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Systems and Processes in Thermodynamics*

Pratim Kumar Chattaraj and Ranita Pal

Systems and processes play a vital role in understanding physics,
chemistry, and biology. Systems may be of different sizes and
they are characterized by their structure, stability, proper-
ties, bonding, reactivity, interactions, etc. The state of a clas-
sical N-particle system is defined in a 6N-dimensional phase
space, while a related wave function is generated in a 3V-
dimensional configuration (or equivalently momentum) space
for a corresponding quantum system. On the other hand,
a process takes a system from one state to another, like go-
ing from ‘being’ to ‘becoming’. Depending on the different
length scales for the former and time scales for the latter, one
needs to resort to appropriate theoretical frameworks like
classical mechanics, quantum mechanics, molecular mechan-
ics, statistical mechanics, molecular simulation, multi scale-
modeling, etc.

A thermodynamic system is a part of the universe in which we
have a special interest. The rest of the universe, where observa-
tions are made, is the corresponding surrounding. Fortunately,
only a handful of state variables like pressure (P), volume (V),
temperature (7'), number of moles (n;), efc., define the state of a
system.

A thermodynamic space spanned by these variables (see Box 1
for a geometric representation of thermodynamics) may be con-
structed. Any state (say A) is defined in terms of the “coordinates”
(P4, Ta, n?, ng‘, ...) as all thermodynamic properties (potentials)
are obtained for this state in terms of those variables. Depending
on the possibility of energy (and matter) exchange between the
system and the surrounding, we may have isolated, closed, and
open systems. In a statistical mechanical description, they are
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GENERAL ARTICLE

respectively analysed through microcanonical (NVE), canonical
(NVT) and grand canonical (uVT) ensembles (see Box 2 for an
associated information theory).

A thermodynamic process takes a system from state A to state
B. A thermodynamic “trajectory" connecting those states may
define a path. Depending on the path taken, the process may
be isothermal, adiabatic, isobaric, etc. Any potential difference
causes a flow that continues till the difference ceases and an equi-
librium is achieved. It is a very general phenomenon. Electric
current flows due to electrical potential difference, heat flows due
to temperature difference, a body falls from a height due to grav-
itational potential difference, etc. The direction of a spontaneous
(that takes place automatically without using any external device)
flow is from the higher potential to the lower potential. Respec-
tive equilibria are obtained when the potential difference becomes
zZero.

A reversible process always keeps a system very close to equilib-
rium, and the initial states of both the system and the surrounding
may be easily retrieved through an infinitesimal change in the
conditions. It implies that it is difficult for a natural process to
be reversible. The state functions like internal energy does not
depend on the path taken during the process, unlike the heat flow
and the work done. State functions like internal energy is a prop-
erty of the system in a given state and accordingly can be defined
using the state variables. However, the path functions like heat
flow or work done are associated with a process along a given
path. In Figure 1, a system may move from state A to state B via
different paths in one or several steps. The change in the state
function will be the same in all such cases, e.g., AU = Up — Uy.
Path functions are different for different paths. Moreover, a path
function may be connected to the difference in the state function
(and not the state function itself). The former depends on the
whole path, whereas the latter depends only on the information
regarding the two states lying in the extremes of that path. It is
not possible to define the heat or work of a system in a given
state. Systems are characterized by the states they are in and ac-
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Systems

Processes
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cordingly their thermodynamic properties are analysed in terms
of various state functions like U, S, H, G, etc. On the other hand,
different path functions like dq, dw, etc. are used to study various
processes based on the paths they are involved in. Different ther-
modynamic properties of systems and processes are presented in

Table 1.

The nature of a system or a process is better understood through

thermodynamic laws:
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Figure 1. A six-
dimensional projection
of a thermodynamic vector
space.

Table 1. Thermodynamic
properties of systems and
processes.
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1. Zeroth law: If A and B are in thermal equilibrium, and B and

C are also in thermal equilibrium, then C must be in thermal
equilibrium with A. It is the working principle behind the use of
a thermometer.

