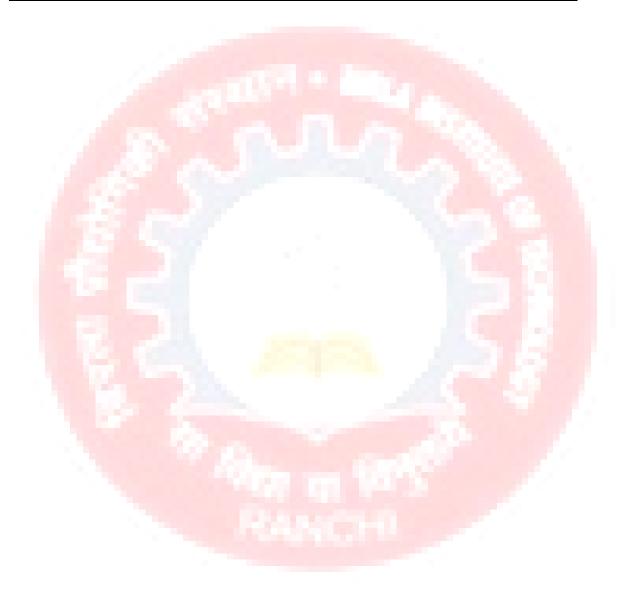
Continuous Internal Assessment	% Distribution
Mid Sem Examination	50
Quiz and assignment	40
Teacher's assessment	10

Assessment Components	CO1	CO2	CO3	CO4	CO5
Continuous Internal Assessment	1	1	✓	✓	1
Mid Sem Exam	1	✓	1	-	
Semester End Examination	1	1	1	1	√

INDIRECT ASSESSMENT

1. Student feedback on course outcome

COURSE DELIVERY METHODS


CD1	Lectures by use of boards/LCD projectors/OHP projectors		
CD2	Tutorials/Assignments		
CD3	Seminars		
CD4	Mini projects/Projects		
CD5	Laboratory experiments/teaching aids		
CD6	Industrial/guest lectures		
CD7	Industrial visits/in-plant training		
CD8	Self- learning such as use of NPTEL materials and internets		
CD9	Simulation		

MAPPING BETWEEN COURSE OUTCOMES AND POs and PSOs

	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	0	1	1	2	3
CO1	3	3	3	2	2	1	1	3	2	2	3	3	3	3
CO2	3	3	2	1	2	1	2	2	2	2	2	3	3	3
CO3	3	3	3	3	1	2	2	3	2	1	2	3	3	3
CO4	3	3	1	1	2	2	1	3	2	2	2	3	3	3
CO5	3	3	3	2	2	2	2	3	2	1	2	3	3	3
	<u> </u>				'		·		<u> </u>	·	<u> </u>			

Grading: No correlation – 0, Low correlation - 1, Moderate correlation – 2, High correlation - 3

Course Outcomes	Course Delivery Method
CO1	CD1, CD2 and CD8
CO2	CD1, CD2 and CD8
CO3	CD1, CD2, CD4, CD5 and CD8
CO4	CD1, CD2 and CD8
CO5	CD1, CD2 and CD8

COURSE INFORMATION SHEET (PE3)

Course Code: CE24355

Course Title: TRAFFIC ENGINEERING AND MANAGEMENT

Pre-requisite(s): CE24305 Co- requisite(s): NA

Credits: 3 L:3 T:0 P:0

Class schedule per week: 3

Class: B.TECH.

Semester / Level: VI / 4 Branch: CIVIL ENGINEERING

Name of Teacher:

COURSE OBJECTIVES

This course envisions to impart to students to:

1. To provide the techniques of traffic engineering and management encompassing a comprehensive state-of-art in the field.

COURSE OUTCOMES (COs)

CO1	Able to understand the traffic flow parameters, gap acceptance behavior and traffic			
	measurement procedures. (K2, K3)			
CO2	Able to analyze and modelling of traffic flow in microscopic, macroscopic and			
	Mesoscopic way. (K2, K3)			
CO3	Able to analyze uninterrupted flow and traffic intersection control. (K3)			
CO4	Assess the applicability of congestion, queue and toll system of traffic management			
	system. (K3, K4)			
CO5	Able to apply the intelligent transportation system in the current scenario of			
	transportation problem. (K2, K3, K4)			

MODULE	(NO. OF LECTURE HOURS)
Module – I: Fundamentals of traffic flow Traffic flow elements, Time-space diagram, Flow-density relationship, Gap and gap acceptance, Traffic measurement procedures	8
Module – II: Traffic flow modelling Microscopic traffic flow modelling, Macroscopic traffic flow modelling and Mesoscopic traffic flow modelling	8
Module – III: Uninterrupted flow and Traffic intersection control Capacity and LOS analysis, Urban streets, Multilane highways, Freeway operations, Uncontrolled intersection, Grade separated intersection	8
Module – IV: Specialized traffic studies Fuel consumption and emission studies, Congestion studies, Queuing studies and Toll operation	8
Module – V: Intelligent transportation system Introduction, Advanced ITS, Application of ITS	8

TEXTBOOKS:

- 1. Kadiyali, L.R., Traffic Engineering and Transport Planning, Khanna publishers, 1999
- 2. Flaherty C.A., Transport Planning and Traffic Engineering, Butterworth-Heineman, 2006

REFERENCE BOOKS:

- 1. Slin, M., Guest, P. and Matthews, P., Traffic Engineering Design: Principles and Practice, 2nd Ed., Butterworth-Heinenmann, 2006
- 2. McShane, William R. and Roess, Roger, P., Traffic Engineering, Prentice Hall, 1990

GAPS IN THE SYLLABUS (TO MEET INDUSTRY/PROFESSION REQUIREMENTS)

POS MET THROUGH GAPS IN THE SYLLABUS

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

POS MET THROUGH TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

DIRECT ASSESSMENT

Assessment Tool	% Contribution during CO Assessment
Mid Sem Examination	25
End Sem Examination	50
Quiz	10
Assignment	10
Teacher's assessment	05

Continuous Internal Assessment	% Distribution
Mid Sem Examination	50
Quiz and assignment	40
Teacher's assessment	10

Assessment Components	CO1	CO2	CO3	CO4	CO5
Continuous Internal Assessment	✓	✓	✓	✓	✓
Mid Sem Exam	✓	✓	✓		
Semester End Examination	✓	✓	✓	✓	✓

INDIRECT ASSESSMENT

1. Student feedback on course outcome

COURSE DELIVERY METHODS

CD1	Lectures by use of boards/LCD projectors/OHP projectors
CD2	Tutorials/Assignments
CD3	Seminars
CD4	Mini projects/Projects
CD5	Laboratory experiments/teaching aids
CD6	Industrial/guest lectures
CD7	Industrial visits/in-plant training
CD8	Self- learning such as use of NPTEL materials and internets
CD9	Simulation

MAPPING BETWEEN COURSE OUTCOMES AND POs and PSOs

	PO	PO1	PO1	PSO	PSO	PSO								
	1	2	3	4	5	6	7	8	9	0	1	1	2	3
CO1	3	3	3	2	2	1	1	3	2	2	3	3	3	3
CO2	3	3	2	1	2	1	3	3	2	2	2	3	3	3
CO3	3	3	3	3	1	2	3	3	3	1	2	3	3	3
CO4	3	3	1	1	2	2	1	3	3	2	2	3	3	3
CO5	3	3	3	2	2	2	3	3	3	1	2	3	3	3

Grading: No correlation - 0, Low correlation - 1, Moderate correlation - 2, High correlation - 3

Course Outcomes	Course Delivery Method
CO1	CD1 CD2, CD8
CO2	CD1 CD2, CD8
CO3	CD1 CD2, CD8
CO4	CD1 CD2, CD8
CO5	CD1 CD2, CD8

COURSE INFORMATION SHEET (PE3)

Course Code: CE24356

Course Title: HARBOUR AND AIRPORT ENGINEERING

Pre-requisite(s): NA Co- requisite(s): NA

Credits: 3 L: 3 T: 0 P: 0

Class schedule per week: 3

Class: B.Tech.
Semester / Level: VI
Branch: All
Name of Teacher:

COURSE OBJECTIVES

This course envisions to impart to students:

1.	To have basic knowledge on ports, harbour and study about the meteorological
	factors which affect a port/harbour.
2.	To know about the various structures of a harbour/port, its maintenance and to have
	an idea about navigational aids.
3.	To study docks, lock gates, their different types and knowledge about airport planning
	and obstructions.
4.	To have basic knowledge on various components of airport engineering like runway,
	taxiway, aprons, control tower, terminal building, aircraft parking system
5.	To study terminal building, air traffic control and visual aids for landing and different
	landing systems

COURSE OUTCOMES (COs)

CO1	Able to understand the functions of various structures in a port/ harbor and the effect
	of meteorological factors on the design of a port/harbor (K1, K2)
CO2	Have an idea about dredging and navigational aids which help a ship to take berth in a
	port and the function of docks and lock gates. (K1, K2, K3)
CO3	Have knowledge on planning, classification, obstructions and different components of
	airport (K1, K2)
CO4	Able to design runways and taxiways and study different aircraft parking and airport
	layouts (K1, K2, K3, K4)
CO5	Have knowledge of different landing aids and landing systems (K1, K2, K3)

MODULE	(NO. OF LECTURE HOURS)
Module – I: : Introduction - Ports and Harbours History and development of water transportation; Types of water transportation; Advantages and disadvantage; Classification; Differences between port and harbour and their requirements; Site selection; Essential features of a good harbour- size, depth, turning basin, harbour entrances, Natural phenomena –Tides, Wind and Waves, Littoral drift	8
Module – II: Components of a harbour, Navigational aids Harbour works – Breakwaters, Wharves, Piers, Jetties, Quays, Berthing structures –Dolphins, Trestles, Moles, Mooring accessories. Apron; Transit sheds; Warehouses, Dredging –Different types and their operation. Navigational aids –Necessity, different types and requirements	8
Module – III: Docks, Introduction to Airways Types –Wet docks, Tidal basins, Repair docks, Dry docks, Floating docks, Marine railway; Locks and lock gates; Introduction –History & development of air transport, Advantages and disadvantages Airport Planning –Regional planning, Factors affecting site selection, Surveys; Airport classification. Airport obstructions –Zoning laws, Classification of obstructions, Imaginary surfaces, Approach zone, Turning zone	8
Module – IV:: Runway Orientation – Wind rose diagram, Basic runway length, Corrections for elevation, temperature and gradient, Geometric design, Cruising speed, Air speed, Beaufort scale, Different types of runways, Taxiway and its design, Airport capacity, Loading Apron, Holding Apron.	8
Module – V: Terminals, Air Traffic Control and Visual Aids. Terminal area –Functions, Apron, Hangar, Aircraft parking system, Airport layouts; Landing aids- Airport markings and lights; Landing systems – Visual Landing system and Instrument landing system	8

TEXTBOOKS:

- 1. S.C. Rangwala: Airport Engineering
- 2. Srinivasan R: Harbour, Dock & Tunnel Engineering

REFERENCE BOOKS:

- 1. Bindra S.P.: A Course in Docks & Harbour Engineering
- 2. Oza H.P.: Dock & Harbour Engineering
- 3. Vaswani N. K.: Airport Engineering
- 4. Khanna S.K. & Arora M.G.: Airport Planning & Design
- 5. Subhash C. Saxena: Airport Engineering Planning and Design

GAPS IN THE SYLLABUS (TO MEET INDUSTRY/PROFESSION REQUIREMENTS)

Assignments or Case Studies

POS MET THROUGH GAPS IN THE SYLLABUS

PO8 & PO9

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN NA

POS MET THROUGH TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS & EVALUATION PROCEDURE

DIRECT ASSESSMENT

Assessment Tool	% Contribution during CO Assessment
Mid Sem Examination	25
End Sem Examination	50
Quiz	10
Assignment	10
Teacher's assessment	05

Continuous Internal Assessment	% Distribution
Mid Sem Examination	50
Quiz and assignment	40
Teacher's assessment	10

Assessment Components	CO1	CO2	CO3	CO4	CO5
Continuous Internal Assessment	Y	Y	Y	Y	
Semester End Examination	Y	Y	Y	Y	Y

INDIRECT ASSESSMENT

1. Student Feedback on Course Outcome

COURSE DELIVERY METHODS

CD1	Lectures by use of boards/LCD projectors/OHP projectors
CD2	Tutorials/Assignments
CD3	Self- learning such as use of NPTEL materials and internets

MAPPING BETWEEN COURSE OUTCOMES AND POs and PSOs

	PO	PSO	PSO	PSO										
	1	2	3	4	5	6	7	8	9	10	11	1	2	3
CO1	3	3	2	0	3	3	2	0	0	0	0	3	3	3
CO2	3	3	2	0	3	3	2	0	0	0	0	3	3	3
CO3	3	3	2	0	3	3	2	0	0	0	0	3	3	3
CO4	3	3	2	0	3	3	2	0	0	0	0	3	3	3
CO5	3	3	2	0	3	3	2	0	0	0	0	3	3	3

Grading: No correlation – 0, Low correlation – 1, Moderate correlation – 2, High Correlation – 3

Course Outcomes	Course Delivery Method
CO1	CD1, CD2, CD3
CO2	CD1, CD2, CD3
CO3	CD1, CD2, CD3
CO4	CD1, CD2, CD3
CO5	CD1, CD2, CD3

COURSE INFORMATION SHEET (PE4)

Course code: CE 24357

Course title: AIR POLLUTION AND CONTROL

Pre-requisite(s): NA Co- requisite(s): NA Credits: 3 L:3 T:0 P:0 Class schedule per week: 3

Class: B.Tech.

Semester / Level: 6th Semester / 4 Branch: CIVIL ENGINEERING

Name of Teacher:

COURSE OBJECTIVES

This course enables the students to:

1.	To understanding the basic notions of air pollution. (K2)
2.	To plan air pollution sampling and monitoring in industry. (K3)
3.	To describe the role of meteorology in air pollutant dispersal. (K2)
4.	To identify appropriate air pollution control devices. (K3)
5.	To interpret the causes of vehicular pollution and devise control methods. (K4)

COURSE OUTCOMES (COs)

CO1	Able to identify air pollution problems and interpret air quality data and design an air pollution
	sampling and monitoring plan. (K3)
CO2	Able to analyze various meteorological condition and their effects in air pollutant
CO3	Dispersal and understand the basic air pollution modelling. (K2)
CO4	Able to identify control equipment usage for air pollution control and develop a suitable monitoring
	plan. (K3)
CO5	Able to understand the causes of vehicular emission and the need for technological advancement for
	control. (K2)

MODULE	(NO. OF LECTURE HOURS)
Module – I: Introduction to air pollution and pollutants Sources of ambient and indoor air pollution; types of air pollutants, fate of air pollutants, effects of air pollution on regional and global scale.	8
Module – II: Sampling and Monitoring of Air Pollutants Objectives, ambient air sampling methods and devices, stack monitoring, and air pollution standards and indices.	8
Module – III: Factors affecting dispersion of air pollutants Temperature lapse rates and atmospheric stability, inversions, wind profiles, wind velocity and turbulence, plume behaviour, estimation of plume rise, dispersion equations, box model, gaussian plume model.	6
Module – IV: Control technologies for control of air pollution Control methods for air pollution, factors affecting selection of control equipment, working principle, design, operational considerations, process control and monitoring of particulate matter and gaseous pollutant control equipment, legislations, policies and guidelines for air pollution control.	9
Module – V: Control of vehicular emissions Internal combustion engines, technological improvements of engines for reduction of vehicular emissions, after exhaust treatments, alternative transportation fuels, emission measurement and testing, regulation to control vehicular emission.	9

TEXTBOOKS:

- 1. Environmental Engineering-Peavy & Rowe. Prentice Hall Pub.
- 2. Air Pollution Control Rao and Rao
- 3. Environmental Pollution and Control C.S. Rao

REFERENCE BOOKS:

- 1. Noel de Nevers, Air Pollution Control Engineering, Mc Graw Hill, New York.
- 2. Arthur C. Stern, Air Pollution (Vol.I Vol.VIII), Academic Press
- 3. Introduction to Environmental Engineering and Science, Gilbert M Masters
- 4. CPCB manual for Guidelines for ambient air quality monitoring. Published By: Dr. B. Sengupta, Member Secretary, Central Pollution Control Board

GAPS IN THE SYLLABUS (TO MEET INDUSTRY/PROFESSION REQUIREMENTS): NA

POS MET THROUGH GAPS IN THE SYLLABUS: NA

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN: NA

POS MET THROUGH TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN: NA

COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS & EVALUATION PROCEDURE

DIRECT ASSESSMENT

Assessment Tool	% Contribution during CO Assessment
Mid Sem Examination	25
End Sem Examination	50
Quiz	10
Assignment	10
Teacher's assessment	05

Continuous Internal Assessment	% Distribution
Mid Sem Examination	50
Quiz and assignment	40
Teacher's assessment	10

Assessment Components	CO1	CO2	CO3	CO4	CO5
Continuous Internal Assessment	Y	Y	Y	Y	
Semester End Examination	Y	Y	Y	Y	Y

INDIRECT ASSESSMENT

1. Student Feedback on Course Outcome

COURSE DELIVERY METHODS

CD1	Lectures by use of boards/LCD projectors/OHP projectors
CD2	Tutorials/Assignments
CD3	Self- learning such as use of NPTEL materials and internets

MAPPING BETWEEN COURSE OUTCOMES AND POs and PSOs

		_												
	PO	PO	PO	РО	PO	PSO	PSO	PSO						
	1	2	3	4	5	6	7	8	9	10	11	1	2	3
CO1	1	3	0	3	0	3	0	1	3	0	1	2	0	0
CO2	2	3	2	0	0	0	0	0	0	0	1	1	0	0
CO3	2	2	3	3	1	0	0	0	0	0	1	3	0	1
CO4	1	1	3	0	3	1	0	0	0	0	1	3	0	1
CO5	2	1	2	0	3	0	0	0	0	0	1	2	0	3

Grading: No correlation – 0, Low correlation – 1, Moderate correlation – 2, High Correlation – 3

Course Outcomes	Course Delivery Method
CO1	CD1, CD2
CO2	CD1, CD2
CO3	CD1, CD2
CO4	CD1, CD2
CO5	CD1, CD2

COURSE INFORMATION SHEET (PE4)

Course Code: CE24358

Course Title: SOLID WASTE MANAGEMENT Pre-requisite(s): ENVIRONMENTAL SCIENCE

Co- requisite(s): NA

Credits: 3 L:3 T:0 P:0

Class schedule per week: 3

Class: B.TECH. Semester / Level: VI / 3

Branch: CIVIL ENGINEERING

Name of Teacher:

COURSE OBJECTIVES

This course envisions to impart to students to:

1.	To make students aware and gain knowledge about basic processes involved in
	solid waste management.
2.	To understand and analyse the components of solid waste management (SWM)
3.	To understand the mechanism of recycling waste and energy recovery processes
4.	To design and suggest best remediation measure for SWM
5.	To review, judge, and design the best solutions for municipalities, industries and
	others

COURSE OUTCOMES (COs)

CO1	Understanding and analysing the components of a solid waste management system				
	(K2).				
CO2	Understanding and designing municipal solid waste collection, transfer and				
	transport systems (K3).				
CO3	Examine and recommend treatment options and operations for material, resource,				
	and energy recovery facilities. (K3).				
CO4	Design and operation of a municipal solid waste landfill (K4).				
CO5	Understanding and recommending technologies for hazardous and biomedical waste				
	management and handling. (K3).				

