






























Thermodynamic Properties of Pure Fluids 

Using Eq. (6.87), 
e 

[H, TJ = ns, Tj + VtP, TJ 
[H, PI = nS,  P] + VIP, PI. = 7lS. PI 

Substituting these in Eq. (6.1 14). we get 

Using Eqs. (6.90) and (6.91), Eq. (6.115) becomes 

TIV, PI + V[P, TI T(mm?~ - p=-- - - 
Cp[T, PI CP 

Equation (6.1 16) may be rearranged as 

6.6 FUGACITY Y 
1 

* - f 

The concept of fugaciv was introduced by G.N. Lewis (1901) and is widely used in solution 
thermodynamics to represent the behaviour of real gases. The name fugacity is derived from the 
Latin for 'fleetness' or the 'escaping tendency'. It has been used extensively in the study of phase 
and chemical reaction equilibria involving gases at high pressures. Though the 'fugacity' is 
mainly applied to mixtures, the present discussion is limited to pure gases. 

For an infinitesimal reversible change occurring in the system under isothermal conditions, 
Eq. (6.1 8) reduces to ,I 

For one mole of an ideal gas V in the above equation may be replaced by RT/P, so that 

Equation (6.1 17) is applicable only to ideal gases. If, however, we represent the influence of 
pressure on ~ j b b s  frerenergy of s ~ ! E % ~ Y  a similar relationship, then the true pressure in the 
above quation should be replaced by a ~ f f ~ ! i ~ e e  Pressure, which wo call fugacity f o f  the gas. * L--- 

m e  following equation, thus, provides the partial definition of fugacity. 
I 

,I- ' - -  

2- (6.1 18) 

 ti^^ (6.1 18) is satisfied by all gases whether ide&or real. Integration of this equation gives 
' k 

4 
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where C is a constant of integration that depends upon the temperature and natl're of the gas. 
Fugacity has the same dimension as pressure, usually atmosphere or bar* 

6.6.1 Standard State for Fugacity 

Consider the molar free energies of a gas in two states both at the same temperature. Let GI and 
GI be the h e  energies and fi and f2 be the corresponding fugacities in these states. BY Eq. (6.1 19). 
the change in free energy is 

fi AG = G2 - GI = RTln- 
A 

The free energy change can be experimentally measured and by the above equation the measured 
h e  energy change gives the ratio of fugacities frlfi. The fugacity in any state can be evaluated 
if the fugacity is assigned a specific value in a particular reference state. 

For an ideal gas integration of Eq. (6.1 17) gives the free energy change as 

p2 AG = G2 - G, = RTln- 
4 

Whereas Eq. (6.121) is applicable only to ideal gases, Eq. (6.120) is valid for all fluids, ideal or 

I reaL It follows that in the case of "ideal gases, f2v1 = P2/P1, or fugacity is directly propo.rtional - /- -;- -- - - .-- - --- . - . 
to pressure. We proportionality constant 1s chosen to be --- unity -----.- for convenience. That is, flP = 1 

.- 

P, for ideal gases. The fugacity is always equal to the pressure for an idealgas. However, 
for real gases, fugacity and pressure are not proportional to one? another, and flP is not constaot. -- --- -- 

the pressure of the gas is reduced, the behaviour of the real gas approaches that of an ideal --- ------ - --4-- ---- .-_ _ _ _ - _  - _ _  _ _-, 

gas. That is, at very low pressures, the fugacity of a real gas should be the same as its pressure. 
T & e  gas at a very low pressure PO is chosen as the reference state and it is postulated that the 

--C- r ---__Cc-C1---r---.-..---- I) --. - _ - .---+ ratio of fugacity tgressure at this state is unity. T definition 'I - of fugacity is completed 
S t s ' a x g i  ------- _;_ _.-. -;is-: 
r - - b- 