. First law: In an isolated system, internal energy is constant and

it can neither be created nor destroyed. If the work done on a
system is dw, and the amount of heat flow to the system is dq,
then the change in internal energy dU becomes dU = dq + dw.
The internal energy stems from the total kinetic energy and po-
tential energy of the constituent atoms, ions, or molecules in a
system through their various degrees of freedom like translation,
rotation, and vibration. Note that U being a state function, dU is
an exact differential, whereas dg and dw are not exact differen-
tials as they explicitly depend on the path taken by the process.
In an isolated system, dg = 0, dw = 0, which imply dU = 0, i.e.,
the internal energy is constant.

. Second law: The first law provides an incomplete picture as it

does not have any information on the direction (the so-called “ar-
row of time”) and extent of a change. It is not possible for any
process to absorb heat from a reservoir and convert it completely
into work. During a spontaneous change, the entropy, S, of an
isolated system (universe = system + surroundings is always iso-
lated) always increases. It means that entropy for that system can
only be created and never be destroyed.

. Third law: At absolute zero temperature, the entropy is zero

for all perfectly crystalline substances. Note that the second law
does not allow us to obtain the absolute value of S, but only the
change in § (AS).

If there is no non-PV work during a reversible process, according
to the first law,

dU = dq + dw = dq — PdV . (1)

Therefore, dUy = dqy (if the volume remains unaltered during
the process).
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Similarly, for a constant pressure process, the enthalpy (H) change
is given by,
dHp =d(U + PV)|p = (dq+ VdP)p quP. )

From the second law (Clausius inequality), the change in entropy
(S) may be written as,

as > % (3a)
or, TdS >dq (3b)

where the equality sign refers to reversible processes and the in-
equality sign corresponds to irreversible (spontaneous) processes.
In equation (1), the second equality is valid only for the reversible
processes, as the external pressure will be infinitesimally close to
the internal pressure (so that Pex may be related to V) only in
those cases.

Combining the first and second laws (adding equations (1) and
(3)) for a reversible process we have,

dU =TdS — PdV . “)

Note that U being a state function, dU is independent of the
path and hence equation (4) is valid for both (reversible and
irreversible) types of processes. Only for a reversible process can
TdS be identified with dg and (—PdV) with dw. It is
established that the sum of two inexact differentials can be an
exact differential, which is one of the fundamental (Gibbs) equa-
tions of thermodynamics. The corresponding equation involving
H is the following:

dH =TdS + VdP. 5)

The natural variables for U and H are S and V, and S and P,
respectively. As the construction of a process by varying S is
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difficult, other thermodynamic potentials whose natural variables
are T, P and V may be generated through appropriate Legendre
transforms (see Box 3). Moreover, T and S are (statistical) ther-
modynamical conjugates and so are P and V. It is akin to the
canonically conjugate variables like position and momentum (in
quantum mechanics they cannot be measured simultaneously ac-
curately according to Heisenberg’s uncertainty relation).

Two other important thermodynamic potentials are Helmholtz (A)
and Gibbs (G) free energies defined as,

A=U-TS (6)

and

G=H-TS =A+PV. @)

Corresponding fundamental equations may be written as,

dA = —PdV — SdT (8)

dG =VdP - SdT . ©))

As U (S, V) is a state function dU is an exact differential. There-
fore,

o*U 02U
_ 1
VoS 0SoV (102)
oT oP
e, 2] =—(& 10b
he (GV)S (6S )V ( O )

This is called Maxwell’s relation. Other associated relations can
be derived from other Gibbs equations as,

oT ov
(5), = (5), b
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oP\ (S
), = (), @

and

ov A
(a—r)P =" (ﬁ)T ' )

A simple mnemonic to remember the fundamental equations and
the Maxwell’s relations is provided in Box 4.

An associated thermodynamic equation of state may be derived

as,

v :TG_P _p:M (14)
v, aT )y, K

where « is the expansion coeflicient and « is the isothermal com-
pressibility, given as,

1 {0V

a = ‘—/ (8_T)P (14&)
1 {0V

K= —‘—/ (a_P)T . (14b)

In deriving equation (14), the equations (4) and (12) have been
made use of.