MODULE						
Module – I: Fundamentals of Solid Waste Management and ISWM system Sources and types of Municipal Solid Waste, waste generation rates, factors affecting generation, composition, characteristics, functional elements of solid waste management, Municipal Solid Waste Rules, concept of ISWM system, effects of improper disposal of solid waste.	8					
Module – II: Waste collection, transportation and processing Methods of collection of municipal solid wastes, collection vehicles, primary and secondary collection, manpower, collection routes, vehicle routing, transfer station – location and operation. Waste processing, component separation and volume reduction, various processing technologies, biological and chemical conversion methods, resource and energy recovery, and thermal processing methods	8					
Module – III: Treatment and disposal Composting, bio methanation, incinerator, pyrolysis, landfill, leachate management and gas control; Environmental monitoring systems for landfill sites, resource recovery.	8					
Module – IV: Radioactive and biomedical waste management sources, classification, health and safety aspects, management of radioactive wastes; Biomedical wastes: sources and categories of biomedical wastes, segregation and color coding, treatment and disposal of biomedical wastes, biomedical wastes management and handling rules	8					
Module – V: Hazardous waste management Sources and characteristics, Classification, health and environmental impacts. Safe storage, transport and treatment of hazardous waste, Hazardous waste management, handling and transboundary movement rules.	8					

TEXTBOOKS:

- 1. Tchobanoglous G., Theisen H., Vigil S.: Integrated Solid Waste Management Engineering Principles and Management Issues. Mc-Graw Hill
- 2. Khan Iqbal H., Ahsan, N.: Textbook of Solid Waste Management. CBS Publisher and Distributors (P) Ltd.
- 3. Bhatia S.C.: Handbook of Industrial Pollution & Control Vol. 1 (CBS Publishers)
- 4. G M Masters and Wendell P Ela, introduction to environmental engineering and science, Pearson

REFERENCE BOOKS:

- 1. CPHEEO, Ministry of Urban Development: Manual on Municipal Solid Waste Management 2016
- 2. CPHEEO, Ministry of Urban Development: Manual on Municipal Solid Waste Management 2000

GAPS IN THE SYLLABUS (TO MEET INDUSTRY/PROFESSION REQUIREMENTS)

POS MET THROUGH GAPS IN THE SYLLABUS

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

POS MET THROUGH TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS & EVALUATION PROCEDURE

DIRECT ASSESSMENT

Assessment Tool	% Contribution during CO Assessment
Mid Sem exam	25
Semester End Exam	50
Quiz	10
Assignment	10
Teacher's Assessment	05

Continuous Internal Assessment	% Distribution
Mid Sem Examination	50
Quiz and assignment	40
Teacher's assessment	10

Assessment Components	CO1	CO2	CO3	CO4	CO5
Continuous Internal Assessment	✓	✓	√	✓	
Semester End Examination	✓	✓	√	√	✓

INDIRECT ASSESSMENT

- 1. Student feedback on teaching quality and teaching methods adopted
- 2. Student feedback on course syllabus and course outcome

COURSE DELIVERY METHODS

CD1	Lectures by use of boards/LCD projectors/OHP projectors			
CD2	Tutorials/Assignments			
CD3	Seminars			
CD4	Mini projects/Projects			
CD5	Laboratory experiments/teaching aids			
CD6	O6 Industrial/guest lectures			
CD7	CD7 Industrial visits/in-plant training			
CD8	CD8 Self- learning such as use of NPTEL materials and internets			
CD9	Simulation			

MAPPING BETWEEN COURSE OUTCOMES AND POs and PSOs

	РО	PSO	PSO	PSO										
	1	2	3	4	5	6	7	8	9	10	11	1	2	3
CO1	2	0	0	0	2	2	3	0	0	0	2	0	2	3
CO2	2	1	2	2	2	2	3	0	0	1	2	3	3	3
CO3	3	1	2	2	2	3	3	0	0	1	2	3	3	3
CO4	3	2	2	2	0	3	3	0	0	1	2	3	3	3
CO5	3	2	2	2	1	3	3	0	0	0	2	2	2	2

Grading: No correlation – 0, Low correlation - 1, Moderate correlation – 2, High correlation - 3

Course Outcomes	Course Delivery Method
CO1	CD1 CD2, CD6, CD8
CO2	CD1 CD2, CD6, CD8
CO3	CD1 CD2, CD6, CD8
CO4	CD1 CD2, CD6, CD8
CO5	CD1 CD2, CD6, CD8

COURSE INFORMATION SHEET (PE4)

Course Code: CE24359

Course Title: ENVIRONMENTAL IMPACT ASSESSMENT

Pre-requisite(s): NA Co- requisite(s): NA

Credits: 3 L:3 T:0 P:0

Class schedule per week: 3

Class: B.Tech.

Semester / Level: VI / 3

Branch: CIVIL ENGINEERING

Name of Teacher:

COURSE OBJECTIVES

This course envisions to impart to students to:

1.	Understand the internationally viable protocols
2.	Identify the salient features of Indian laws
3.	Understand the concepts of impact assessment
4.	Understand and apply the industrial project clearance process
5.	Understand ISO standards and EMP preparation

COURSE OUTCOMES (COs)

CO1	Identify and analyze the international sustainable development initiatives and
	reports
CO2	Understand and apply the features of laws related to environmental protection and
	pollution control
CO3	Understand and apply the process of Environmental Impact Assessment
CO4	Analyze and document environmental projects and prepare a management plan
CO5	Understand and apply the concepts of environmental audits

MODULE	(NO. OF LECTURE HOURS)
Module – I: International Conventions COP, sustainable development initiatives, Montreal Protocol, Millennium Development goals, IPCC reports.	8
Module – II: Laws and Protocol Salient features of Acts pertaining to protection of Air, Water, Wildlife, Forest, and Environment in India, EIA Notification	8
Module – III: Concepts of EIA Framework for environmental impact assessment. Environmental clearance, EIA process: Screening, Scoping and baseline studies, Impact Assessment Methods, Public hearing, Mitigation.	8
Module – IV: Aspects, Impacts and Man Aspect, Impact and Review of DPRs and Industrial Case studies	8
Module – V: DPR Preparation and Audit DPR preparation, Concepts of Environmental auditing, ecolabels and life cycle assessment	8

TEXTBOOKS:

- 1. Environmental Impact Assessment: Larry Canter. McGraw Hill Publication.
- 2. Disaster Management- Edited by R. B. Singh. Rawat Publications. India.
- 3. Environmental Impact Assessment- A. K. Shrivastava. APH Pub. India.
- 4. Environmental Impact Assessment. Theory and Practice. Anji Reddy Mareddy, 1st Edition, eBook ISBN: 9780128112380, Paperback ISBN: 9780128111390, Butterworth-Heinemann.
- 5. Environmental Audit: A.K.Shrivastava. APH pub Corp. New Delhi.
- 6. ISO 14000: Environmental Management 1st Edition, David L. Goetsch, Stanley Davis. ISBN-13: 978-0130812360, Jenson Books Inc

REFERENCE BOOKS:

- 1. Finite Methods of Environmental Impact Assessment, Graham Wood, Riki Therivel. ISBN-13: 978-1138647671. Routledge; 4 editions.
- Climate Change 2014 Impacts, Adaptation and Vulnerability: Part A: Global and Sectoral Aspects. Working Group II Contribution to the IPCC Fifth Assessment Report. Volume 1. Global and Sectoral Aspects. Intergovernmental Panel on Climate Change. December 2014, ISBN: 9781107641655
- 3. Climate Change 2014 Impacts, Adaptation and Vulnerability: Part B: Regional Aspects Working Group II Contribution to the IPCC Fifth Assessment Report. Volume 2. Intergovernmental Panel on Climate Change, December 2014, ISBN: 9781107683860.
- 4. Global Green standards: ISO 14000 and Sustainable Development. IISD pub. Minitoba.
- 5. ISO 14000 Answer Book: Environmental Management for the World Market (Wiley Quality Management) 1st Edition. by Dennis R. Sasseville W. Gary Wilson, Robert W. Lawson . ISBN-13: 978-0471179337. John Wiley and sons. Canada.

GAPS IN THE SYLLABUS (TO MEET INDUSTRY/PROFESSION REQUIREMENTS)

POS MET THROUGH GAPS IN THE SYLLABUS

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

POS MET THROUGH TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS & EVALUATION PROCEDURE

DIRECT ASSESSMENT

Assessment Tool	% Contribution during CO Assessment
Mid Sem Examination	25
End Sem Examination	50
Quiz	10
Assignment	10
Teacher's assessment	05

Continuous Internal Assessment	% Distribution
Mid Sem Examination	50
Quiz and assignment	40
Teacher's assessment	10

Assessment Components	CO1	CO2	CO3	CO4	CO5
Continuous Internal Assessment	Y	Y	Y	Y	Y
Semester End Examination	Y	Y	Y	Y	Y

INDIRECT ASSESSMENT

1. Student Feedback on Course Outcome

COURSE DELIVERY METHODS

CD1	Lectures by use of boards/LCD projectors/OHP projectors
CD2	Tutorials/Assignments
CD3	Self- learning such as the use of NPTEL materials and the internet

MAPPING BETWEEN COURSE OUTCOMES AND POS and PSOS

	РО	РО	РО	РО	РО	РО	PO	PO	РО	РО	РО	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	1	2	3
CO1		1	3			3		3	3		3	1		1
CO2		1	3			3	3	3			3	1		3
CO3		1	3			3		3			3	1		1
CO4		1	3			3		3	3	3	3	1		1
CO5		1	3			3		3		1	3	1		1

 $Grading: No\ correlation-0, Low\ correlation-1, Moderate\ correlation-2, High\ Correlation-3$

Course Outcomes	Course Delivery Method
CO1	CD1 CD2, CD3
CO2	CD1 CD2, CD3
CO3	CD1 CD2, CD3
CO4	CD1 CD2, CD3
CO5	CD1 CD2, CD3

COURSE INFORMATION SHEET

Course Code: CE24309

Course Title: STRUCTURAL ENGINEERING LABORATORY II

Pre-requisite(s): NA Co- requisite(s): NA

Credits: 2 L: 0 T: 0 P: 2

Class schedule per week: 3

Class: B.Tech.
Semester / Level: VII
Branch: CEE
Name of Teacher:

COURSE OBJECTIVES

This course envisions to impart to students:

1.	Perform laboratory tests to determine the properties of materials used to make
	concrete
2.	Perform laboratory tests to determine the properties of fresh and hardened concrete
3.	Perform non-destructive laboratory tests on hardened concrete

COURSE OUTCOMES (COs)

CO1	Conduct the regular test on assessing quality of materials used to make concrete										
CO ₂	Conduct tests to ascertain the desired properties of fresh and hardened concrete										
	required for the concrete structure.										
CO3	Conduct non-destructive tests and assess the properties of hardened concrete.										

SYLLABUS (List of experiments)

A. Test on Cement

- 1. Determination of fineness of cement.
- 2. Determination of specific gravity of cement.
- 3. Consistency test on cement.
- 4. Determination of setting times of cement.
- 5. Determination of soundness of cement.
- 6. Determination of compressive strength of cement

B. Test on aggregates

- 1. Sieve analysis of the coarse and fine aggregates
- 2. Specific gravity and water absorption of fine and coarse aggregates
- 3. Bulking of sand

C. Test on bricks

1. Water Absorption, specific gravity and compressive strength of brick

D. Test on fresh concrete

- 1. Slump cone test
- 2. Compaction factor

E. Test on hardened concrete

- 1. Compressive strength
- 2. Flexural strength
- 3. Split tensile strength

F. Non-Destructive Test

- 1. Ultrasonic Pulse Velocity Test
- 2. Rebound Hammer

TEXTBOOKS:

1. Concrete Technology: Theory and Practice, M. L. Gambhir, Pearson India

REFERENCE BOOKS:

1. Concrete Technology, A. M. Neville and J. J. Brooks, Pearson India

GAPS IN THE SYLLABUS (TO MEET INDUSTRY/PROFESSION REQUIREMENTS)

POS MET THROUGH GAPS IN THE SYLLABUS

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

POS MET THROUGH TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS & EVALUATION PROCEDURE

DIRECT ASSESSMENT

Assessment Tool	% Contribution during CO Assessment
Lab Journal	30
Lab quizes	20
Progressive viva	20
End Sem Examination	30

Continuous Internal Assessment	% Distribution
Lab Journal	30
Lab quiz	10
Progressive viva	20

Assessment Components	CO1	CO2	CO3	CO4	CO5
Continuous Internal Assessment	Y	Y	Y	Y	Y
Semester End Examination	Y	Y	Y	Y	Y

INDIRECT ASSESSMENT

1. Student Feedback on Course Outcome

COURSE DELIVERY METHODS

CD1	Laboratory demonstrations by faculty.
CD2	Hands-on experimental performance in groups.
CD3	Data recording, analysis, Report writing, viva-voce.

MAPPING BETWEEN COURSE OUTCOMES AND POs and PSOs

	PO	РО	РО	PSO	PSO	PSO								
	1	2	3	4	5	6	7	8	9	10	11	1	2	3
CO1	2	3	1			1		2	2				3	3
CO2	2	3	1			1		2	2				3	3
CO3	2	3	1			1		2	2				3	3

Grading: No correlation - 0, Low correlation - 1, Moderate correlation - 2, High Correlation - 3

Course Outcomes	Course Delivery Method
CO1	CD1, CD2, CD3
CO2	CD1, CD2, CD3
CO3	CD1, CD2, CD3
CO4	CD1, CD2, CD3
CO5	CD1, CD2, CD3

COURSE INFORMATION SHEET

Course Code: CE24310

Course Title: COMPUTER AIDED ANALYSIS AND DESIGN

Pre-requisite(s): NA Co- requisite(s): NA

Credits: 3 L: 0 T: 0 P: 3

Class schedule per week: 3

Class: B.Tech. Semester / Level: V Branch: CEE Name of Teacher:

COURSE OBJECTIVES

This course envisions to impart to students:

1.	To introduce to the students about the software tools useful for Civil Engineering
2.	To make students aware of software which can be implemented for solving Civil
	Engineering problems

COURSE OUTCOMES (COs)

CO1	Identify and formulate Civil Engineering problems using STAAD software necessary						
	for engineering practice.						
CO2	Use the latest software to solve the Civil Engineering problems with the aid of						
	technological skills						

Use of latest software packages with pre-processors and post-processor facility for analysis and design of Civil Engineering problems.