1" ~ h u s ,  the standard ____ state -._.- of q ~ e a l  gas&hypojhetical state in which the =is at a P ~ ~ S U T ~ :  
; where it beGe~-~e@ectly. B$ this choice, the standard state has-the simple p ~ ~ ~ i ~ e s - o f  an 

i*as, If the standard st& were chosen as the one for which f is equal to say, 1 bar, i ~ ; i ~ ~ & &  
s b k  of different gases would have different and complex properties. If the s tondd  stste chosen 
were the gas at zero pressure, the free energy would llnvc beconle -b. at the stondnrd state. The 
choice of (he hypolheticd standard glatt rlandurdiser 111~ inloraction betwecn the by 
setting them to zero. Since all intermolccul~' forces llre absent in the Standnrd state chosen, fie 
differences in the standard free energies of different guses arise s ~ l ~ l y  frorom tho internal ~wcture  , 
and properties of the molecules, and 001 from the way they interact with each other. 

Equation (6.122), which sets lhe fugacit~ of the real equal to its pressure at low pressures, 
permi@ the evaluation of absolute values for fugacities at VW~OUS pressures. It is this proper(y 
that makes fugacity a widely accepted thennodynamic property in practical calculations, 
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I- Thennodynamic Propetties of Pure Fluids 

A 6.6.2 Fugacity Coefficient 

The ratio of - f " g a ~ i t ~  ..--- --- to Pressure - is referred to as fupcjty coeficjent and is $ n o t e d - p  It is 
d i m e a e s s  and depends on nature of the gas, th&pressuR;and&e temperature ntegrating 
~ q .  (6.1 18) between pressures P and PO, 

f .  G - @ = R T I ~  - 
P 

Since f O = P O  and f = @P. we can write the above equation as 

For ideal gases, by Eq. (6.1201, G = @ + RT In PIP. Combining this result with Ea. (6.124) we 
see that the free energy of a real gas = free energy of an ideal g i +  RT In #. The RT in #, - '--- --- ---w ..--- --- - ---- . 
therefore, expresses -----.- the entire _ -  effect of _.- intermolGular -- -___--__ interaction. 
* Since all gases becomes ideal as pressure approaches zero, we can say that 

t . . \ .  

6.6.3 Effect of Temperature and Pressure on Fugacity 

In Eq. (6.123). and P refer to the molar free energy and fugacity respectively at a very low 
pressure where the gas behaves idially. This equation can be rearranged as 

Differentiate this with respect to temperature at constant pressure. 
@ 

Substiwtjng h e  ~jbb~Helmh01tz equation. a. (6.731, into the above Wmlt and observing that 
I 

f0 is qua] to the pressure and is independent of temperature. we get 

I 

7% .' 
H is the molar enthalpy of the gas at the 
pressure, H O  - H can be treated as the ipreasc 
gas from pressure p to zero pressure at constfinl 

~Eernrnpcrature on ~t 
~k effect of pmsure on fugxity is lrom defining ~uati0n for fugwity [Q. (6.1 18)]: . 
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which on rearrangement gives: 

6.6.4 Determination of Fugacity of Pure Gases 

Using compressibility factor, Z. The factor Z of a real gas is the ratio of its 
volume to the volume of an ideal gas at the same temperature and pressure. 

Introducing this in Eq. (6.126) and rearranging, the following result is obtained. 

The above result, as such, is of not much use for the determination of fugacity, because as P + 0, 
ZIP + -. This difficulty can be overcome if we add and subtract dP/P on the right-hand side of 
the preceding equation. . - . .  -. . . .. 

- . J .  . 

When this is integrated between 0 and P we get 

(2 - l ) /P  is finite as pressure approaches zero, there is no difficulty in using q. (6.127) for 
the evaluation off: The values of the compressibility factor. Z from zem p m u m  to p 
are calculated from the volume of the gas at the corresponding pressums, The integ&l i~ 
Q. (6,127) is found out graphically by plotting (Z - 1)lP against R 

E ~ M P L &  6.21 Derive an expression for the fug~city coefficient of a gas obeying the equatio 
of state P(V - 6) = RR and cdmale the fugacity of ammonia at 10 bar md 298 K, given that 