Accordingly, (g—l‘f)T is called the internal pressure arising out of
intermolecular interactions. If we start from the Clausius inequal-
ity we arrive at

TdS > dg (3b)

i.e., TdS > dU + PdV (15)

where the inequality sign corresponds to a spontaneous process
and when it reaches the equilibrium the equality sign holds good.
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If the process is carried out under constant U and V conditions
we have,

TdSyy >0 (16a)

or,dSyy >0 (16b)

as T cannot be negative. Therefore, under constant U and V con-
ditions entropy of an isolated system increases along a sponta-

neous process and it reaches its maximum value (dS= 0) at the
equilibrium.

Equivalently, it is easy to derive,

dUsy <0 (16¢)
dHsp <0 (16d)
dAry <0 (16e)
dGrp <0 (16f)
dSup>0 (16g)

While comparing these inequalities (valid for spontaneity) and
equations (defining equilibrium) with the fundamental equations
(4, 5, 8, 9) valid for both reversible and irreversible processes
in closed systems with only PV type work, an apparent incon-
sistency can be observed. As natural spontaneous processes are
irreversible, dUs y = 0 as U is a state function and dUs y < O for
spontaneity (likewise for other state functions). In an isolated sys-
tem, under certain constraints (say, a specific number of species,
volume, and energy) any spontaneous process is accompanied by
an increase in entropy until it reaches its maximum at the equilib-
rium. If the constraints are changed to create a new equilibrium
state that spontaneously evolves to the original equilibrium state
in an isolated system, variations in constraints will lead to a de-
crease in entropy as the original state (maximum entropy) may
be retrieved through a spontaneous process. When the original
constraints are retrieved, S becomes zero.
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This can be better explained as follows:

TdS >dU + PdV (15)
At constant V,
TdS >dU (15a)
which implies that
dU -TdS <0 (15b)
From equation (6), i.e.,
A=U-TS (6)
At constant 7,
dA =dU - TdS (6a)

Combining equations (15b) and (6a),

dAry <0 (16¢)

Similarly,
dGrp <0 (16f)

For a spontaneous process, G will decrease and will attain its min-
imum value at the equilibrium. At a given 7, P condition, the
backward reaction is favorable in case AG > 0. For instance, we
can enjoy both hot coffee and ice cream by changing the 7, P
condition (being in two different thermodynamic states, e.g., at
1 atm. pressure and 0 °C water may be condensed to ice whereas
at the same pressure and 100 °C it may be converted to water
vapor), AG < 0 (say, vaporization is spontaneous) situation may
get changed to AG > 0 (condensation becomes spontaneous). It
is worth noting that 7 and P values remain constant in a given
state for this analysis and we need to change the state to check
the change in the direction of spontaneity. Here AG refers to the
difference in G in two different phases, say, in a given thermody-
namic state. Similarly, the progress of a chemical reaction may
be understood (Figure 2) in terms of the variation in G. In the
case of a multi-component and multi-phase system, it is apt to
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Figure 2. Variations in

Gibbs free energy as a func-
tion of the extent of reaction.

. AG<0
o —
"\rG >0
B % Al 1
S 5 -
AG=0
L Extent of reaction (J) 1

include the variation in the number of moles of various species.
The fundamental equations take the following forms:

dG(P, T,n‘l',ng,...,nj'(,,nﬁ it nfv) = VdP—SdT+Z Z,u?dn?
a i

12720
(172)
dA(T,V,...) = —PdV - SdT + Z Zufdn;* (17b)
dU(S,V,..)=TdS = PdV + > " ufdn! (17¢)
, (17d)

dH(S,P,...) = TdS +VaP+ Y 3" uldn!

Here the chemical potential (1) for the i" component in the
a-phase of the system is defined as

p: (BG) v (8A) (au)
i ~\on B =5 = \3=

on; PT. j#ip=a ! on; VIH.... on; S.Vit...
H

= (a_a) (18)

on; S P...