REFERENCE BOOKS:

1. STAAD Manual

GAPS IN THE SYLLABUS (TO MEET INDUSTRY/PROFESSION REQUIREMENTS)

POS MET THROUGH GAPS IN THE SYLLABUS

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

POS MET THROUGH TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS & EVALUATION PROCEDURE

DIRECT ASSESSMENT

Assessment Tool	% Contribution during CO Assessment
Lab Journal	30
Lab quizes	20
Progressive viva	20
End Sem Examination	30

Continuous Internal Assessment	% Distribution
Lab Journal	30
Lab quiz	10
Progressive viva	20

Assessment Components	CO1	CO2	CO3	CO4	CO5
Continuous Internal Assessment	Y	Y	Y	Y	Y
Semester End Examination	Y	Y	Y	Y	Y

INDIRECT ASSESSMENT

1. Student Feedback on Course Outcome

COURSE DELIVERY METHODS

CD1	Laboratory experiments/teaching aids			
CD2	Lecture with LCD Projectors			
CD3	Simulation			

MAPPING BETWEEN COURSE OUTCOMES AND POs and PSOs

	РО	PSO	PSO	PSO										
	1	2	3	4	5	6	7	8	9	10	11	1	2	3
CO1	2	3	1			1		2	2				3	3
CO2	2	3	1			1		2	2				3	3
CO3	2	3	1			1		2	2				3	3

Grading: No correlation - 0, Low correlation - 1, Moderate correlation - 2, High Correlation - 3

Course Outcomes	Outcomes Course Delivery Method				
CO1	CD1, CD2, CD3				
CO2	CD1, CD2, CD3				

COURSE INFORMATION SHEET

Course Code: CE24311

Course Title: GEOTECHNICAL ENGINEERING LABORATORY

Pre-requisite(s): CE24303 Geotechnical Engineering

Co- requisite(s):

Credits: 1 L: 0 T: 0 P: 2

Class schedule per week: 2

Class: B.Tech.
Semester / Level: VI
Branch: All
Name of Teacher:

COURSE OBJECTIVES

This course enables the students to:

1.	Perform Moisture content, Specific gravity and Atterberg limits tests.
2.	Perform Grain size distribution, and Permeability tests
3.	Perform Standard Proctor test and Unconfined compression test
4.	Perform Direct Shear, Vane Shear and Triaxial tests
5.	Perform Sand replacement method and Core cutter method for field density

COURSE OUTCOMES (COs)

CO1	Determine Moisture content, Specific gravity, and Atterberg limits tests of given soil
	sample
CO2	Determine Grain size analysis and Permeability of given soil sample
CO3	Determine OMC and MDD and Unconfined compressive strength of given soil
	sample
CO4	Determine Cohesion and Angle of Internal Friction of different types of soil
CO5	Determine the density of soil in the field

SYLLABUS (List of experiments)

- 1. Determination of moisture content and specific gravity
- 2. Determination of Atterberg limits
- 3. Determination of Grain size distribution
- 4. Proctor Compaction test
- 5. Unconfined compression test
- 6. Triaxial test
- 7. Vane shear test
- 8. Direct shear test
- 9. Sand replacement and Core cutter test
- 10. Permeability test (constant and variable head

REFERENCE MATERIALS:

1. Lab manuals (available on department website)

GAPS IN THE SYLLABUS (TO MEET INDUSTRY/PROFESSION REQUIREMENTS)

NA

POS MET THROUGH GAPS IN THE SYLLABUS

NA

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

NA

POS MET THROUGH TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

NΔ

COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS & EVALUATION PROCEDURE

DIRECT ASSESSMENT

Assessment Tool	% Contribution during CO As <mark>sess</mark> ment
Lab Journal	30
Lab quizes	20
Progressive viva	20
End Sem Examination	30

Continuous Internal Assessment	% Distribution
Lab Journal	30
Lab quiz	10
Progressive viva	20

Assessment Components	CO1	CO2	CO3	CO4	CO5
Continuous Internal Assessment	Y	Y	Y	Y	Y
Semester End Examination	Y	Y	Y	Y	Y

INDIRECT ASSESSMENT

1. Student Feedback on Course Outcome

COURSE DELIVERY METHODS

CD1	Introductory lecture by use of boards/LCD projectors
CD2	Laboratory experiments/ teaching aid
CD3	Self- learning such as use of NPTEL materials and internets

MAPPING BETWEEN COURSE OUTCOMES AND POs and PSOs

	РО	PSO	PSO	PSO										
	1	2	3	4	5	6	7	8	9	10	11	1	2	3
CO1	3	3	0	1	2	1	1	2	2	0	0	3	3	3
CO2	3	3	0	1	2	1	1	2	2	0	0	3	3	3
CO3	3	3	0	1	2	1	1	2	2	0	0	3	3	3
CO4	3	3	0	1	2	1	1	2	2	0	0	3	3	3
CO5	3	3	0	1	2	1	1	2	2	0	0	3	3	3

 $Grading: No\ correlation-0, Low\ correlation-1, Moderate\ correlation-2, High\ Correlation-3$

Course Outcomes	Course Delivery Method
CO1	CD1, CD2, CD3
CO2	CD1, CD2, CD3
CO3	CD1, CD2, CD3
CO4	CD1, CD2, CD3
CO5	CD1, CD2, CD3

COURSE INFORMATION SHEET

Course Code: CE24312

Course Title: TRANSPORTATION ENGINEERING LABORATORY

Pre-requisite(s): CE24305 Co- requisite(s): NA

Credits: 1 L: 0 T: 0 P: 2

Class schedule per week: 2

Class: B. TECH. Semester / Level: VI/ 3

Branch: CIVIL ENGINEERING

Name of Teacher:

COURSE OBJECTIVES

This course envisions to impart to students to:

1.	To conduct shape test and impact value of road aggregates
2.	To conduct Los Angeles abrasion test on road aggregates
3.	Determine the properties of bitumen and the resistance of bituminous mix
4.	To assess the structural integrity of a pavement
5.	To conduct traffic volume study and spot speed study

COURSE OUTCOMES (COs)

CO1	To determine the combined flakiness and elongation Index of road aggregates and									
	also estimate the aggregate impact value.									
CO ₂	To determine the abrasion value of aggregate sample by conducting Los Angeles									
	abrasion test.									
CO3	Determine viscosity, ductility, flash and fire point, penetration value, softening									
	point and									
	specific gravity and also to calculate the strength of bituminous mix.									
CO4	To evaluate load carrying capability of highways									
CO5	Analyse the different variables and factors and distribution of traffic for the design									
	of highway system									

SYLLABUS (List of experiments)

- 1. Test on aggregate: Aggregate shape test
- 2. Test on aggregate: Aggregate impact value test
- 3. Test on aggregate: Los Angeles abrasion test
- 4. Determination of specific gravity and softening point of bitumen
- 5. Determination of viscosity of bitumen
- 6. Determination of ductility of bitumen
- 7. Determination of flash and fire point of bitumen
- 8. Determination of penetration value of bitumen
- 9. Marshall apparatus
- 10. To conduct falling weight deflectometer (FWD) test on a road
- 11. Traffic volume study and Spot speed study

TEXTBOOKS:

- 1. Khanna, S.K., Justo C.E.G., and Veeraraghavan.: Highway Engineering, Nem Chand and Bros.
- 2. Chakroborty, P. and A. Das Principles of Transportation Engineering, Prentice Hall of India Pvt. Ltd, New Delhi, India, 2005.
- 3. Ministry of Road Transport and Highways (5th Rev): Specifications for Road and Bridge Works (Indian Roads Congress)
- 4. IRC Codes of Practices

REFERENCE BOOKS:

- 1. Garber N.J and Hoel L: Traffic and Highway Engineering (Cengage Learning)
- 2. Pignataro LJ. Traffic Engineering: Theory and Practice; Prentice hall
- 3. All laboratory tests are as per IS, ASTM, AASHTO, TRL, IRC, BS procedures specifications and guidelines.

GAPS IN THE SYLLABUS (TO MEET INDUSTRY/PROFESSION REQUIREMENTS)

POS MET THROUGH GAPS IN THE SYLLABUS

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

POS MET THROUGH TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS & EVALUATION PROCEDURE

DIRECT ASSESSMENT

Assessment Tool	% Contribution during CO Assessment
Lab Journal	30
Lab quizes	20
Progressive viva	20
End Sem Examination	30

Continuous Internal Assessment	% Distribution
Lab Journal	30
Lab quiz	10
Progressive viva	20

Assessment Components	CO1	CO2	CO3	CO4	CO5
Continuous Internal Assessment	Y	Y	Y	Y	Y
Semester End Examination	Y	Y	Y	Y	Y

INDIRECT ASSESSMENT

1. Student Feedback on Course Outcome

COURSE DELIVERY METHODS

CD1	Introductory lecture by use of boards/LCD projectors
CD2	Tutorials/Assignments
CD3	Seminars
CD4	Mini projects/Projects
CD5	Laboratory experiments/teaching aids
CD6	Industrial/guest lectures
CD7	Industrial visits/in-plant training
CD8	Self- learning such as use of NPTEL materials and internets
CD9	Simulation

MAPPING BETWEEN COURSE OUTCOMES AND POs and PSOs

	РО	РО	PO	РО	PSO	PSO	PSO							
	1	2	3	4	5	6	7	8	9	10	11	1	2	3
CO1	3	3	2	2	2	2	2	1	3	3	2	3	3	3
CO2	3	3	3	2	2	2	2	1	3	3	2	3	3	3
CO3	3	3	3	2	2	2	2	1	3	3	2	3	3	3
CO4	3	3	2	2	2	2	2	1	3	3	2	3	3	3
CO5	3	3	2	2	3	2	2	1	3	3	2	2	3	3

Grading: No correlation – 0, Low correlation – 1, Moderate correlation – 2, High Correlation – 3

Course Outcomes	Course Delivery Method
CO1	CD5, CD6, CD7, CD8
CO2	CD5, CD6, CD7, CD8
CO3	CD5, CD6, CD7, CD8
CO4	CD5, CD6, CD7, CD8
CO5	CD5, CD6, CD7, CD8

COURSE INFORMATION SHEET (PE5)

Course Code: CE 24451

Course Title: PRE-STRESSED CONCRETE

Pre-requisite(s): CE242021, CE24301

Co- requisite(s): NA

Credits: 3 L:3 T:0 P:0

Class schedule per week: 3

Class: B.Tech.

Semester / Level: VII / 4

Branch: CIVIL ENGINEERING

Name of Teacher:

COURSE OBJECTIVES

This course envisions to impart to students to:

1.	Develop basic knowledge of pre stressed concrete so that the students can solve real								
	engineering problems. (K1, K2)								
2.	Understand behaviour of pre stressed concrete structures subjected to simple and								
	complex mechanical loadings. (K1, K2)								
3.	Analyse and design safe and sound pre stressed concrete civil engineering								
	structures. (K3, K4)								

COURSE OUTCOMES (COs)

CO1	Evaluate the feasibility of using pre stressed concrete for a given structure. (K1, K2)
CO2	Evaluation or analysis of the members for different loading conditions. (K1, K2,
	K3)
CO3	Evaluate the losses in pre stressed concrete. (K1, K2, K3)
CO4	Design the pre stressed member for solving real problems.(K1, K2, K3, K4)
CO5	Evaluate serviceability of a given pre stressed concrete structure. (K2, K3, K4)

MODULE	(NO. OF LECTURE HOURS)
Module – I: Introduction to Prestressed Concrete Brief History, Advantages of Prestressing, Limitations of Prestressing, Types of Prestressing, Prestressing Systems and Devices, Properties of Hardened Concrete and Prestressing Steel.	8
Module – II: Analysis of Members Analysis of Members Under Axial Load, Analysis of Member Under Flexure, Cracking moment, Kern point, Pressure line, Analysis for Shear and Torsion	8
Module – III: Losses in Prestress Elastic Shortening, Friction, Anchorage Slip, Creep of Concrete, Shrinkage of Concrete, Relaxation of Steel.	8
Module – IV: Topographical Disasters Module IV: Design of Members Design for Axial Tension, Design for Flexure, Design for Shear and Torsion.	8
Module – V: Calculations of Deflection and Crack Width Deflection due to Gravity Loads and Prestressing Force, Limits of Deflection, Limits of crack width and its calculation.	8

TEXTBOOKS:

- 1. Prestressed Concrete, Krishnaraju N., Tata McGraw Hill, New Delhi, 1981.
- 2. Design of Prestressed Concrete Structures, Lin T.Y., Asia Publishing House, 1955.

REFERENCE BOOKS:

- 1. Limited State Design of Prestressed Concrete, Guyan Y., Applied Science Publishers, 1972.
- 2. IS 1343- Code of Practice for Prestressed Concrete.

GAPS IN THE SYLLABUS (TO MEET INDUSTRY/PROFESSION REQUIREMENTS)

POS MET THROUGH GAPS IN THE SYLLABUS

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

POS MET THROUGH TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS & EVALUATION PROCEDURE

DIRECT ASSESSMENT

Assessment Tool	% Contribution during CO Assessment
Mid Sem Examination	25
End Sem Examination	50
Quiz	10
Assignment	10
Teacher's assessment	05

Continuous Internal Assessment	% Distribution
Mid Sem Examination	50
Quiz and assignment	40
Teacher's assessment	10

Assessment Components	CO1	CO2	CO3	CO4	CO5
Continuous Internal Assessment	Y	Y	Y	Y	Y
Semester End Examination	Y	Y	Y	Y	Y

INDIRECT ASSESSMENT

1. Student Feedback on Course Outcome

COURSE DELIVERY METHODS

CD1	Lectures by use of boards/LCD projectors/OHP projectors
CD2	Tutorials/Assignments
CD3	Seminars
CD4	Mini projects/Projects
CD5	Laboratory experiments/teaching aids
CD6	Industrial/guest lectures
CD7	Industrial visits/in-plant training
CD8	Self- learning such as use of NPTEL materials and internets
CD9	Simulation

MAPPING BETWEEN COURSE OUTCOMES AND POs and PSOs

	PO	PO1	PO1	PSO	PSO	PSO								
	1	2	3	4	5	6	7	8	9	0	1	1	2	3
CO1	3	2	3	2	2	1					1	3	1	3
CO2	3	2	3	2	2	_1					2	3	1	3
CO3	3	2	3	2	2	1					1	3	1	3
CO4	3	2	3	2	2	2					1	3	1	3
CO5	3	2	3	2	2	2					1	3	1	3

Grading: No correlation - 0, Low correlation - 1, Moderate correlation - 2, High correlation - 3

Course	Course Delivery Method
Outcomes	
CO1	CD1, CD8
CO2	CD1, CD2,CD4,CD8
CO3	CD1, CD2, CD4, CD8
CO4	CD1, CD8
CO5	CD1, CD8

COURSE INFORMATION SHEET (PE5)

Course Code: CE24452

Course Title: ADVANCED CONCRETE STRUCTURES DESIGN

Pre-requisite(s): CE24301 Co- requisite(s): NA

Credits: 3 L: 3 T: 0 P: 0

Class schedule per week: 3

Class: B.Tech. Semester / Level: /3

Branch: CIVIL ENGINEERING

Name of Teacher:

COURSE OBJECTIVES

This course envisions to impart to students:

1. Apply knowledge of limit state design method in addressing design problems of concrete structures.

COURSE OUTCOMES (COs)

CO1	Design RCC elements such as slender columns, water tanks, staircases, retaining
	walls, and foundation as per Indian standards.
CO2	Design special structures such as Deep beams, Corbels, and Grid floors.
CO ₃	Interpret and draw a RCC detailing drawing of concrete structures as per the Design

MODULE	(NO. OF LECTURE HOURS)
Module – I: Staircase and Flat slab design General design features of commonly used stair slabs, Design of flat slabs according to IS method	8
Module – II: Retaining walls Forces on retaining wall, stability requirement, Design of retaining wall	8
Module – III: Design of special RC elements Design of slender columns, Design of corbels, Deep-beams and grid floors	8
Module – IV: Water tanks Tanks resting on the ground, Overhead water tank, Joints in the water tank	8
Module – V: Design of Footing Isolated footing subjected to eccentric loading, Combined footing, Raft foundation	8

TEXTBOOKS:

- 1. Subramanian, N., "Design of Reinforced Concrete Structures", Oxford University Press, New Delhi, 2013.
- 2. Punmia.B.C., Ashok Kumar Jain, Arun Kumar Jain, "Limit State Design of Reinforced Concrete", Laxmi Publication Pvt. Ltd., New Delhi, 2007.
- 3. Varghese, P.C., "Advanced Reinforced Concrete Design", Prentice Hall of India, Pvt. Ltd., New Delhi, 2005.
- 4. Gambhir.M.L., "Design of Reinforced Concrete structures", Prentice Hall of India Private Limited, New Delhi, 2008.

REFERENCE BOOKS:

- 1. IS456:2000, Code of practice for Plain and Reinforced Concrete, Bureau of Indian Standards, New Delhi, 2000
- 2. SP16, IS456:1978 "Design Aids for Reinforced Concrete to Bureau of Indian Standards, New Delhi, 1999

GAPS IN THE SYLLABUS (TO MEET INDUSTRY/PROFESSION REQUIREMENTS)

POS MET THROUGH GAPS IN THE SYLLABUS

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

POS MET THROUGH TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS & EVALUATION PROCEDURE

DIRECT ASSESSMENT

Assessment Tool	% Contribution during CO Assessment
Mid Sem Examination	25
End Sem Examination	50
Quiz	10
Assignment	10
Teacher's assessment	05

Continuous Internal Assessment	% Distribution
Mid Sem Examination	50
Quiz and assignment	40
Teacher's assessment	10

Assessment Components	CO1	CO2	CO3
Continuous Internal Assessment	Y	Y	Y
Semester End Examination	Y	Y	Y

INDIRECT ASSESSMENT

1. Student Feedback on Course Outcome

COURSE DELIVERY METHODS

CD1	Lectures by use of boards/LCD projectors/OHP projectors
CD2	Assignments
CD3	Self- learning such as use of NPTEL materials and internets

MAPPING BETWEEN COURSE OUTCOMES AND POs and PSOs

	РО	PO	PO	РО	РО	РО	PO	РО	PO	PO	РО	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	1	2	3
CO1	3	3	3	0	2	2	0	0	0	2	0	3	2	3
CO2	3	3	3	0	2	2	0	0	0	2	0	3	2	3
CO3	3	2	3	0	2	0	0	0	1	2	0	3	2	3

Grading: No correlation – 0, Low correlation – 1, Moderate correlation – 2, High Correlation – 3

Course Outcomes	Course Delivery Method
CO1	CD1, CD2, CD3
CO2	CD1, CD2, CD3
CO3	CD1, CD2, CD3

COURSE INFORMATION SHEET (PE5)

Course Code: CE24453

Course Title: ADVANCE STEEL STRCUTRE DESIGN

Pre-requisite(s): NA Co- requisite(s): NA

Credits: 3 L: 3 T: 0 P: 0

Class schedule per week: 3

Class: B.Tech.
Semester / Level: VII
Branch: CEE
Name of Teacher:

COURSE OBJECTIVES

This course envisions to impart to students:

To equip students with the knowledge and skills for designing steel structures, including connections, industrial buildings, plate girders, gantry girders, cold-formed steel sections, and towers, while applying codal provisions and practical design methodologies.