= 3.707 x m3/mol* - 

. Solution Since, P(V - b) = RT, we havc 

C r 
':I PV = RT + Pb, 

A 
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I .  Properties of Sol~tions 12691 

EXAMPLE 7.9 Show that for an ideal gas, 

RT (s), = 
I - t  ' t  

Solution For a mixture of ideal gases, 

where n ~ ,  n2, etc., ;ne the moles of various constituents. Differentiating this with nspect to nb we get 

y 7 . 3  FlJGAClTY IN SOLUTIONS 

The concept of fugacity was discussed in Chapter 6 with reference to pure substances. It was 
pointed out that figacity is a useful concept in dealing with mixtures. For Dure flu@, the 
definition of fugacity is provided by Q. (6.1 18) and (6.122) 

n e  fugacity of a component i in a solution (gaseous, liquid or solid) is defined analogou~l~ by . * dpl = RT d(ln 1 Q31) 

i lim -&- = 1 
P + O  Pl 

0.52) 
- - 

Here p, is fie cheiieal potential, 4 the fugacil~ and is the partial pressure of Component i in 
(he solution, For an ideal gas mixan,  the fugacit~ or a component is  equd to its pnrtial prrssum. 

gaseous behave ideally on a ~ ~ r o a c h i n g  zero Pressurn. The partial pressu~f is &fined 
as product of foul pressure and mole rraclion of ~ ( Y I )  in the mixture. 

j3,=y,P 

Fugacity in Gaeeoue Solutions 

A 8 
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where is the partial molar volume of the component in the solution. Rearranging this quation 

dp, = dp (754) 

Compare Eq. (7.54) with Eq. (7.51). We get 

Subtracting don G). where Fi is the partial pressure of component i in the gas mixture, from both 
sides, 

S i  Fi = yyiP, where yi is the mole fraction, 

donpi) = don P) + dOny,) 

~t constant composition, d(ln yi) = 0, so that the above equation reduces to 

dP don53,) = d(ln P) = - 
P 

Substituting this in Eq. (7.56) we obtain, 

As P 4 0. 3 = f i e  and the above quation can be readily integrated to give 

where & denotes /u8acity coe'clent of a component in solution. 

:J)*,: . .   or a mixture of ideal gases. we have the following simple equation of state: 
6 .  

1 

I ~ L .  -19 p v  = (01 + + n, + . . .) RT b . t r  6 * . *  

- - - 
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Properlies of Solutions 1271 1 

substituting this into Eq. (7.57), it follows lhat 

which slates that the f u g ~ i t y  of ii conlponent in a mixture of ideal gases is equal to the partial 
pressure of that component in the mixture. However, this is not true for real gases. Equation (7.57) 
provides the means for computing fupacitia in  the real gaseous solutiun. But this requires the - 
evaluation of y as a function of pressure, which in turn requires the knowledge of how the solution 
volume varies with composition at each pressure. These types of data are rarely available. and 
hence rigorous calculation of fugacities in gaseous mixtures usin'g Eq. (7.57) is rarely done. 

7.3.2 Lewis-Randall Rule 

As the calculation of fugacity in a mixture of gases through the general equation [Eq. (757)J is 
very difficult, we devise a model for mixtures known as the ideal solution model the fugacity of 
which can be easily evaluated. The fugacity in actual solution is then determined by taking into 
account the deviation of the actual solution from this ideal model behaviour. As an ideal gaseous 
solution we can consider a gas mixture formed without any volume change on mixing the 
components. A gas mixture that follows the m a t ' s  law$ an ideal gaseous solution. For such 
solutions, the volume of the mixture is a linear function of the mole numbers at a fixed temperature 
and pressure. That is, 

whae vi is the molar volume of pure i at the Same temperature and pressure. For such ideal 
solutions, 

Note that the right-hand side of Eq. (7.57) rc&Iccs lo the sanle R S U ~ I  as that given by Eg. (6,128) 
where the volume for the Pure ComPoncnl i s  given a = Vi - RTIP. That is, for purr 
components at a temperature T and prcssu~ f 'v 

and for component i in a gas mixtun: at lhr sumc tetnproturc and pressum, 

1. p "-1 ( y - F ) d P  In 
jj, RT 0 
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12721 A Textbook of Chemical Engineering Thermodynamics 

subtracting Eq. (7.62) from Eq. (7.63). 