In equations (17a—d), thermodynamically conjugate variables
(generalized force and displacement, whose product has the
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dimension of energy) like (P, V), (S, T), (u, N) appear in pairs
(differential of one is coupled with its conjugate). Three types
of thermodynamic potentials appearing on the right-hand side of
equations (17a—d) provide information regarding different pro-
cesses and the corresponding equilibria (thermal, mechanical, and
material). Such bilinear forms involving various forces and the
associated conjugate fluxes are present in the Onsager relations
depicting the explicit time evolution of thermodynamic proper-
ties of non-equilibrium systems.

As the chemical reaction proceeds (at constant 7 and P condi-
tions), the extent of reaction, &, increases, G decreases and attains
the minimum value at the equilibrium. A similar situation arises
for the backward reaction. For an endothermic reaction dH >
0 and to have a spontaneous (AG < 0) endothermic process un-
der constant 7" and P conditions, S should increase so much to
have 7dS > dH. Even when the G value of the product is larger
than that of the reactant the reaction provides some product as
the Gibbs free energy of mixing the reactants and the products is
negative.

The chemical equilibrium is dynamic in nature (rates of the for-
ward and the backward reactions are the same). Once we start
from the left, G will decrease and will be the minimum at the
equilibrium. Similarly, if we start from the other side of the equi-
librium, the reaction will run backward until G is a minimum and
the rates are equal. The nature of the dynamics in a “dynami-
cal equilibrium" (a combined treatment of kinetics and thermo-
dynamics) may be required to know a dynamic (kinetics) equilib-
rium (thermodynamics) better. We may start from either side (or
even both sides). G will decrease and then reach the equilibrium
when dG= 0. What next? Is it a dead end as G needs to increase
for the reaction to continue to have a dynamical equilibrium? Is
it not a dead end in the sense nothing is happening, and the reac-
tions are in balance, but continuing? At equilibrium, what forces
the reaction to continue? Actually, G refers to the bulk behavior,
not to whether individual events are continuing. Thermodynam-
ics is silent regarding the underlying microscopic processes and
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dG being a bulk property has no control over them.

Even if thermodynamics dictates a reaction to be spontaneous,
for all practical purposes it may not take place if the rate of that
reaction is very small. Only chemical kinetics can provide that
information. At ordinary temperature and pressure, the reaction,
2H,+ O,= 2H;0, is spontaneous. A catalyst or an electric spark
is needed for this reaction to start within a reasonable amount of
time. A catalyst actually decreases the activation barrier (Figure
3) by following a different route (reaction coordinates are differ-
ent) depicted by using different colors. For a spontaneous reac-
tion, it is worth searching for a catalyst if the reaction is tremen-
dously slow. It is needless to mention that a similar attempt is not
wise for a non-spontaneous process. A non-spontaneous process
may, sometimes, be converted to a spontaneous one by coupling it
with another favorable process. Catalyst cannot, however, change
the yield of a chemical reaction, it can only accelerate the reac-
tion, i.e., it can increase the rate constant (k) with no effect on the
equilibrium constant (K).

As shown in Figure 3, the reaction Gibbs free energy (A,G) re-
mains the same although the activation Gibbs free energy (AG*)
decreases (and hence k increases) in the presence of a catalyst. A
linear correlation between A,G and AG* for a series of similar re-
actions is often observed providing the so-called “Linear free en-
ergy relationship” connecting thermodynamics and kinetics, one
of the first attempts to develop a quantitative structure-activity
relationship (QSAR) model.

As the reaction advances, G changes and passes through a maxi-
mum at the transition state (TS) (Figure 3). When a system moves
towards a TS from the reactant side or the product side its en-
thalpy generally increases and entropy decreases. A proper bal-
ance between these two trends guarantees the maximum of G in
the TS. Along the x-axis, there is the reaction coordinate (projec-
tion along the minimum energy path) which connects reactants
and products (via TS(s), intermediate(s), efc.). On the other hand,
as the reaction proceeds, G changes and attains a minimum value
at the equilibrium. Along the x-axis, there is the extent of reaction
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-, Fransition stale

G /

G

Catalyred path

Reaction coordinate

that varies between O (pure reactant) and 1 (pure product). If we
follow the variation of G accompanied by the advancement of a
reaction, why there is a maximum in the former case (Figure 3)
and a minimum in the latter case (Figure 2)? In the former case,
it is the process of reactant molecules getting transformed into
the product molecules explained in terms of the transition state
theory of chemical kinetics. In the latter case, it is the variation
of the relative concentrations of the reactants/products to reach
the relative equilibrium concentrations in thermodynamics, albeit
attaining a dynamical equilibrium.