COURSE OUTCOMES (COs)

CO1	Explain different types of steel connections, including bolted and welded connections,				
	and analyze their structural behavior under various loading conditions.				
CO2	Design industrial building components, plate girders, and gantry girders considering				
	load combinations, codal provisions, and practical constraints.				
CO3	Apply design principles to cold-formed steel structures and tower structures,				
	accounting for local buckling effects, combined loading, and foundation				
	considerations.				

MODULE	(NO. OF LECTURE HOURS)
Module – I: Connections Classification of connections, semi-rigid and rigid connections, framed and seated connections, moment-resistant connections, along with an introduction to bolted and welded connections.	8
Module – II: Industrial Buildings Various components of industrial buildings, considerations for loads and load combinations, different types of roof systems, design aspects of purlins and roof trusses, and an overview of industrial building frames with emphasis on lateral load resistance.	8
Module – III: Plate Girders and Gantry Girders Design principles of riveted and welded plate girders, selection and curtailment of flange plates, functional requirements and design of stiffeners, significance of splices, and the structural design of gantry girders considering their practical applications.	8
Module – IV: Cold-Formed Steel Structures Fundamental concepts and applications of cold-formed steel sections, advantages over conventional hot-rolled sections, influence of local buckling and strategies for its mitigation, structural design considerations for beams, columns, and tension members, assessment of combined bending and compression effects, and an introduction to empirical and codal design methods.	8
Module – V: Towers and Masts Overview of different types of towers and their configurations, essential load considerations based on codal provisions, analysis and design methodologies, structural aspects of latticed towers and monopoles, and an in-depth discussion on foundation design and load transfer mechanisms for tower structures.	8

TEXTBOOKS:

- 1. N. Subrhamanyan, "Design of Steel Structures", Oxford Publication.
- M. L. Gambhir, "Fundamentals of structural steel design", Mc Graw Hill
 Ram Chandra, "Design of Steel Structures (Vol. I & II)", Standard Book House, New Delhi
- 4. S.K. Duggal, "Design of Steel Structure", Tata Mc Graw Hill.
- 5. P. Dayarathnam, "Design of Steel Structures", Wheeler.

REFERENCE BOOKS:

1. C.G. Salmon and J.E. Johnson, "Steel Structures: Design and Behaviour", Harper and Row, New York

GAPS IN THE SYLLABUS (TO MEET INDUSTRY/PROFESSION REQUIREMENTS)

POS MET THROUGH GAPS IN THE SYLLABUS

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

POS MET THROUGH TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS & EVALUATION PROCEDURE

DIRECT ASSESSMENT

Assessment Tool	% Contribution during CO Assessment
Mid Sem Examination	25
End Sem Examination	50
Quiz	10
Assignment	10
Teacher's assessment	05

Continuous Internal Assessment	% Distribution
Mid Sem Examination	50
Quiz and assignment	40
Teacher's assessment	10

Assessment Components	CO1	CO2	CO3	CO4	CO5
Continuous Internal Assessment	Y	Y	Y	Y	
Semester End Examination	Y	Y	Y	Y	Y

INDIRECT ASSESSMENT

1. Student Feedback on Course Outcome

COURSE DELIVERY METHODS

CD1	Lectures by use of boards/LCD projectors/OHP projectors
CD2	Tutorials/Assignments
CD3	Self- learning such as use of NPTEL materials and internets

MAPPING BETWEEN COURSE OUTCOMES AND POS and PSOS

	PO	PO	РО	PO	PO	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	1	2	3
CO1	3	3	1			1		2	2			3		
CO2	3	3	1			1		2	2			3	3	3
CO3	3	3	1			1		2	2			3		3

Grading: No correlation - 0, Low correlation - 1, Moderate correlation - 2, High Correlation - 3

Course Outcomes	Course Delivery Method
CO1	CD1, CD2, CD3
CO2	CD1, CD2, CD3
CO3	CD1, CD2, CD3
CO4	CD1, CD2, CD3
CO5	CD1, CD2, CD3

COURSE INFORMATION SHEET (PE6)

Course Code: CE24454

Course Title: ADVANCED SURVEYING

Pre-requisite(s): CE24208 Co- requisite(s): NA

Credits: 3 L: 3 T: 0 P: 0

Class schedule per week: 3

Class: B.Tech.

Semester / Level: 7 / 4

Branch: CIVIL ENGINEERING

Name of Teacher:

COURSE OBJECTIVES

This course envisions to impart to students:

1.	To learn calculation of area and volume by different methods (K1, K2, K3).
2.	To learn the principles of tacheometric surveying (K1, K2, K3)
3.	To get the knowledge of photogrammetric surveying (K1, K2, K3).
4.	To know about the applications of remote sensing and Electro-magnetic distance
	measurement in surveying (K1, K2, K3).
5.	To learn the uses of GIS and GPS (K1, K2, K3).

COURSE OUTCOMES (COs)

CO1	Able to calculate the area and volume by different methods (K1, K2, K3).
CO2	Able to perform tacheometric surveying (K1, K2, K3).
CO3	Capable of conducting photogrammetric surveying (K1, K2, K3).
CO4	Able to use remote sensing and Electro-magnetic distance measurement instruments as
	a tool in civil engineering applications (K1, K2, K3)
CO5	Able to apply GIS and GPS in the field of civil engineering (K1, K2, K3)

MODULE	(NO. OF LECTURE HOURS)
Module – I: Calculation of Area and Volume Areas computed by sub-division into triangles, areas from offsets to a base line, offsets at regular intervals, area by double meridian distances, area by co-ordinates, area computed from map measurements, planimeter. Measurement of volume from cross-sections, Prismoidal formula, Trapezoidal formula, prismoidal correction, curvature correction. Volume from spot levels, Volume from contour plan.	
Module – II: Tacheometric Surveying Instruments involved, types of telescopes and stadia diaphragm, tacheometric constant; anallactic Lens, different systems of tacheometric measurements; Subtense Bar; field work in tacheometry.	
Module – III: Photogrammetric Surveying Introduction, Definitions and nomenclatures, Photographic measurements, Aerial camera, Vertical photograph, Tilted photograph, Tilt and Relief, Parallax, Rectification and enlargements of photographs, Mosaics.	
Module – IV: Remote Sensing and Electro-magnetic distance measurement Electromagnetic spectrum, Interaction of electromagnetic energy with matter, Remote-sensing sensor systems, Platforms, Ideal and Real remote-sensing systems, Applications of remote sensing, Land use/ Land cover analysis, Introduction of EDM, Electromagnetic waves, Modulation, Types of EDM instruments, The geodimeter, The tellurometer, Wild 'distomats'.	
Module – V: GIS and GPS Data for GIS, Capabilities/ Functionalities of GIS, Map overlay analysis, Data quality, Sources of Errors in GIS, Applications of GIS; Satellite constellation, Operational control segment, Equipment segment, Determining satellite-to-user range, Calculation of user position, accuracy, Uses and applications of GPS.	

TEXTBOOKS:

- 1. Punmia, B.C., Jain, A.K., Jain, A.K. "Surveying" Vol. 1 and 2, Laxmi Publications (P) Ltd.
- 2. Duggal, S.K. "Surveying" Vol. 1 and 2, McGraw-Hill Education (India) Pvt. Ltd.

REFERENCE BOOKS:

1. Subramanian, R. "Surveying and Levelling" – Oxford University Press, New Delhi

GAPS IN THE SYLLABUS (TO MEET INDUSTRY/PROFESSION REQUIREMENTS)

POS MET THROUGH GAPS IN THE SYLLABUS

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

POS MET THROUGH TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS & EVALUATION PROCEDURE

DIRECT ASSESSMENT

Assessment Tool	% Contribution during CO Assessment
Mid Sem Examination	25
End Sem Examination	50
Quiz	10
Assignment	10
Teacher's assessment	05

Continuous Internal Assessment	% Distribution
Mid Sem Examination	50
Quiz and assignment	40
Teacher's assessment	10

Assessment Components	CO1	CO ₂	CO3	CO4	CO5
Continuous Internal Assessment	Y	Y			
Semester End Examination	Y	Y	Y	Y	Y

INDIRECT ASSESSMENT

1. Student Feedback on Course Outcome

COURSE DELIVERY METHODS

CD1	Lectures by use of boards/LCD projectors/OHP projectors
CD2	Assignments
CD3	Self- learning such as use of NPTEL materials and internets

MAPPING BETWEEN COURSE OUTCOMES AND POS and PSOS

	РО	РО	РО	РО	PO	РО	PO	РО	PO	PO	РО	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	1	2	3
CO1	3	3	3	1	1	1	2	3	2	1	1	3	3	3
CO2	3	3	3	1	1	1	3	2	2	1	1	3	3	3
CO3	3	3	3	1	2	1	2	2	2	1	1	3	3	3
CO4	3	3	3	1	3	1	2	3	2	1	1	3	3	3
CO5	3	3	3	1	3	1	2	3	2	1	1	3	3	3

Grading: No correlation - 0, Low correlation - 1, Moderate correlation - 2, High Correlation - 3

Course Outcomes	Course Delivery Method
CO1	CD1, CD2 and CD8
CO2	CD1, CD2 and CD8
CO3	CD1, CD2, and CD8
CO4	CD1, CD2, and CD8
CO5	CD1, CD2 and CD8

COURSE INFORMATION SHEET (PE6)

Course Code: CE24455

Course Title: ADVANCED SOIL MECHANICS

Pre-requisite(s): CE24303 Co- requisite(s): NA

Credits: 3 L:3 T:0 P:0

Class schedule per week: 3

Class: B.Tech.

Semester / Level: VII / 3

Branch: CIVIL ENGINEERING

Name of Teacher:

COURSE OBJECTIVES

This course envisions to impart to students to:

1.	To familiarize with the procedures involved in a geotechnical site investigation.
2.	To estimate stress distribution & settlement in soil media.
3.	To understand the earth pressure theory.
4.	To study stability of slopes.
5.	To study methods of stabilization of soil.

COURSE OUTCOMES (COs)

CO1	Perform soil investigation for common civil engineering works. (K3)
CO2	Determine stress distributions in soils & estimate different types of settlement. (K3
	K4,K5)
CO3	Calculate earth pressure for the design of earth retaining Structures. (K3.K4,K5)
CO4	Perform stability analysis of slopes. (K3,K4)
CO5	Perform stabilization of soils (K3)

MODULE	(NO. OF LECTURE HOURS)
Module – I: Site Investigation and subsoil exploration: Methods of soil exploration; Planning a subsoil exploration: Number of boreholes and depths of exploration for various types of works; Field Tests: Standard penetration test; Dynamic and Static cone penetration tests; Vane shear test; Geophysical Exploration; Soil samplers & collection of soil samples	8
Module – II: Stress Distribution in Soil Media and Settlement Stress Distribution: Boussinesq's and Westergaard's equations, Pressure distribution diagram, Newmark's influence chart; Contact pressure below foundations –Steinbrenner's coefficients; Settlement of foundations: Elastic, Consolidation and Creep settlements; Total and Differential settlements; Rate of settlement, I. S. Code limitations for different structures Settlement calculation from consolidation characteristics and using N-values 8 Lectures	8
Module – III: Earth Pressure Theory Plastic equilibrium in soil – active & passive cases. Active earth pressure –Rankine's Theory; Active & passive earth pressure of cohesive & cohesion-less soil; Rankine's active thrust by trial wedge; Coulomb's wedge theory – Rebhann's construction & Culmann's construction	8
Module – IV: Stability of Slopes Stability analysis of finite & infinite slopes; Types of slope failures; Methods of analysis for slope stability –method of slices; Bishop's simplified method; Friction circle method; Stability Number; Stability of slopes of Earth dams	8
Module – V: Stabilization of Soils Mechanical stabilization, Cement stabilization, Lime stabilization, Bitumen stabilization, Chemical stabilization, Stabilization by Heating, Electrical stabilization	8

TEXTBOOKS:

- 1. Soil Mechanics and Foundations by Dr. B.C. Punmia, Ashok Kumar Jain, Arun Kumar Jain
- 2. Geotechnical Engineering by C. Venkataramaiah

REFERENCE BOOKS:

1. Soil Mechanics and Foundation Engineering – V.N.S. Murthy

GAPS IN THE SYLLABUS (TO MEET INDUSTRY/PROFESSION REQUIREMENTS)

POS MET THROUGH GAPS IN THE SYLLABUS

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

POS MET THROUGH TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS & EVALUATION PROCEDURE

DIRECT ASSESSMENT

Assessment Tool	% Contribution during CO Assessment
Continuous Internal Assessment	25
Mid Sem Exam	25
Semester End Examination	50

Continuous Internal Assessment	% Distribution
Quiz	10
Assignment	10
Teachers Assesment	5

Assessment Components	CO1	CO2	CO3	CO4	CO5
Continuous Internal Assessment	√	√	✓	√	✓
Semester End Examination	✓	✓	✓	\	√

INDIRECT ASSESSMENT

1. Student feedback on course outcome

COURSE DELIVERY METHODS

CD1	Lectures by use of boards/LCD projectors/OHP projectors
CD2	Tutorials/Assignments
CD3	Seminars
CD4	Mini projects/Projects
CD5	Laboratory experiments/teaching aids
CD6	Industrial/guest lectures
CD7	Industrial visits/in-plant training
CD8	Self- learning such as use of NPTEL materials and internets
CD9	Simulation

MAPPING BETWEEN COURSE OUTCOMES AND POs and PSOs

	РО	РО	РО	РО	РО	PO	РО	РО	РО	РО	РО	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	1	2	3
CO1	3	3	3	3	1	1	0	2	1	0	3	3	3	3
CO2	3	3	3	3	1	1	0	2	1	0	3	3	3	3
CO3	3	3	3	3	1	1	0	2	1	0	3	3	3	3
CO4	3	3	3	3	1	1	0	2	1	0	3	3	3	3
CO5	3	3	3	3	1	1	0	2	1	0	3	3	3	3

Grading: No correlation – 0, Low correlation – 1, Moderate correlation – 2, High correlation – 3

Course	Course Delivery Method
Outcomes	
CO1	CD1, CD2, CD3, CD4, CD5, CD6, CD7, CD8
CO2	CD1, CD2, CD3, CD4, CD5, CD6, CD7, CD8
CO3	CD1, CD2, CD3, CD4, CD5, CD6, CD7, CD8
CO4	CD1, CD2, CD3, CD4, CD5, CD6, CD7, CD8
CO5	CD1, CD2, CD3, CD4, CD5, CD6, CD7, CD8

COURSE INFORMATION SHEET (PE6)

Course Code: CE 24456

Course Title: FOUNDATION ENGINEERING

Pre-requisite(s): CE24303 Co- requisite(s): NA

Credits: 3 L:3 T:0 P:0

Class schedule per week: 3

Class: B.Tech.

Semester / Level: VII / 3

Branch: CIVIL ENGINEERING

Name of Teacher:

COURSE OBJECTIVES

This course envisions to impart to students to:

1.	To understand the methodology of selecting type of foundation under different criteria.						
2.	To know how to design combined footings and raft footings						
3.	To study design methods of Well foundations, Coffer dams, Pier Foundations.						
4.	To understand the concept of machine foundations.						
5.	To know the methodology of constructing foundations on expansive soils.						

COURSE OUTCOMES (COs)

CO ₁	Select the foundation types in different soil conditions. (K3, K4)
CO2	Design Combined footings and Raft footings (K3,K4,K5)
CO3	Construct well foundations, coffer dams, pier foundations. (K3, K4)
CO4	Design machine foundations. (K3, K4, K5)
CO5	Construct foundations on expansive soils (K4, K5)

MODULE	(NO. OF LECTURE HOURS)
Module – I: Basic foundation design parameters Choice of foundation type and preliminary selection, Proportioning sizes of footings and choice of column loads, Footings subjected to moments – eccentric loading, Useful width concept; Inclined loading; Footings on slope.	8
Module – II: Combined footings and Raft footings Types of combined footings – Rectangular combined footing, Trapezoidal combined footing, Strap, or cantilever footing. Advantages of combined footings. Bearing capacity of rafts on clay and sands. Design of Raft foundations – conventional method and elastic method (soil line method). Floating raft	8
Module – III: Well foundations, Coffer dams and Pier foundations Types of well foundations, Components of well foundations, sinking of well foundations, Allowable bearing pressure, Analysis based on bulkhead concept. Cofferdams – types and uses, Stability and design of cofferdams. Pier foundation and its types and uses.	8
Module – IV: Machine Foundations Classification of machines, Types of machine foundations, Requirements of machine foundations, Damping, Free vibration, Forced vibration, Resonant frequency, Dynamic soil properties, Design of machine foundations.	8
Module – V: Foundations on expansive soils General characteristics of expansive soils, Clay mineralogy and mechanism of swelling, swelling potential, swelling pressure, Free swell, Evaluation of swelling potential, Estimating the magnitude of swelling, Design of foundations in swelling soils, Elimination of swelling.	8

TEXTBOOKS:

- 1. Soil Mechanics and Foundations by Dr. B.C. Punmia, Ashok Kumar Jain, Arun Kumar Jain
- 2. Geotechnical Engineering by C. Venkataramaiah

REFERENCE BOOKS:

1. Advanced Foundation Engineering – V.N.S. Murthy

GAPS IN THE SYLLABUS (TO MEET INDUSTRY/PROFESSION REQUIREMENTS)

POS MET THROUGH GAPS IN THE SYLLABUS

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

POS MET THROUGH TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS & EVALUATION PROCEDURE

DIRECT ASSESSMENT

Assessment Tool	% Contribution during CO Assessment
Continuous Internal Assessment	25
Mid Sem Exam	25
Semester End Examination	50

Continuous Internal Assessment	% Distribution
Quiz	10
Assignment	10
Teachers Assesment	5

Assessment Components	CO1	CO2	CO3	CO4	CO5
Continuous Internal Assessment	√	√	/	√	✓
Semester End Examination	√	✓	✓	✓	✓

INDIRECT ASSESSMENT

1. Student feedback on course outcome

COURSE DELIVERY METHODS

CD1	Lectures by use of boards/LCD projectors/OHP projectors
CD2	Tutorials/Assignments
CD3	Seminars
CD4	Mini projects/Projects
CD5	Laboratory experiments/teaching aids
CD6	Industrial/guest lectures
CD7	Industrial visits/in-plant training
CD8	Self- learning such as use of NPTEL materials and internets
CD9	Simulation

MAPPING BETWEEN COURSE OUTCOMES AND POs and PSOs

	РО	PSO	PSO	PSO										
	1	2	3	4	5	6	7	8	9	10	11	1	2	3
CO1	3	3	2	2	2	2	0	2	1	0	3	3	3	3
CO2	3	3	3	2	1	1	0	1	1	0	3	3	3	3
CO3	3	3	3	2	1	1	0	1	1	0	3	3	3	3
CO4	3	3	3	2	1	1	0	1	1	0	3	3	3	3
CO5	3	3	3	2	1	1	0	1	1	0	3	3	3	3

Grading: No correlation – 0, Low correlation – 1, Moderate correlation – 2, High correlation – 3

Course Outcomes	Course Delivery Method
CO1	CD1, CD2, CD3, CD4, CD5, CD6, CD7, CD8
CO2	CD1, CD2, CD3, CD4, CD5, CD6, CD7, CD8
CO3	CD1, CD2, CD3, CD4, CD5, CD6, CD7, CD8
CO4	CD1, CD2, CD3, CD4, CD5, CD6, CD7, CD8
CO5	CD1, CD2, CD3, CD4, CD5, CD6, CD7, CD8

COURSE INFORMATION SHEET (PE7)

Course Code: CE 24457

Course Title: REMOTE SENSING IN CIVIL ENGINEERING

Pre-requisite(s): NA Co- requisite(s): NA

Credits: 3 L:3 T:0 P:0

Class schedule per week: 3

Class: B.Tech.

Semester / Level: VII / 3

Branch: CIVIL ENGINEERING

Name of Teacher:

COURSE OBJECTIVES

This course envisions to impart to students to:

1.	To develop basic understanding of remote sensing						
2.	To interpret and develop understandings on satellite image interpretation						
3.	To assess the application of RS technologies in Civil engineering						

COURSE OUTCOMES (COs)

CO1	Understand working principles of remote sensing, history of satellite development.
CO ₂	Procurement of India and global satellite data.
CO ₃	Interpret satellite images, verify and derive conclusions.
CO4	Apply processing tools to classify land use and land cover.
CO5	Integrate the applications of Air borne platforms.

MODULE	(NO. OF LECTURE HOURS)
Module – I: Principles of Remote Sensing Definition and Historical overview, Image Procurement, Electromagnetic spectrum, Atmospheric Windows, Physics of Remote Sensing, Spectral Signatures, Spectral Response pattern of soil, Vegetation & water.	8
Module – II: Satellite, Sensors and Image Interpretation Imaging & non-imaging sensors, Active & passive sensors, High- and Low-resolution sensors, Sensor Resolutions, Indian and Global Satellites, Fundamentals of Image Interpretation Techniques. Applications of different sensors.	8
Module – III: Image Processing Contrast Enhancement, Filtering, Band Ratio and Indices. Supervised Classification and Unsupervised Clustering. Applications of processing tools.	8
Module – IV: Platforms and Aerial Vehicles Aerial Photography, platforms, UAVs and their applications in environmental management and Biodiversity conservation.	8
Module – V: Applications in Civil Engineering Applications of Remote Sensing in transportation, urban planning, water resource, and soil studies.	8

TEXTBOOKS:

- 1. Jensen, J.R., (2006) "Remote Sensing of the Environment An Earth Resources Perspective", Pearson Education, Inc. (Singapore) Pvt. Ltd., Indian edition, Delhi.
- 2. Jensen, J.R., (1996) Introductory Digital Image Processing A remote sensing perspective. Prentice Hall Series in GIS, USA
- 3. Lillesand, Thomas M. and Kiefer, Ralph, W., (2007) "Remote Sensing and Image Interpretation", 4th Edition, John Wiley and Sons, New York

REFERENCE BOOKS:

- 1. Sabins, F.F. Jr., (2007). 'Remote Sensing Principles and Interpretation", W.H. Freeman & Co.
- 2. Reeves, Robert G. (1991), "Manual of Remote Sensing, Vol. I, American Society of Photogrammetry and Remote Sensing, Falls Church, Virginia, USA

GAPS IN THE SYLLABUS (TO MEET INDUSTRY/PROFESSION REQUIREMENTS)

POS MET THROUGH GAPS IN THE SYLLABUS

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

POS MET THROUGH TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS & EVALUATION PROCEDURE

DIRECT ASSESSMENT

Assessment Tool	% Contribution during CO Assessment
Mid Sem Examination	25
End Sem Examination	50
Quiz	10
Assignment	10
Teacher's assessment	05

Continuous Internal Assessment	% Distribution
Mid Sem Examination	50
Quiz and assignment	40
Teacher's assessment	10

Assessment Components	CO1	CO2	CO3	CO4	CO5
Continuous Internal Assessment	Y	Y	Y	Y	
Semester End Examination	Y	Y	Y	Y	Y

INDIRECT ASSESSMENT

1. Student feedback on course outcome

COURSE DELIVERY METHODS

CD1	Lectures by use of boards/LCD projectors/OHP projectors
CD2	Tutorials/Assignments
CD3	Self- learning such as use of NPTEL materials and internets

MAPPING BETWEEN COURSE OUTCOMES AND POS and PSOS

	РО	PO	PO	РО	PO	РО	РО	РО	РО	PO1	PO1	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	0	1	1	2	3
CO1	3	0	0	0	3	0	0	0	0	0	0	1	1	0
CO2	0	0	0	0	3	0	1	0	0	0	0	1	2	0
CO3	0	2	1	3	3	3	0	1	2	1	0	2	2	0
CO4	2	2	3	3	3	3	0	0	0	1	0	2	2	0
CO5	2	1	0	0	3	3	0	0	0	1	0	3	2	0

Grading: No correlation - 0, Low correlation - 1, Moderate correlation - 2, High correlation - 3

Course Outcomes	Course Delivery Method
CO1	CD1, CD2
CO2	CD1, CD2
CO3	CD1, CD2
CO4	CD1, CD2
CO5	CD1, CD2

COURSE INFORMATION SHEET (PE7)

Course Code: CE24458

Course Title: GROUNDWATER ENGINEERING

Pre-requisite(s): CE24203 Co- requisite(s): NA

Credits: 3 L: 3 T: 0 P: 0

Class schedule per week: 3

Class: B.Tech.

Semester / Level: VII / 3

Branch: CIVIL ENGINEERING

Name of Teacher:

COURSE OBJECTIVES

This course envisions to impart to students:

1.	To understand concepts of hydrogeology and groundwater flow.
2.	To measure and improve the quality of groundwater.
3.	To investigate the availability of groundwater resources.
4.	To design groundwater flow models.

COURSE OUTCOMES (COs)

CO1	Understand the aquifer parameters for estimation of groundwater resources at different
	geological conditions. (K1, K2)
CO2	Understand well hydraulics and analyse the flow. (K1, K2, K3)
CO3	Model the groundwater flow and design the artificial groundwater recharge. (K1, K2,
	K3)
CO4	Investigate the ground water resources using different techniques. (K1, K2, K3)
CO5	Measure and analyse the groundwater quality & develop pollution control measures.
	(K1, K2, K3)

MODULE	(NO. OF LECTURE HOURS)
Module – I: Hydrogeology Introduction: Groundwater development in India, Conjunctive use of groundwater, Groundwater in the hydrologic cycle, Vertical distribution of Groundwater, Geologic formations of aquifers, Types of aquifers, Storage Coefficient. Groundwater Movement: Darcy's law, Permeability, Hydraulic Conductivity, Anisotropic Aquifers, Groundwater Flow rates and flow directions, General flow equations.	8
Module – II: Well Hydraulics Steady unidirectional flow, Steady radial flow in a well, Well in a uniform flow, Unsteady radial flow in confined and unconfined aquifers, Well flow near aquifer boundaries, Characteristic well losses, Specific capacity, Recharge methods, Artificial recharge, Water spreading, Wastewater Recharge, Recharge mounds.	8
Module – III: Groundwater Modelling Techniques Groundwater models, porous media models, Analog models, Electrical analog models, Digital computer models.	8
Module – IV: Groundwater Geophysical Investigations Surface geophysical techniques, Electrical resistivity, Seismic refraction and reflection, Remote Sensing application.	8
Module – V: Groundwater Quality Water sampling, Groundwater quality standards, Potable water standards of WHO, Geotechnical survey of groundwater for various requirements.	8

TEXTBOOKS:

- 1. Ground water Hydrology, D. K. Todd, John Wiley & Sons.
- 2. Groundwater Hydrology D.K. Todd & L.W. Mays, John Wiley & Sons.
- 3. Ground Water, H. M. Raghunath, New Age International (P) Limited, Publishers.
- 4. Groundwater Hydrology, H. Bowner, McGraw Hill.
- 5. Applied Hydrogeology, C.W. Fetter, Pearson Education Limited.

GAPS IN THE SYLLABUS (TO MEET INDUSTRY/PROFESSION REQUIREMENTS)

POS MET THROUGH GAPS IN THE SYLLABUS

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

POS MET THROUGH TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS & EVALUATION PROCEDURE

DIRECT ASSESSMENT

Assessment Tool	% Contribution during CO Assessment
Mid Sem Examination	25
End Sem Examination	50
Quiz	10
Assignment	10
Teacher's Assessment	05

Continuous Internal Assessment	% Distribution
Mid Sem Examination	50
Quiz and Assignment	40
Teacher's Assessment	10

Assessment Components	CO1	CO2	CO3	CO4	CO5
Continuous Internal Assessment	Y	Y	Y	Y	
Semester End Examination	Y	Y	Y	Y	Y

INDIRECT ASSESSMENT

1. Student Feedback on Course Outcome

COURSE DELIVERY METHODS

CD1	Lecture by use of boards/LCD projectors/OHP projectors
CD2	Tutorials/Assignments
CD3	Seminars
CD4	Mini projects/Projects
CD5	Laboratory experiments/teaching aids
CD6	Industrial/guest lectures
CD7	Industrial visits/in-plant training
CD8	Self- learning such as use of NPTEL materials and internets
CD9	Simulation

MAPPING BETWEEN COURSE OUTCOMES AND POs and PSOs

	РО	PO	РО	PSO	PSO	PSO								
	1	2	3	4	5	6	7	8	9	10	11	1	2	3
CO1	3	3	3	3	2	0	0	0	1	0	0	3	2	1
CO2	3	3	3	3	2	0	0	0	1	0	0	3	2	1
CO3	3	3	3	3	3	0	0	0	1	0	0	3	2	1
CO4	3	3	3	3	2	0	0	0	1	0	0	3	2	1
CO5	3	3	3	3	2	0	0	0	1	0	0	3	2	3

Grading: No correlation – 0, Low correlation – 1, Moderate correlation – 2, High Correlation – 3

Course Outcomes	Course Delivery Method
CO1	CD1, CD2, CD3
CO2	CD1, CD2, CD3
CO3	CD1, CD2, CD3
CO4	CD1, CD2, CD3
CO5	CD1, CD2, CD3

COURSE INFORMATION SHEET (PE7)

Course Code: CE24459

Course Title: DESIGN OF HYDRAULIC STRUCTURES

Pre-requisite(s): CE24203 Co- requisite(s): NA

Credits: 3 L: 3 T: 0 P: 0

Class schedule per week: 3

Class: B.Tech.

Semester / Level: VII / 3

Branch: CIVIL ENGINEERING

Name of Teacher:

COURSE OBJECTIVES

This course envisions to impart to students:

1.	To know about different types of hydraulic structures.
2.	To analyse the forces acting on the hydraulic structures.
3.	To design hydraulic structures.
4.	To ensure fulfilment of societal requirements and environmental sustainability while
	designing the hydraulic structures.

COURSE OUTCOMES (COs)

CO1	Acquire knowledge of various types of dams and analyse forces acting on gravity dam.
	(K1, K2, K3)
CO ₂	Analyse the forces acting on a hydraulic structure, causes of their failure and their
	remedial measures. (K1, K2, K3)
CO3	Analyse the requirement and design of a canal fall and regulator. (K1, K2, K3)
CO4	Analyse and design cross-drainage works. (K1, K2, K3)
CO5	Design and investigate various types of canal outlets and escapes. (K1, K2, K3)

MODULE	(NO. OF LECTURE HOURS)
Module – I: Gravity Dams Types of dams, Forces acting on a gravity dam, Modes of failure, Stability requirements, Principal and shear stress, Elementary Profile of a Gravity Dam, High and low gravity dams, Design of gravity dams.	8
Module – II: Diversion Headworks Component of diversion headworks, Causes of failure of weirs and their remedies, Design of impervious floor, Design of vertical drop weir.	8
Module – III: Canal Falls and Canal Regulators Necessity of canal falls, Classification of falls, Cistern design, Design of Sarda type falls, Head regulators and cross regulators, Design of cross regulators and distributary head regulators	8
Module – IV: Cross Drainage Works Types of cross drainage works, Selection of suitable type of cross drainage works, Classification of aqueducts and syphon aqueducts, design of cross drainage works.	8
Module – V: Canal Outlets and Escapes Types of canal outlets, Non-modular outlets, Flexible module, Rigid module, Canal escape.	8

TEXTBOOKS:

- 1. Irrigation and Water Power Engineering by B.C. Punmia, Pande B.B. Lal, Ashok Kumar Jain, Arun Kumar Jain, Laxmi Publications.
- 2. Irrigation Engineering and Hydraulic Structures by S. K. Garg, Khanna Publishers.
- 3. Irrigation and Water Resource Engineering by G.L. Asawa, New Age Publishers

GAPS IN THE SYLLABUS (TO MEET INDUSTRY/PROFESSION REQUIREMENTS)

POS MET THROUGH GAPS IN THE SYLLABUS

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

POS MET THROUGH TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS & EVALUATION PROCEDURE

DIRECT ASSESSMENT

Assessment Tool	% Contribution during CO Assessment
Mid Sem Examination	25
End Sem Examination	50
Quiz	10
Assignment	10
Teacher's Assessment	05

Continuous Internal Assessment	% Distribution
Mid Sem Examination	50
Quiz and Assignment	40
Teacher's Assessment	10

Assessment Components	CO1	CO2	CO3	CO4	CO5
Continuous Internal Assessment	Y	Y	Y	Y	
Semester End Examination	Y	Y	Y	Y	Y

INDIRECT ASSESSMENT

1. Student Feedback on Course Outcome

COURSE DELIVERY METHODS

	VERT METHODS
CD1	Lecture by use of boards/LCD projectors/OHP projectors
CD2	Tutorials/Assignments
CD3	Seminars
CD4	Mini projects/Projects
CD5	Laboratory experiments/teaching aids
CD6	Industrial/guest lectures
CD7	Industrial visits/in-plant training
CD8	Self- learning such as use of NPTEL materials and internets
CD9	Simulation

MAPPING BETWEEN COURSE OUTCOMES AND POs and PSOs

	РО	РО	PO	РО	PSO	PSO	PSO							
	1	2	3	4	5	6	7	8	9	10	11	1	2	3
CO1	3	3	3	3	2	0	0	0	1	0	0	3	3	2
CO2	3	3	3	3	2	0	0	0	1	0	0	3	3	2
CO3	3	3	3	3	2	0	0	0	1	0	0	3	3	2
CO4	3	3	3	3	2	0	0	0	1	0	0	3	3	2
CO5	3	3	3	3	2	0	0	0	1	0	0	3	3	2

Grading: No correlation – 0, Low correlation – 1, Moderate correlation – 2, High Correlation – 3

Course Outcomes	Course Delivery Method
CO1	CD1, CD2, CD3
CO2	CD1, CD2, CD3
CO3	CD1, CD2, CD3
CO4	CD1, CD2, CD3
CO5	CD1, CD2, CD3

COURSE INFORMATION SHEET

Course Code: MT24204

Course Title: CONSTITUTION OF INDIA

Pre-requisite(s): NA Co- requisite(s): NA

Credits: 1 L: 02 T: 0 P: 0

Class schedule per week: 2 Class: Bachelor of Technology Semester / Level: VI/4

Branch:

Name of Teacher: Dr Anand Kumar

COURSE OBJECTIVES

This course aims to impart to students:

1.	To describe the importance and role of Constitution of India
2.	To explain the provisions related to Social Problems and Issues in Constitution
3.	To explain the significance of the Constitution for maintaining social unity and
	integrity
4.	To describe the process for formulating and designing public policies in accordance
	with constitutional provisions

COURSE OUTCOMES (COs)

CO1	Outline the need and importance of the Indian Constitution
CO2	Explain the fundamental rights and duties of citizens of India
CO3	Relate appropriate Constitutional Provisions with relevant social issues
CO4	Describe the role of different departments of government
CO5	Describe the Government policies and programs designed for the society at large