In summary, an understanding of any macroscopic system and
the process it takes part in, in terms of only a few state variables
is the hallmark of thermodynamics. Four laws and four funda-
mental equations (including four Maxwell relations) provide the
guiding light in this endeavor. The direction of a spontaneous
process and the condition for the associated equilibrium under
a given set of constraints can be analysed through the judicious
choice of appropriate thermodynamic potential and its variation.
The “coordinates" in a “thermodynamic space" describe a sys-
tem and the connected “trajectory"” defines the path attached to a
process. Variation in the natural variables of any thermodynamic
potential dictates the conditions for a spontaneous journey of a
system along a prescribed path toward the related equilibrium.

Figure 3. The free en-
ergy profile of the uncat-
alyzed (blue) and catalyzed

(red) paths of a reaction.

-
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Box 1. Understanding Thermodynamics through a Geometric Route

Any thermodynamic potential can be written as a differentiable function of thermodynamic state variables

(extensive, viz., S, V, ny, ny, ...).

For example,
U=U®S,V,n,m, ...). (1.1)

Corresponding partial derivatives may be considered as generalized forces (see Box 3):

Fj=

(aU (1.2)

OR; )Rl R Rl R s

where {R;} are the state variables (generalized displacements) and {F;} are the associated generalized
forces. We may conceive of a vector space spanned by F and R with components as {F;} and {R;},

respectively.

One may define a scalar product (j| k) as

(1.3)
ORy )R] Ra, R Rie 1 e

and conventional linear algebra will provide us with the essence of equilibrium thermodynamics.

1. Any thermodynamic potential, say U, is a differentiable function of a few state variables.

2. (dU) is an exact differential. Therefore,

PU  PU
OR;OR;,  ORiOR,

Yk (1.4)

which may be interpreted as the first law of thermodynamics where the internal energy is
an exact differential and hence a state function.

3. The internal energy is minimized at constant entropy (or entropy is maximized at constant
U),i.e.,
*U
— 20 Y 1.5
which is nothing but the second law of thermodynamics.

Now, we analyse the above three conditions in terms of the properties of vectors in a linear vector space,

viz.,

Contd.
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Box 1. Contd.

(Fjl xFi + AF) = x (Fj|Fy) + ACF | Fp) (1.6)
(Fj|Fy) = (FilFj) (L.7)
(Fj|F;) 20 (equality sign for|F;) = 0) (1.8)

Equations (1.2) and (1.7) together imply equation (1.4).
Equation (1.8) implies equation (1.5).
The dimensionality of this vector space is governed by the degrees of freedom (nr) according to Gibbs
phase rule:
ngp=nc—np+2 (1.9)

where n¢ and np are the number of components and number of phases, respectively. As equation (1.8)
guarantees (F;| F;) = 0 only if |F;) = 0, it automatically guarantees the validity of the phase rule (1.9).
Moreover, it ensures that C, cannot be finite at 7 = 0. It should tend to zero as fast as 7 which is the third
law of thermodynamics.

ary T 1 T
Y= =0 —— = —. 1.10
(T\T) (as)v T (%)V cy (1.10)

In order to have (T'|T) # O (unattainability of absolute zero vide the third law of thermodynamics and
equation (1.8)) both 7 and Cy should approach zero at the same rate.

The nature of the thermodynamic conjugate variables (see Box 3) may be better appreciated through the
following biorthogonality condition:

(FilRe) = 0 (1.11)
where p
Ry = [2Y (1.12)
OF
kJFFyp Fr_y Fston..
and R
(RjIRy) = (—’) : (1.13)
OF F1.F2sFr 1 Figt oo

Therefore, the conjugate variables can interchange their characteristics of being generalized forces and
generalized displacements (compare equations (1.2) and (1.12)).
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Box 2. The Second Law of Thermodynamics and the Shannon Information Measure

The temperature alone can determine the most probable distribution of molecules over its available energy
levels subject to some constraints dictated by the nature of the system. If it is an isolated system (NN,
V, E) there is no dialogue between the system and the surrounding as there is no exchange of mass and
energy. Due to this ignorance in a corresponding microcanonical ensemble in statistical thermodynamics,
one resorts to the principle of equal a priori probabilities which states that the system is equally likely to be
in any of its allowed quantum states. It is akin to paying equal respect to everyone in an assembly in case
their actual status is unknown. Moreover, a temperature (in the thermodynamic sense) cannot be defined
(zeroth law of thermodynamics) as the system cannot attain thermal equilibrium by exchanging heat with
the surrounding. A formal temperature is defined to obtain the associated Boltzmann distribution.

A statistical entropy was defined by Boltzmann as

S=kglnW 2.1

where kg is the Boltzmann constant and W is the weight of any configuration or the number of ways it can
be achieved. It may be noted that as W increases, disorder increases and so does the entropy. Therefore,
equation (2.1) can be connected to the thermodynamic entropy. A most probable distribution provides
the maximum entropy and a system (assuming to be in thermal equilibrium) prefers to attain the most
probable distribution vide the second law of thermodynamics. Considering the system to behave classically,
at T — OK, all the molecules will be in the zero-energy state and W — 1 will imply S — O for that
“perfectly crystalline solid” as prescribed by the third law of thermodynamics.

The key quantity in information theory is Shannon information measure (also popularly known as Shannon
entropy or von Neumann entropy) given by

Ss == pilnp; 22)
where p; is the probability of the i outcome of a random process. Originally, base 2 was used for the

logarithm in Equation (2.2) as it was expressed in terms of bits. For a continuous distribution, it may be
written as

Contd.

336 4\/\/\/\/\/» RESONANCE | March 2024



GENERAL ARTICLE

Box 2. Contd.

Ss = —fﬂ(?)lnp(?)d? (2.3)

where p(7) may be the single particle density for an N-electron system defined as

P(7)=Nf---fw*(?l,?z,...,?N)zp(?l,f’z,...,?N)d?zd?3...d?,v (2.4)

and it contains all information about the ground state of the system according to density functional theory.

Shannon information measure provides information regarding the total distribution and not of the probabil-
ities associated with individual events. The distribution that maximizes S is the equilibrium distribution.
The maximum value of S may be connected to the thermodynamic entropy (and also Boltzmann statis-
tical entropy, equation 2.1). Therefore, this entropy is a special case of Sg. So, Ss may increase (vide
second law) but S and W in equation (2.1) are defined for the equilibrium state only and neither of them
will increase with time.

According to Jaynes’ maximum entropy principle, the probability distribution that closely reflects the actual
knowledge about a system is associated with the maximum information entropy. It connects statistical
mechanics with information theory. It may, however, be noted that the steady state of an irreversible process
is characterized by the minimum value of the entropy production.

A local temperature and the related entropy have been defined in terms of the electronic kinetic energy
density. They vary from point to point and serve the purpose of indicators of structure, stability, bonding,
and reactivity.
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Box 3. Legendre Transformation

Any mathematical function may be equivalently represented in two different ways, viz., (i) locus of points
y = f(x) when plotted against x and (ii) envelope of its tangent curves drawn at each point (x,y). Each
tangent curve will have a unique intercept. If we write the equation of the tangent as y = mx + ¢ we may
equivalently write the intercept (c) as a function of m for a given (x, y), i.e.,
d

c(m)=y—mx=y——y~x 3.1
c(m) is the Legendre transform of y, and m is its argument and not x.
We may start from U(S, V) where the natural variables of U are S and V
Recall,

dU =TdS — PdV . 3.2)

Suppose we search for a thermodynamic potential whose natural variables are 7" and V. We know that,

(g_g)v =T (from (3.2))

AT, V) = A((g—g)v , V) =U- (g—g)vs =U-TS (from (3.1)

H(S, P) and G(T, P) can be equivalently derived. It may be generalized in case there are several variables
{xi}
c(ﬁ):y—Zmix,-:y—ﬁ-_X) 3.3)

— -
wherem = (m;,m,, ...) and X =|[X2|.
In case we allow the variation in the number of moles in different phases/components, we have,

dU =TdS - PdV + )" ;dn, (3.4)

J

and similarly, for the other three thermodynamic potentials.