MODULE	(NO. OF LECTURE HOURS)
Module – I Introduction to the Constitution of India, Salient Features of the Constitution: Sources and constitutional history, Features: Citizenship, Preamble, Fundamental Rights and Duties, Directive Principles of State Policy.	9
Module – II Union and State Executives: President and Prime Minister, Council of Ministers, Cabinet and Central Secretariat, Lok Sabha, Rajya Sabha. Governor: Role and Position, Chief Ministers and Council of Ministers.	9
Module – III The Indian Judicial System - The Supreme Court and The High Court's - composition, Jurisdiction and functions, The Role of the Judiciary.	9
Module – IV Local Government- District's Administration: Role and Importance, The Panchayatas - Gram Sabha, Constitution and Composition of Panchayatas, Constitution and Composition of Municipalities	9
Module – V Miscellaneous- Election Commission: Role and Functioning, Chief Election Commissioner and Election Commissioners. State Election Commission: Role and Functioning, Institute and Bodies for the welfare of SC/ST/OBC and women.	4

TEXTBOOKS:

- 1. The Constitution of India by "Ministry of Law India" Kindle Edition
- 2. Constitutional History of India by Prof.M.V.PYLEE-S.Chand Publishing
- 3. Indian Administration by Avasti and Avasti-Lakshmi Narain Agarwal Educational Publishers.2017 edition.
- 4. Introduction to the Constitution of India by D DBasu by Lexis Nexis: 20th edition.
- 5. Constitution of India V.N.Shukla's EBC Explorer Edition 13th,2017

GAPS IN THE SYLLABUS (TO MEET INDUSTRY/PROFESSION REQUIREMENTS)

POS MET THROUGH GAPS IN THE SYLLABUS

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

POS MET THROUGH TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS & EVALUATION PROCEDURE

DIRECT ASSESSMENT

Assessment Tool	% Contribution during CO Assessment
End Semester Examination	50
Quiz (s)	20
Assignment	5
Mid-Semester Exam	25

Continuous Internal Assessment	% Distribution
Quiz (s)	20
Assignment	5
Mid-Semester Exam	25

Assessment Components	CO1	CO2	CO3	CO4	CO5
Continuous Internal Assessment	2	2	2	2	
Semester End Examination	2	2	2	2	2

INDIRECT ASSESSMENT

1. Student Feedback on Course Outcome

COURSE DELIVERY METHODS

CD1	Lecture using boards/LCD projectors/OHP projectors
CD2	Tutorials/Assignments
CD3	Seminars
CD4	Mini projects/Projects
CD5	Laboratory experiments/Teaching aids
CD6	Industrial/Guest lectures
CD7	Industrial visits/In-plant training
CD8	Self, learning such as the use of NPTEL materials and the internet simulation
CD9	Tutorials/Assignments

MAPPING BETWEEN COURSE OUTCOMES AND POs and PSOs

	РО	РО	РО	РО	РО	PO	РО	РО	РО	РО	PO
	1	2	3	4	5	6	7	8	9	10	11
CO1	2	2	1	2	1	2	2	2	2	1	2
CO2	2	2	1	2	2	2	2	2	1	2	2
CO3	2	2	1	2	1	2	2	2	2	1	1
CO4	2	2	1	2	2	2	2	2	2	1	1
CO5	2	2	1	2	1	2	2	2	2	3	3

 $Grading: No\ correlation-0, Low\ correlation-1, Moderate\ correlation-2, High\ Correlation-3$

Course Outcomes	Course Delivery Method
CO1	Lecture using boards/LCD projectors/OHP projectors
CO2	Lecture using boards/LCD projectors/OHP projectors
CO3	Lecture using boards/LCD projectors/OHP projectors
CO4	Tutorials/Assignments
CO5	Seminars

COURSE INFORMATION SHEET

Course Code: CE24402

Course Title: REMOTE SENSING AND GIS LABORATORY

Pre-requisite(s): NA Co- requisite(s): NA

Credits: 1 L: 0 T: 0 P: 2

Class schedule per week: 2

Class: B.Tech.
Semester / Level: I
Branch: All
Name of Teacher:

COURSE OBJECTIVES

This course enables the students to:

1.	To describe the concept of remote sensing and GIS (K2)
2.	To understand the mechanism of image interpretation (K2)
3.	To interpret and identity features of a satellite data (K4)
4.	To assess the applicability of tools for civil engineering purpose (K5)
5.	To perform and analyse tools for environmental management (K5)

COURSE OUTCOMES (COs)

After the completion of this course, students will be able to:

CO ₁	Explain the concepts of remote sensing and GIS (K2)
CO2	Compare different features on a satellite image using multiple image interpretation techniques. (K4)
CO3	Identify and apply software tools for civil and urban development (K5)
CO4	Identify and apply software tools for environmental sustainability (K5)
CO5	Prepare informative maps for multiple purposes (K5)

SYLLABUS (List of experiments)

- 1. Introduction to Concepts of Remote Sensing, GIS and GPS
- 2. Introduction to various sensors, satellite and Softwares related to Remote Sensing, & GIS
- 3. Satellite Image Interpretation of known locations and ground verification
- 4. Satellite Image Interpretation of unknown locations
- 5. To create an Area on interest using subset and mosaic tools.
- 6. To Perform Supervised classification to prepare a LULC Map
- 7. To Perform UnSupervised classification to prepare a LULC Map
- 8. To apply Indices for urban and environmental analysis
- 9. To create point, line and polygon features for Map Generation
- 10. To add and create attributes for analysing data sets in Arc GIS platform
- 11. To apply buffering techniques for Urban and Environmental Analysis
- 12. To apply interpolation techniques for Urban and Environmental Analysis
- 13. To prepare maps using all map components.

REFERENCE MATERIALS:

1. Lab manuals

GAPS IN THE SYLLABUS (TO MEET INDUSTRY/PROFESSION REQUIREMENTS)

POS MET THROUGH GAPS IN THE SYLLABUS

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

POS MET THROUGH TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS & EVALUATION PROCEDURE

DIRECT ASSESSMENT

Assessment Tool	% Contribution during CO Assessment
Lab Journal	30
Lab quizes	20
Progressive viva	20
End Sem Examination	30

Continuous Internal Assessment	% Distribution
Lab Journal	30
Lab quiz	10
Progressive viva	20

Assessment Components	CO1	CO2	CO3	CO4	CO5
Continuous Internal Assessment	Y	Y	Y	Y	Y
Semester End Examination	Y	Y	Y	Y	Y

INDIRECT ASSESSMENT

1. Student Feedback on Course Outcome

COURSE DELIVERY METHODS

CD1	Introductory lecture by use of boards/LCD projectors
CD2	Laboratory experiments/ teaching aid

MAPPING BETWEEN COURSE OUTCOMES AND POs and PSOs

	PO	PSO	PSO	PSO										
	1	2	3	4	5	6	7	8	9	10	11	1	2	3
CO1	3	0	0	0	0	0	0	0	0	0	1	1	1	0
CO2	2	3	0	1	2	2	1	2	0	0	0	1	1	0
CO3	2	3	3	3	2	2	0	0	1	1	1	1	2	1
CO4	2	3	2	1	2	2	0	1	1	0	1	2	2	0
CO5	2	2	3	3	2	2	2	1	2	2	1	1	1	0

Grading: No correlation – 0, Low correlation – 1, Moderate correlation – 2, High Correlation – 3

Course Outcomes	Course Delivery Method
CO1	CD1, CD2
CO2	CD1, CD2
CO3	CD1, CD2
CO4	CD1, CD2
CO5	CD1, CD2

COURSE INFORMATION SHEET

Course Code: CE24403

Course Title: Advanced Instrumentation Laboratory

Pre-requisite(s): CE24303 Geotechnical Engineering, CE24202 Structural Analysis I, CE24201 Solid

Mechanics, CE 24305 Transportation Engineering

Co- requisite(s): CE Concrete Technology, CE 24301 Structural Design I, CE 24438 Traffic Engineering

Credits: 1 L: 0 T: 0 P: 2

Class schedule per week: 2

Class: B.Tech. Semester / Level: IV Branch: All Name of Teacher:

COURSE OBJECTIVES

This course enables the students to:

1.	Study the Settlement characteristics and liquefaction characteristics
2.	To measure the stiffness of the selected pavements and to determine
	the speed distribution of a traffic stream at a specific location
3.	Investigate the behaviour of structural members
4.	Familiarize students with advanced instruments for material characterization.
5.	Analyze microstructure, particle size, and elemental composition of civil engineering
	materials.

COURSE OUTCOMES (COs)

After the completion of this course, students will be able to:

CO1	Determine the settlement due to loading and liquefaction potential.					
CO2	Able to analyze the strength of pavement surface and to determine safe design speeds for horizontal and vertical curves.					
CO3	Understand the strength characteristics of RC and Steel structural members					
CO4	Analyze material properties using advanced characterization techniques					
CO5	Apply SEM, LPSA, XRF, and XRD for research and industrial problems					

SYLLABUS (List of experiments)

- 14. Consolidation Test
- 15. Cyclic Triaxial Test
- 16. Light Weight Deflectometer
- 17. Spot speed measurement
- 18. Flexural testing of Reinforced Concrete Beams
- 19. Strength characteristics of RC and steel Members
- 20. To study the microstructure using Scanning Electron Microscopy (SEM)
- 21. Particle size distribution by Laser Particle Size Analyzer (LPSA)
- 22. To determine the elemental composition using X-Ray Fluorescence (XRF)
- 23. Powder XRD

REFERENCE MATERIALS:

- 2. Lab manuals (available on department website)
- 3. Goldstein, J. I., et al. Scanning Electron Microscopy and X-Ray Microanalysis. Springer, 2018.
- 4. Allen, T. Particle Size Measurement: Powder Sampling and Particle Size Measurement. Springer,

1997.

- 5. Beckhoff, B., et al. Handbook of Practical X-Ray Fluorescence Analysis. Springer, 2007.
- 6. Cullity, B. D., & Stock, S. R. Elements of X-Ray Diffraction. Pearson, 2014.

GAPS IN THE SYLLABUS (TO MEET INDUSTRY/PROFESSION REQUIREMENTS)

NA

POS MET THROUGH GAPS IN THE SYLLABUS

NA

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

NA

POS MET THROUGH TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

NA

COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS & EVALUATION PROCEDURE

DIRECT ASSESSMENT

Assessment Tool	% Contribution during CO Assessment
Lab Journal	30
Lab quizes	20
Progressive viva	20
End Sem Examination	30

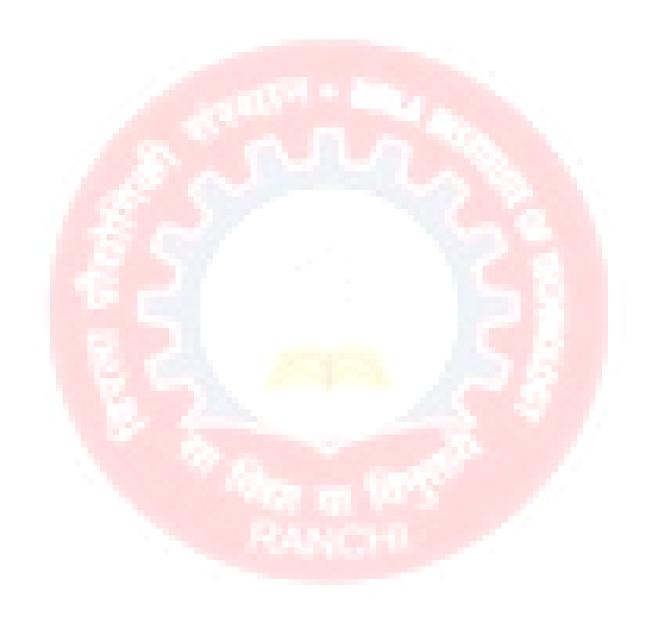
Continuous Internal Assessment	% Distribution
Lab Journal	30
Lab quiz	10
Progressive viva	20

Assessment Components	CO1	CO2	CO3	CO ₄	CO5
Continuous Internal Assessment	Y	Y	Y	Y	Y
Semester End Examination	Y	Y	Y	Y	Y

INDIRECT ASSESSMENT

2. Student Feedback on Course Outcome

COURSE DELIVERY METHODS


CD1 Introductory lecture by use of boards/LCD projectors				
CD2	Laboratory experiments/ teaching aid			
CD3	Self- learning such as use of NPTEL materials and internets			

MAPPING BETWEEN COURSE OUTCOMES AND POs and PSOs

	РО	PSO	PSO	PSO										
	1	2	3	4	5	6	7	8	9	10	11	1	2	3
CO1	3	3	0	1	2	1	1	2	2	0	0	3	3	3
CO2	3	3	0	1	2	1	1	2	2	0	0	3	3	3
CO3	3	3	0	1	2	1	1	2	2	0	0	3	3	3
CO4	3	3	1	1	3	1	0	0	1	0	1	3	3	3
CO5	3	3	2	1	3	1	0	0	1	0	1	3	3	3

Grading: No correlation -0, Low correlation -1, Moderate correlation -2, High Correlation -3

Course Outcomes	Course Delivery Method	
CO1	CD1, CD2, CD3	
CO2	CD1, CD2, CD3	,
CO3	CD1, CD2, CD3	
CO4	CD1, CD2, CD3	
CO5	CD1, CD2, CD3	

COURSE INFORMATION SHEET (OE1)

Course Code: CE 24291

Course Title: BUILDING CONSTRUCTION

Pre-requisite(s): NA Co- requisite(s): NA

Credits: 3 L:3 T:0 P:0

Class schedule per week: 3

Class: B.Tech.

Semester / Level: IV / 2

Branch: CIVIL ENGINEERING

Name of Teacher:

COURSE OBJECTIVES

This course envisions to impart to students to:

1.	To understand the various steps involved in construction of a building foundation (K1, K2)
2.	To know the components of masonry works and their construction process (K1).
3.	To know about the different temporary structures erected in building construction and understand
	their uses (K1, K2)
4.	To know about the different roof and floor types and their construction methodology (K1)

COURSE OUTCOMES (COs)

CO1	Able to explain the various steps involved in construction of a building foundation (K1, K2).
CO ₂	Able to plan and execute masonry work (K1).
CO ₃	To identify the different types of temporary structures required in construction and explain their uses
	(K1, K2).
CO4	Able to select the suitability of a floor/roof type and execute its construction (K1).
CO5	Able to plan and execute wall-finishing works (K1).

MODULE					
Module – I: Foundation construction Site investigation, Foundation system, earthwork & excavation, keeping excavation dry.	8				
Module – II: Masonry materials and construction Materials for stone and brick masonry, Types of stone masonry, principle to be observed in construction of stone masonry, joints in stone masonry, bonds in brick masonry, principle to be observed in construction of brick masonry, defects in brick masonry, concrete block masonry.	8				
Module – III: Temporary Structures Classification of temporary structures, scaffolding, centering and shuttering, underpinning, shoring.	8				
Module – IV: Roofs and floors Features of good roof, Classification of roofs, Roof covering for pitched roofs, flat roofs, surface drainage of flat roofs, repair of leaky roofs. Sub-floor, finishing, Types of floors, construction of floors.	8				
Module – V: Wall finishing Plastering, Method of plastering, common defects of plaster-causes and remedies, pointing, white washing, colour washing, distemper, cement paint.	8				

TEXTBOOKS:

- 1. A Text Book of Building Construction and Construction Materials, G.S Birdie, T.D. Ahuja. Dhanpat Rai Publishing Company (P) Ltd.
- 2. Building Construction, S S Bhavikatti. Vikas Publishing House.

GAPS IN THE SYLLABUS (TO MEET INDUSTRY/PROFESSION REQUIREMENTS)

POS MET THROUGH GAPS IN THE SYLLABUS

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

POS MET THROUGH TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS & EVALUATION PROCEDURE

Assessment Tool	% Contribution during CO Assessment
Mid Sem Examination	25
End Sem Examination	50
Quiz	10
Assignment	10
Teacher's assessment	05

Continuous Internal Assessment	% Distribution
Mid Sem Examination	50
Quiz and assignment	40
Teacher's assessment	10

Assessment Components	CO1	CO2	CO3	CO4	CO5	CO6
Continuous Internal Assessment	Y	Y	Y	Y	Y	Y
Semester End Examination	Y	Y	Y	Y	Y	Y

INDIRECT ASSESSMENT

1. Student feedback on course outcome

COURSE DELIVERY METHODS

CD1	Lectures by use of boards/LCD projectors/OHP projectors
CD2	Tutorials/Assignments
CD3	Seminars
CD4	Mini projects/Projects
CD5	Laboratory experiments/teaching aids
CD6	Industrial/guest lectures
CD7	Industrial visits/in-plant training
CD8	Self- learning such as use of NPTEL materials and internets
CD9	Simulation

MAPPING BETWEEN COURSE OUTCOMES AND POs and PSOs

	РО	PO	РО	PO	PO	РО	РО	PO	РО	PO1	PO1	PSO	PSO	
	1	2	3	4	5	6	7	8	9	0	1	1	2	PSO3
CO1	2	1	1		1	1				2	2			
CO2	2	1	1		2	1				2	2			
CO3	2		1	2	1					1	2			
CO4	2	1	1			1				2	2			
CO5	2				2		1			2	2			

Grading: No correlation - 0, Low correlation - 1, Moderate correlation - 2, High correlation - 3

Course Outcomes	Course Delivery Method
CO1	CD1, CD2 and CD8
CO2	CD1, CD2 and CD8
CO3	CD1, CD2, CD5
CO4	CD8

COURSE INFORMATION SHEET (OE2)

Course Code: CE24391

Course Title: ENVIRONMENTAL MANAGEMENT

Pre-requisite(s): Co- requisite(s):

Credits: 3 L: 3 T: 0 P: 0

Class schedule per week: 3

Class: B.Tech.
Semester / Level: V/3
Branch: All

Name of Teacher:

COURSE OBJECTIVES

This course envisions to impart to students:

1.	To develop basic knowledge and understanding of principles of environment and its
	application.
2.	To identify and understand the structure and composition of the environment and its
	management.
3.	To analyse, how the environment is getting contaminated and probable control mechanisms
	for them.
4.	To generate awareness about management laws and regulation in india so that they become a
	sensitive citizen towards the changing environment

COURSE OUTCOMES (COs)

CO1	Able to explain the structure and function of ecosystems and their importance in the holistic
	environment.
CO2	Able to identify the sources, causes, impacts and control of air pollution.
CO3	Able to distinguish and analyse the various types of water pollution happening in the
	environment and understand about their effects and potential control mechanisms.
CO4	Able to judge the importance of soil, causes of contamination and need of energy and waste
	management.
CO5	Able to predict the sources of radiation hazards and pros and cons of noise pollution

MODULE	(NO. OF LECTURE HOURS)
Module-1: Environment and its components Definition and components of Environment, Structure and Function of Environment, Levels of Organization in environment, Energy flow in environment, Food chain and Trophic level, Biogeochemical Cycles, Atmosphere: Composition and structure, terrestrial radiation, heat balance.	8
Module-2: Water and soil management Water in biosphere, Surface and groundwater, Water management, Rain water harvesting, Water shed management. Lithosphere: landforms and types, Soil as basic natural resource- Definition and Composition, Formation of Soil, Properties of soil, Soil erosion- Causes, Effects and Control measures. Aquaculture- Inland water resources and their economic potential with respect to fisheries.	8
Module-3: Environmental pollution and its impact Air Pollution: Definition, Sources of air pollution. Air pollutants (CO, CO2, SO2, NOx, Hydrocarbons & aerosols). Green House Effect, acid rain, Ozone layer depletion and Smog. Water Pollution: Definition and sources of water pollution. Specific phenomena related with water pollution- Algal bloom, Eutrophication, Biomagnifications/ Bioaccumulation. Land/ Soil Pollution: Definition, Sources of land/ soil pollution, Specific phenomena related with land/ soil pollution, Noise Pollution: Definition, Measurement of noise and its intensity. Types and classification of waste: Air, Liquid and Solid.	8
Module-4: EIA and Environmental Laws Environmental Acts, Rules and Notifications. a) Water (Prevention & Control of Pollution) Act and the corresponding Rule, b) Water (Prevention & Control of Pollution) Act and the corresponding Rule, c) Air (Prevention & Control of Pollution) Act and the corresponding Rule d) Environment (Protection) Act and Rule. Concept of Sustainable Development, EIA: Steps in EIA, ISO 9000 and ISO 14000, Environmental Audit. Forest: Forest types, role of forest, Forest Management and Wildlife conservation.	8
Module-5: Energy Management Conventional sources of energy: Coal, Oil and Natural gas, Thermal power, Firewood, Hydropower, Nuclear power. Non- Conventional Sources of Energy: Solar energy, Wind energy, Ocean/ Tidal energy, geothermal energy, Biomass based energy, Dendrothermal energy, Energy from urban waste, Bagasse based energy. Energy from refuse, recycling of waste materials. Forest: Forest types, role of forest, Forest Management and Wildlife conservation.	8

TEXTBOOKS:

- 1. A, K. De. (3rd Ed). 2008. Environmental Chemistry. New Age Publications India Ltd.
- 2. R. Rajagopalan. 2016. Environmental Studies: From Crisis to Future by, 3rd edition, Oxford University Press.
- 3. Eugene P. Odum. 1971. Fundamentals of Ecology (3rd ed.) -. WB Sunders Company, Philadelphia.
- 4. C. N. Sawyer, P. L. McCarty and G. F. Parkin. 2002. Chemistry for Environmental Engineering and Science. John Henry Press.
- 5. S.C. Santra. 2011. Environmental Science. New Central Book Agency.

REFERENCE BOOKS:

- 1. D.W. Conell. Basic Concepts of Environmental Chemistry, CRC Press.
- 2. Peavy, H.S, Rowe, D.R, Tchobanoglous, G. Environmental Engineering, Mc-Graw Hill International
- 3. G.M. Masters & Wendell Ela. 1991. Introduction to Environmental Engineering and Science, PHI Publishers.

GAPS IN THE SYLLABUS (TO MEET INDUSTRY/PROFESSION REQUIREMENTS)

POS MET THROUGH GAPS IN THE SYLLABUS

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

POS MET THROUGH TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS & EVALUATION PROCEDURE

DIRECT ASSESSMENT

Assessment Tool	% Contrib <mark>ution during CO Assessment</mark>
Mid Sem Examination	25
End Sem Examination	50
Quiz	10
Assignment	10
Teacher's assessment	05

Continuous Internal Assessment	% Distribution
Mid Sem Examination	50
Quiz and assignment	40
Teacher's assessment	10

Assessment Components	CO1	CO2	CO3	CO4	CO5
Continuous Internal Assessment	Y	Y	Y	Y	
Semester End Examination	Y	Y	Y	Y	Y

INDIRECT ASSESSMENT

1. Student Feedback on Course Outcome

COURSE DELIVERY METHODS

CD1	Lectures by use of boards/LCD projectors/OHP projectors
CD2	Tutorials/Assignments
CD3	Self- learning such as use of NPTEL materials and internets

MAPPING BETWEEN COURSE OUTCOMES AND POs and PSOs

	РО	PSO	PSO	PSO										
	1	2	3	4	5	6	7	8	9	10	11	1	2	3
CO1	2	1	0	0	0	3	2	0	0	0	2			
CO2	2	2	2	2	1	3	2	0	0	0	2			
CO3	2	2	2	2	1	3	2	0	0	0	2			
CO4	2	2	2	1	1	3	2	0	0	1	2			
CO5	2	2	1	1	0	3	2	0	0	0	2			

Grading: No correlation - 0, Low correlation - 1, Moderate correlation - 2, High Correlation - 3

Course Outcomes	Course Delivery Method
CO1	CD1, CD2, CD3
CO2	CD1, CD2, CD3
CO3	CD1, CD2, CD3
CO4	CD1, CD2, CD3
CO5	CD1, CD2, CD3

COURSE INFORMATION SHEET (OE3)

Course code: CE 24392

Course title: DISASTER MANAGEMENT

Pre-requisite(s): NA
Co- requisite(s): NA

Credits: 3 L:3 T:0 P:0

Class schedule per week: 3
Class: B.Tech.
Semester / Level: VI / 3
Branch: ALL

Name of Teacher:

COURSE OBJECTIVES

This course envisions to impart to students to:

1.	Understand the disaster phenomenon and their implications in real life. (K1)
2.	Acquire knowledge of various risk reduction measures to reduce the impact of disasters. (K2)
3.	Know various structural and non-structural measures to prevent or mitigate impact of disasters. (K3)
4.	Aware of the various institutions, organizations or bodies which manage disaster occurrences. (K3)

COURSE OUTCOMES (COs)

CO1	Understand natural hazards and the disaster phenomenon along with their practical implications. (
	K2)	
CO ₂	Know various disaster risk reduction techniques and disaster management processes. (K2)	
CO ₃	Understand the various meteorological disaster phenomena and know their preventive and remedial	
	measures to reduce their impact in human lives. (K2)	
CO4	Become aware of various topographical disaster phenomena, their effects and possible preventive or	
	mitigative measures. (K3)	
CO5	Create awareness among people and society regarding various biological and environmental	
	disasters. (K3)	

MODULE	(NO. OF LECTURE HOURS)
Module – I: Introduction Hazards and disasters, Distinction between hazard and disaster, History of disasters, Major trend, Characteristics and damage potential, Hazard assessment, Vulnerability assessment, Classification of disasters, Types of disasters, Natural and man-made disasters, Causes, effects and practical examples of the disasters, Response time, Frequency.	8
Module – II: Disaster Risk Reduction and Management Risk Management: Risk, Risk assessment, Risk management, Risk reduction, Crisis Management, Disaster management: Principle, Planning, Awareness, Prediction and forewarning, Disaster Management cycle, Pre- and post-management stage, Preparedness, Mitigation, Response, Recovery, Rehabilitation, Capacity building, Community capacity building, Disaster management in India, Institutional Organizations: Disaster management act, National policy, Institutional framework, National and international organizations, NDMA, Responsibilities of NDMA, Nodal agencies, Disaster management strategies.	8
Module – III: Meteorological Disasters Floods: Flood hazard and disaster, Flood hazards in India, Types of floods, Causes, and effects, Flood management, Flood control and mitigation, Forecast and early warning. Drought: Concept of drought, Impacts of drought, Consequences of drought, Types of droughts, Drought profile, Drought hazards in India, Drought management, Drought risk reduction, Drought prediction and monitoring, Mitigation and prevention. Tsunami: Tsunami wave characteristics, Tsunami Formation and evolution, Causes and effects, Identification and mapping, Protection, Warning system, Indian Ocean tsunami, preand post-management of tsunami. Cyclone: Characteristics, Occurrences, Distribution, Effects, Classification, Tropical cyclones, Cyclone reduction and management, Preparedness, mitigation, and prevention.	8
Module – IV: Topographical Disasters Earthquake: Earthquake hazards/disasters, Earthquake characteristics, Plate tectonics, Causes of earthquakes, Distribution of earthquakes, Hazardous effects of earthquakes, Earthquake hazards in India, Epicenter, Hypocenter, Magnitude and intensity, Earthquake waves, Seismic zoning of India, Earthquake disaster reduction, Preparedness and mitigation, Rehabilitation, reconstruction, and recovery. Volcanoes: Volcanic hazard, Distribution, Causes and effects, Environmental impact, Risk and vulnerability, Management of volcanic disaster, Warning and prediction, Preparedness and mitigation, Rescue, and relief. Landslides: Meanings and concepts, Causes, and effects, Types, Vulnerability and risk, Signs and early warning systems, Preparedness, prevention and mitigation.	8
Module – V: Biological and Environmental Disasters Biological Disasters: Biological hazards, Pathogen, Human, animal and plant epidemics, Mitigation and management, Safety and precautionary measures, Protection and control. Global Warming: Evidence of global warming, Ozone depletion, Greenhouse effects, Effects of global warming, Global warming and climate change, Mitigation and Remedial Measures, Environmental laws. Fire: Terminologies, Fire triangles, Fire resistance, Fire endurance, Fire detection and alarms, Fire safety, Prevention and mitigation measures.	8

TEXTBOOKS:

- 1. Disaster Science and Management, T. Bhattacharya, Tata McGraw Hill.
- 2. Disaster Management, M. Pandey, Wiley India Pvt. Ltd.
- 3. Natural Hazard and Disaster Management, S. C. Chakraborty.
- 4. Fire Safety in Building, V. K. Jain.

REFERENCE BOOKS:

1. Manual on Disaster Management, National Disaster Management, Agency Govt. of India.

GAPS IN THE SYLLABUS (TO MEET INDUSTRY/PROFESSION REQUIREMENTS)

POS MET THROUGH GAPS IN THE SYLLABUS

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

POS MET THROUGH TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS & EVALUATION PROCEDURE

DIRECT ASSESSMENT

Assessment Tool	% Contribution during CO Assessment
Quiz	10
Assignment	10
Teacher's Assessment	05
Mid Sem exam	25
Semester End Exam	50

Continuous Internal Assessment	% Distribution
Mid Sem Examination	50
Quiz and assignment	40
Teacher's assessment	10

Assessment Components	CO1	CO2	CO3	CO4	CO5
Continuous Internal Assessment	√	√	√	✓	
Semester End Examination	✓	✓	√	✓	✓

INDIRECT ASSESSMENT

1. Student feedback on course outcome

COURSE DELIVERY METHODS

CD1	Lectures by use of boards/LCD projectors/OHP projectors	
CD2	Tutorials/Assignments	
CD3	Seminars	
CD4	Mini projects/Projects	
CD5	Laboratory experiments/teaching aids	
CD6	Industrial/guest lectures	
CD7	Industrial visits/in-plant training	
CD8	Self- learning such as use of NPTEL materials and internets	
CD9	Simulation	

MAPPING BETWEEN COURSE OUTCOMES AND POs and PSOs

	РО	PO1	PO1	PSO	PSO	PSO								
	1	2	3	4	5	6	7	8	9	0	1	1	2	3
CO1	1	1	2	2	1	2	3	0	0	2	1			
CO2	1	1	2	2	1	2	3	0	0	2	1			
CO3	1	2	2	2	1	2	3	0	0	2	1			
CO4	1	2	2	2	1	2	3	0	0	2	1			
CO5	1	2	2	2	1	2	3	0	0	2	1			

 $Grading: No\ correlation-0, Low\ correlation-1,\ Moderate\ correlation-2, High\ correlation-3$

Course	Course Delivery Method
Outcomes	
CO1	CD1, CD5, CD8
CO2	CD1, CD5, CD8
CO3	CD1, CD2, CD4, CD5, CD8
CO4	CD1, CD2, CD4, CD5, CD8
CO5	CD1, CD2, CD4, CD5, CD8

COURSE INFORMATION SHEET (OE 4)

Course Code: CE24491

Course Title: CONSTRUCTION MANAGEMENT

Pre-requisite(s): Co- requisite(s):

Credits: 3 L: 3 T: 0 P: 0

Class schedule per week: 3

Class: B.Tech.

Semester / Level: VII/3

Branch: All Name of Teacher:

COURSE OBJECTIVES

This course envisions to impart to students:

1.	Learn about basics of construction projects and its management. (K1, K2)
2.	Learn about construction economics. (K2, K4)
3.	Know about construction materials management. (K3)
4.	Learn about construction quality management. (K3)
5.	Learn construction safety management. (K3)

COURSE OUTCOMES (COs)

CO1	Explain about construction project management and its relevance as well as ethical conduct of
	engineers. (K1, K2)
CO2	Work out economics of the construction project. (K2, K4)
CO ₃	Manage procurement of construction materials and inventory. (K3)
CO4	Implement quality control/ management technique during constructions. (K3)
CO5	Implement safety management and form safety policies in construction projects. (K3)

SYLLABUS

MODULE	(NO. OF LECTURE HOURS)
Module – I: Introduction: Indian construction industry, Construction project management and its relevance, Stakeholders of a construction project, Project organization.	8
Module – II: Construction Economics: Introduction. Economic decision making. Cash-flow diagrams. Present worth comparison, Future worth comparison, Annual cost and worth comparison, Rate of return method. Project cost estimation- preliminary and revised estimates.	8
Module – III: Construction Material Management: Material procurement process, Materials management functions – planning, procurement, custody, materials accounting, transportation, inventory monitoring and control, materials codification, source development, disposal. Inventory management – inventory related cost, functions of inventory, inventory policies, selective inventory control, inventory models.	8
Module – IV: Construction Quality Management: Description of quality, Evolution of quality, Inspection and quality control. Total quality management, ISO standards, Audit, Construction productivity, Typical causes of low labour productivity.	8
Module – V: Construction Safety Management: Evolution of safety, Health and safety act and regulations, Roles of safety personnel, Causes of accidents, Principles of safety, Safety and health management system – Safety policy and organization, Budget, Education and Training, Safety manual, Safety committee, Accident reporting, investigation and report keeping, Worker's health facilities.	8

TEXTBOOKS:

- 1. Construction Project Management Theory and Practice Kumar Neeraj Jha, Pearson
- 2. Construction Project Management Planning, Scheduling and Controlling K.K. Chitkara, McGraw Hill Education (India) Private Limited

REFERENCE BOOKS:

1. Construction Management and Machinery – B.L. Gupta & Amit Gupta, Standard Publishers Distributors.

GAPS IN THE SYLLABUS (TO MEET INDUSTRY/PROFESSION REQUIREMENTS)

POS MET THROUGH GAPS IN THE SYLLABUS

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

POS MET THROUGH TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS & EVALUATION PROCEDURE

DIRECT ASSESSMENT

Assessment Tool	% Contribution during CO Assessment
Mid Sem Examination	25
End Sem Examination	50
Quiz	10
Assignment	10
Teacher's assessment	05

Continuous Internal Assessment	% Distribution
Mid Sem Examination	50
Quiz and assignment	40
Teacher's assessment	10

Assessment Components	CO1	CO2	CO3	CO4	CO5
Continuous Internal Assessment	Y	Y	Y	Y	
Semester End Examination	Y	Y	Y	Y	Y

INDIRECT ASSESSMENT

1. Student Feedback on Course Outcome

COURSE DELIVERY METHODS

CD1	Lectures by use of boards/LCD projectors/OHP projectors
CD2	Tutorials/Assignments
CD3	Self- learning such as use of NPTEL materials and internets

MAPPING BETWEEN COURSE OUTCOMES AND POs and PSOs

	РО	РО	РО	РО	PO	РО	РО	РО	РО	PO	РО	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	1	2	3
CO1	2	1	0	0	0	2	3	1	1	2	2			
CO2	2	2	1	0	0	0	0	0	0	3	2			
CO3	1	1	2	0	2	0	0	1	0	3	1			
CO4	2	2	3	2	2	0	0	1	0	2	1			
CO5	2	2	2	1	1	3	2	1	0	2	2			

Grading: No correlation – 0, Low correlation – 1, Moderate correlation – 2, High Correlation – 3

Course Outcomes	Course Delivery Method
CO1	CD1, CD2, CD3
CO2	CD1, CD2, CD3
CO3	CD1, CD2, CD3
CO4	CD1, CD2, CD3
CO5	CD1, CD2, CD3

COURSE INFORMATION SHEET (VOC1)

Course Code: CE24151

Course Title: BUILDING DRAWING

Pre-requisite(s):

Co- requisite(s): CE24204

Credits: 3 L: 1 T: 0 P: 4

Class schedule per

week: 5

Class: B. Tech

Semester / Level: I / 1

Branch: CIVIL ENGINEERING

Name of Teacher:

COURSE OBJECTIVES

This course envisions to impart to students:

- 1. To introduce types of drawing and standard practices in drawing different components of the building.
- 2. To introduce the students to draft the plan, elevation, and sectional views of buildings.