((9U ) (HH ) ( dA )
mi=\— = — = —
T \on; S, \Oj s p njlyy

Remember,

= (‘9—G) . (3.5)

Contd.
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Box 3. Contd.

It is interesting to note that

(‘;—g)v =T (3.6)
(‘;—(é)s =-P (3.7)
(%)P =T (3.8)
(‘;i;)s =V (3.9)
(g—;‘)v =-5 (3.10)
(Z—é)r =-P (3.11)
(‘;—g)P =-5 (3.12)
(g—g)r =V (3.13)

In the above relations, we notice that when S varies we have T constant (and vice-versa) whereas when P
varies we get V constant (and vice-versa). It is the reason S and 7 (and also P and V) are called thermody-
namic conjugate variables ({¢;, n;} are also conjugate). These thermodynamic conjugate variables are akin
to a generalized force (an intensive variable) and the corresponding generalized displacement (an extensive
variable) caused by that force and their product has the dimension of energy (an extensive variable), e.g.,
an application of pressure causes a volume change. The force is related to the derivative of the energy
with respect to displacement (like, Force = —V (potential energy)), e.g., (%)T = —P, where P acts as the
force and dV as the displacement. Notice the striking resemblance with the canonically conjugate variables
{g;, p;} of classical mechanics through the following Hamilton’s equations of motion:

oH
(B_pJ) =q; Yj=12..3n8 (3.14)
oH
(B_q,) =-p; VYj=12..3n- (3.15)
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Box 4. Fundamental Equations of Thermodynamics and Maxwell’s Relations

For a closed system (with constant composition) not having any non-expansion work the fundamental

(Gibbs) equations of thermodynamics are given by:

dU =TdS - PdV
dH =TdS + VdP
dA = —PdV - SdT

dG = VdP - SdT

and the corresponding Maxwell’s relations are written as:

). = (3s),
(5],
), -

), =~ (50),-

(o5}
2|2
~

The above two sets of equations may be memorized through a simple mnemonic involving a thermody-

namic square, also known as Born square, named after Max Born.

=S |U |V
H A
-P | G| T

Figure A: The Born square.

“Good (Great) Physicists Have Studied Under Very Able (Accomplished) Teachers" (G, P, H, S, U, V, A,

7).

.1

4.2)

(4.3)

(4.4)

(4.5)

(4.6)

4.7

(4.8)

Contd.
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Box 4. Contd.

1. Alternatively, thermodynamic potentials (G, H, U, A along the sides (middle) of the
square) and thermodynamic conjugate variables (see Box 3) (—P, =S, V, T along the
corners; conjugate variables (S, T'), (P, V) along the opposite corners; left corners with
negative sign).

2. Put G in the bottom side (middle) and approach clockwise.
3. No negative sign for differentials or derivatives.

4. Suppose we want to know dU in terms of the exact differentials of its natural variables (S,
V).
i) Draw two downward arrows starting from U towards the corners (—P and 7).
ii) Now, connect P and T along the diagonals.
iii) —P connects to dV and T connects to dS (see point 3 above). So, dU =TdS-PdV (4.1)

5. Follow likewise for the other three equations.
Maxwell’s relations involve only the corners (thermodynamic conjugate variables).

1. Start from any corner and move clockwise.
2. Where it ends, go to the next corner and move anticlockwise.

3. Include signs (only for constant, we have a negative sign). (S and P) and not for the
derivatives.

4. For example,
oS\ _(opP
av), \ar),’
5. Similarly, for the remaining three equations.

6. One may remember the sequence (anticlockwise) of conjugate variables, alternatively,
through the word “SPorTiVe”.
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