COURSE OUTCOMES (COs)

CO1	Apply various types of scales as per the need for preparing various types of
	drawings.
CO2	Prepare plan, elevation and section of the residential building.
CO3	Study about different masonry bonds.
CO4	Analyze types of staircase, plan and section details of buildings.
CO5	Prepare detailed drawings of water supply and drainage connections to the
	buildings.

SYLLABUS (List of experiments)

- 1. Types of drawing- Index map, key plan, village map, site plan, layout plan with appropriate scale & uses. Sizes of various standard papers.
- 2. Different masonry bonds.
- 3. Plan, Elevation and Section of the residential building.
- 4. Types of staircase, Plan and Section details.
- 5. Detailed drawings of water supply and drainage connections to the building.
 - a) The layout of Single Storey Building Drainage System
 - b) The layout of Water supply in Single Storey Building
 - c) The layout of the Drainage system in Multi storeyed Building
- 6. Student Activity: Visit a construction site and collect drawings for the project

TEXTBOOKS:

- 1. Building Planning & Drawing Kumaraswamy N., Kameswara Rao A., Charotar Publishing
- 2. Civil Engg. Drawing and House Planning Verma B. P., Khanna Publishers
- 3. Building Drawing & Detailing Balagopal & T.S. Prabhu, Spades Publishers
- 4. Building Planning and Drawing S.S. Bhavikatti & M.V Chitawadagi, I.K International Publishing House Pvt.Ltd

REFERENCE BOOKS:

1. National Building Code, BIS, New Delhi

GAPS IN THE SYLLABUS (TO MEET INDUSTRY/PROFESSION REQUIREMENTS)

POS MET THROUGH GAPS IN THE SYLLABUS

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

POS MET THROUGH TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS & EVALUATION PROCEDURE

Course Delivery methods	
Lecture by use of boards/LCD projectors/OHP projectors	
Tutorials/Assignments	
Seminars	
Mini projects/Projects	
Laboratory experiments/teaching aids	√
Industrial/guest lectures	
Industrial visits/in-plant training	✓
Self-learning such as use of NPTEL materials and internets	✓
Simulation	

Course Outcome (CO) Attainment Assessment tools & Evaluation procedure

DIRECT ASSESSMENT

Assessment Tool	% Contribution during CO Assessment
Lab Journal	30
Lab quizes	20
Progressive viva	20
End Sem Examination	30

Continuous Internal Assessment	% Distribution
Lab Journal	30
Lab quiz	10
Progressive viva	20

Assessment Components	CO1	CO2	CO3	CO4	CO5
Continuous Internal Assessment	Y	Y	Y	Y	Y
Semester End Examination	Y	Y	Y	Y	Y

INDIRECT ASSESSMENT

CT ASSESSMENT

1. Student Feedback on Course Outcome

Mapping of Course Outcomes onto Program Outcomes and Program Specific Outcomes

	Program Outcomes									Program Specific Outcome				
Course Outcome	1	2	3	4	5	6	7	8	9	10	11	1	2	3
1	3	0	0	0	2	0	0	0	0	0	1	2	0	0
2	3	1	3	0	2	0	0	0	0	0	1	3	2	1
3	2	1	2	0	1	0	0	0	0	0	1	2	2	1
4	2	2	3	0	2	0	0	0	0	0	1	3	2	1
5	2	1	3	0	2	2	0	0	0	0	1	3	2	2

	Mapping Between COs and Course Delivery (CD) methods					
CD	Course Delivery methods		Course Outcome	Course Delivery Method		
CD1	Lecture by use of boards/LCD projectors/OHP projectors		CO1	CD1, CD2, CD5		
CD2	Tutorials/Assignments		CO2	CD1, CD2, CD4, CD5		
CD3	Seminars		CO3	CD1, CD2, CD5		
CD4	Mini projects/Projects		CO4	CD1, CD2, CD5		
CD5	Laboratory experiments/teaching aids		CO5	CD1, CD2, CD4, CD5		
CD6	Industrial/guest lectures					
CD7	Industrial visits/in-plant training					
CD8	Self- learning such as use of NPTEL materials and internets					
CD9	Simulation					

COURSE INFORMATION SHEET (VOC2)

Course Code: CE24152 Course Title: SURVEYING

Pre-requisite(s):

Co- requisite(s): CE24208

Credits: 3 L: 1 T: 0 P: 4

Class schedule per

week: 5 Class: B. Tech Semester / Level: I/1

Branch: CIVIL ENGINEERING

Name of Teacher:

COURSE OBJECTIVES

This course envisions to impart to students:

1.	Execute chain survey.
2.	Execute compass survey.
3.	Perform plane table surveying.
4.	Carry out levelling works.
5.	Measurements by using theodolite.

Course Outcomes

CO1	Perform chain survey.
CO2	Perform compass survey.
CO3	Perform plane table surveying.
CO4	Carry out levelling works.
CO5	Measurement of horizontal and vertical angles with theodolite.

SYLLABUS

MODULE	(NO. OF LECTURE HOURS)
Module – I: Chain Introduction, Principle of survey, Errors and obstacles in chain survey	2
Module – II: Compass Introduction, Bearings, Traversing, Local attraction, Magnetic declination	2
Module – III: Plane Table Survey Introduction, Instruments used in plane tabling, Working operations, Methods of plane table survey, Errors in plane tabling.	2
Module – IV: Levelling Principle of Levelling, Booking and reducing the levels, Curvature and Refraction corrections	2
Module – V Theodolite Introduction, Classification of theodolites, Parts of transit theodolite, Measurement of angles with theodolite.	2

SYLLABUS (List of experiments)

Fieldwork I: Perform survey for an area using chain

Fieldwork II: Perform survey for an area using compass

Fieldwork III: Perform survey for an area using plane table.

Fieldwork IV: Carry out profile leveling and cross-sectioning work along a road.

Fieldwork V: Measurement of horizontal and vertical angles with a theodolite.

TEXTBOOKS:

- 1. Punmia, B.C., Jain, A.K., Jain, A.K. "Surveying" Vol. 1 and 2, Laxmi Publications (P) Ltd.
- 2. Kanetkar, T.P., Kulkarni S.V. "Surveying and Levelling." Part 1 and 2, Pune Vidyarthi Griha Prakashan.

REFERENCE BOOKS:

- Duggal, S.K. "Surveying" Vol. 1 and 2, Tata McGraw-Hill Companies, New Delhi.
 Arora, K.R. "Surveying" Vol. 1 and 2, Standard Book House, New Delhi.

GAPS IN THE SYLLABUS (TO MEET INDUSTRY/PROFESSION REQUIREMENTS)

POS MET THROUGH GAPS IN THE SYLLABUS

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

POS MET THROUGH TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS & EVALUATION PROCEDURE

Course Delivery methods	
Lecture by use of boards/LCD projectors/OHP projectors	
Tutorials/Assignments	
Seminars	
Mini projects/Projects	
Laboratory experiments/teaching aids	✓
Industrial/guest lectures	
Industrial visits/in-plant training	✓
Self- learning such as use of NPTEL materials and internets	✓
Simulation	

Course Outcome (CO) Attainment Assessment tools & Evaluation procedure

DIRECT ASSESSMENT

Assessment Tool	% Contribution during CO Assessment
Lab Journal	30
Lab quizes	20
Progressive viva	20
End Sem Examination	30

Continuous Internal Assessment	% Distribution
Lab Journal	30
Lab quiz	10
Progressive viva	20

Assessment Components	CO1	CO2	CO3	CO4	CO5
Continuous Internal Assessment	Y	Y	Y	Y	Y
Semester End Examination	Y	Y	Y	Y	Y

INDIRECT ASSESSMENT 1. Student Feedback on Course Outcome

Mapping of Course Outcomes onto Program Outcomes and Program Specific Outcomes

	Prog	rogram Outcomes										Program Specific Outcome		
Course Outcome	1	2	3	4	5	6	7	8	9	10	11	1	2	3
1	3	2	2	2	2	3	2	3	2	3	3	3	2	3
2	3	2	2	2	2	3	2	3	3	3	3	3	3	3
3	3	2	2	2	2	3	2	3	3	3	3	3	3	3
4	3	3	3	2	2	3	2	2	3	3	3	2	3	3
5	3	3	2	2	2	2	2	2	3	3	3	2	2	3

	Mapping Between COs and Course Delivery (CD) methods							
CD	Course Delivery methods		Course Outcome	Course Delivery Method				
CD1	Lecture by use of boards/LCD projectors/OHP projectors		CO1	CD5, CD8				
CD2	Tutorials/Assignments		CO2	CD5, CD8				
CD3	Seminars		CO3	CD4, CD5, CD7, CD8				
CD4	Mini projects/Projects							
CD5	Laboratory experiments/teaching aids							
CD6	Industrial/guest lectures							
CD7	Industrial visits/in-plant training							
CD8	Self-learning such as use of NPTEL materials and internets							
CD9	Simulation							

COURSE INFORMATION SHEET (VOC3)

Course Code: CE24251

Course Title: CEMENT CONCRETE AND ROAD MATERIALS

Pre-requisite(s): Co- requisite(s):

Credits: 3 L: 1 T: 0 P: 4

Class schedule per week: 5

Class: B.Tech.

Semester / Level: IV/II

Branch: CIVIL ENGINEERING

Name of Teacher:

COURSE OBJECTIVES

This course enables the students to:

1.	To familiarize students with IS code—based testing procedures for cement, aggregates,
	concrete, and road materials.
2.	To impart hands-on skills for quality control testing relevant to site and laboratory
	practice.
3.	To interpret test results for material suitability, durability, and compliance with codal
	requirements.
4.	To prepare students for entry-level technical roles in the construction and highway
	sector.

COURSE OUTCOMES (COs)

CO1	Perform and interpret standard cement tests for quality assurance.						
CO2	Assess properties of coarse aggregates, including specific gravity, water						
	absorption, impact value, and abrasion resistance.						
CO3	Evaluate workability of fresh concrete.						
CO4	Assess compressive and flexural strength of hardened concrete.						
CO5	Perform standard bitumen tests (penetration, ductility, or softening point) for						
	pavement quality control.						

SYLLABUS (List of experiments)

- 1. Cement (3)
 - a. Standard Consistency of Cement (Vicat method).
 - b. Initial and Final Setting Time of Cement.
 - c. Fineness of Cement by Sieve Analysis / Blaine Air Permeability. Compression Test on Brittle Material
- 2. Aggregates (3)
 - a. Specific Gravity and Water Absorption of Coarse Aggregate.
 - b. Aggregate Impact Value Test.
 - c. Los Angeles Abrasion Value Test.
- 3. Concrete (4)
 - a. Workability of Fresh Concrete Slump Test.
 - b. Workability of Fresh Concrete Compaction Factor / Vee-Bee Test.
 - c. Compressive Strength of Concrete Cubes (7 & 28 days).
 - d. Flexural Strength of Concrete Beam (Modulus of Rupture).
- 4. Pavement Material (1)
 - a. Bitumen Tests (any one Penetration / Ductility / Softening Point)

REFERENCE MATERIALS:

1. Lab manuals (available on department website)

GAPS IN THE SYLLABUS (TO MEET INDUSTRY/PROFESSION REQUIREMENTS)

POS MET THROUGH GAPS IN THE SYLLABUS

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

POS MET THROUGH TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS & EVALUATION PROCEDURE

DIRECT ASSESSMENT

Assessment Tool	% Contribution during CO Assessment
Lab Journal	30
Lab quizes	20
Progressive viva	20
End Sem Examination	30

Continuous Internal Assessment	% Distribution
Lab Journal	30
Lab quiz	10
Progressive viva	20

Assessment Components	CO1	CO2	CO3	CO4	CO5
Continuous Internal Assessment	Y	Y	Y	Y	Y
Semester End Examination	Y	Y	Y	Y	Y

INDIRECT ASSESSMENT

1. Student Feedback on Course Outcome

COURSE DELIVERY METHODS

CD1	Laboratory demonstrations by faculty.
CD2	Hands-on experimental performance in groups.
CD3	Data recording, analysis, Report writing, viva-voce

MAPPING BETWEEN COURSE OUTCOMES AND POs and PSOs

	РО	PO	РО	PSO	PSO	PSO								
	1	2	3	4	5	6	7	8	9	10	11	1	2	3
CO1	3	2	0	0	2	0	0	0	0	0	0	2	2	3
CO2	3	2	0	0	2	0	0	0	0	0	0	2	2	3
CO3	3	2	0	0	2	0	0	0	0	0	0	2	2	3
CO4	3	3	0	0	2	0	0	0	0	0	0	3	2	3
CO5	3	2	0	0	2	0	0	0	0	0	0	2	2	3

Grading: No correlation - 0, Low correlation - 1, Moderate correlation - 2, High Correlation - 3

Course Outcomes	Course Delivery Method
CO1	CD1, CD2, CD3
CO2	CD1, CD2, CD3
CO3	CD1, CD2, CD3
CO4	CD1, CD2, CD3
CO5	CD1, CD2, CD3

COURSE INFORMATION SHEET (VOC4)

Course Code: CE24252

Course Title: SOIL INVESTIGATIONS AND TESTING

Pre-requisite(s): Co- requisite(s):

Credits: 3 L: 1 T: 0 P: 4

Class schedule per week: 5

Class: B.Tech.

Semester / Level: IV/II

Branch: CIVIL ENGINEERING

Name of Teacher:

COURSE OBJECTIVES

This course enables the students to:

1.	Introduce students to the fundamental soil testing procedures used in civil engineering
	practice.
2.	Develop skills to determine physical and engineering properties of soils through
	laboratory and field experiments.
3.	Familiarize students with IS code practices for soil testing and interpretation of
	results.
4.	Enable students to correlate experimental results with geotechnical applications such
	as compaction, permeability, and shear strength.

COURSE OUTCOMES (COs)

CO1	Determine basic physical properties of soils such as moisture content, specific gravity,					
	and grain size distribution.					
CO2	Evaluate soil consistency limits (Atterberg limits, shrinkage limit) for					
	classification and engineering behavior.					
CO3	Perform field density tests to assess in-situ compaction of soils					
CO4	Conduct compaction and permeability tests and interpret results for geotechnical					
	design applications.					
CO5	Determine shear strength parameters and unconfined compressive strength of soils for					
	stability analysis.					

SYLLABUS (List of experiments)

- 1. Determination of moisture content of soil.
- 2. Determination of specific gravity of soil solids (pycnometer method).
- 3. Grain size distribution by sieve analysis.
- 4. Grain size distribution by hydrometer analysis.
- 5. Determination of liquid limit and plastic limit (Atterberg limits).
- 6. Determination of shrinkage limit.
- 7. Field density test by core cutter method.
- 8. Field density test by sand replacement method.
- 9. Standard Proctor compaction test.
- 10. Constant head permeability test.
- 11. Falling head permeability test.
- 12. Direct shear test on sandy soil.
- 13. Unconfined compression test (UCC).

REFERENCE MATERIALS:

1. Lab manuals (available on department website)

GAPS IN THE SYLLABUS (TO MEET INDUSTRY/PROFESSION REQUIREMENTS)

POS MET THROUGH GAPS IN THE SYLLABUS

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

POS MET THROUGH TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN

COURSE OUTCOME (CO) ATTAINMENT ASSESSMENT TOOLS & EVALUATION PROCEDURE

DIRECT ASSESSMENT

Assessment Tool	% Contribution during CO Assessment
Lab Journal	30
Lab quizes	20
Progressive viva	20
End Sem Examination	30

Continuous Internal Assessment	% Distribution
Lab Journal	30
Lab quiz	10
Progressive viva	20

Assessment Components	CO1	CO2	CO3	CO4	CO5
Continuous Internal Assessment	Y	Y	Y	Y	Y
Semester End Examination	Y	Y	Y	Y	Y

INDIRECT ASSESSMENT

1. Student Feedback on Course Outcome

COURSE DELIVERY METHODS

CD1 Laboratory demonstrations by faculty.				
CD2 Hands-on experimental performance in groups.				
CD3 Data recording, analysis, Report writing, viva-voce				

MAPPING BETWEEN COURSE OUTCOMES AND POs and PSOs

	РО	PSO	PSO	PSO										
	1	2	3	4	5	6	7	8	9	10	11	1	2	3
CO1	3	2	0	0	2	0	0	0	0	0	0	3	1	2
CO2	3	2	0	0	1	1	0	0	0	0	0	3	1	3
CO3	2	2	0	0	2	1	0	0	0	0	0	2	3	2
CO4	3	2	2	2	2	1	0	0	0	0	0	3	3	2
CO5	3	3	3	2	2	0	0	0	0	0	0	3	2	2

 $Grading: No\ correlation-0, Low\ correlation-1, Moderate\ correlation-2, High\ Correlation-3$

Course Outcomes	Course Delivery Method
CO1	CD1, CD2, CD3
CO2	CD1, CD2, CD3
CO3	CD1, CD2, CD3
CO4	CD1, CD2, CD3
CO5	CD1, CD2, CD3