Since = R  P, we can simplify the above equation to the following form: 

On substitution of Eq. (7.61), in the preceding equation, we get, 
- 

which is commonly known as Lewis-Randall rule or h i s  figacity rule. It states that fugacit~ 
of a component in an ideal solution is directly proportional to the mole fraction of the component 
in the solution. In Eq. (7.65). is the fugacity of the species i in an ideal gaseous solution. and 
f;: is the fugacity of pure i evaluated at the temperature and pressure of the mixture. Thus, we have 
now, = yi$ for ideal gaseous solution and, 1 =Fi = X P  for ideal (perfect) gases. 

For a gas mixture to behave as an ides1 solution, it requires only that the molar volume in 
the pur= state and the partial molar volume in the solution be the same, or q = 4. For the mixture 

. a, be an ideal gas it requires that $= % = R T I P ,  which means that the molar volumes of all the 
cornponen& are the same whether in the mixture or in the pure state. For ideal solutions. the 
volumes of components may differ from one another. In short, the concept of an ideal gaseous 
solution is less restrictive than that of a mixture of ideal gases. 

The Lewis-Randall rule is a simple equation and is therefore widely used for evaluating 
fugacities of components in gas mixtures. It allows the fugacity of a component in the mixture 
to be calculated without any information about the solution except its composition. However, it 
is not reliable because of the severe simplification inherent in Amagat's law of additive volumes. 
But at high pressures it is often a very good assumption, because, at liquid like densities, fluids 
tend to mix with little or no change in volume (J.M. Prausnitz et al., 1986). Lewis fugacity rule 
is valid for systems where the intermolecular forces in the mixture are similar to those in the 
state. Thus, it can be said that this rule is valid. 

1. At Iow pressures when the gas phase behaves ideally 
2. At any pressure if the component is present in excess ' 3. If the physical properties of the components are nearly the some 
4. At moderate and high pressures, the Lewis-Randall rule will give incorrect results if the 

molecular properties of the'components are widely different and the component under 
consideration is not present in excess. , 

\, 
calculation of fugacity of a component in a liquid solution using Eq. (7.57) is not pmctical 
because the vo~umetric data at constant tCInperalur8 and composition are rarely nvailablc. These 
data are raluired for the integration over the entire range of pressures from the ideal gos smte to 
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Properiies of Solutions 1 273 1 
the pressure of h e  solution including the two-phase region, For calculation of f~gacities in liquid 
solutions* another approach is used. We define an ideal solution whose fugacity Can be 
calculated knowing its composition and measure the departure from ideal behaviour for the real 
solution. A quantitative measure of the deviation from ideality is provided by the function known 
as the activity coeflcient which will be discussed in Section 7.6. 

7.3.4 Ideal Solutions and Raoult's Law 

A solution in which the partial molar Lolumes of the components are the same as their molar 
volumes in the pure state is called an ideal soltdtion. There is no volume change when the 

b 

components are mixed together to form an ideal solution. That is, for an ideal solution V = xiy 
= Z xivi. where V is the molar volume of the solution, Vi and are the molar volume and partial 
molar volume respectively of the component i, and xi is the mole fraction of component i in the 
solution. If a mixture ?f two liquids is to behave ideally, theoretical considerations reveal that the 
two types of molecules must be similar. The environment of any molecule and hence the force 
acting on it is then not appreciably different from that existing in the pure state. We have shown 
that for ideal gaseous solutions, the Lewis-Randall rule is applicable which states that fugacity 
of each constituent is directly proportional to the number of moles of the constituent in the 
solution. The Lewis-Randall rule is applicable to ideal liquid solutions also. It can be written as 

where is the fugacity of component i in the solution, fi is the fugacity of i in the pure' state, 
and xi is the mole fraction of component i in the solution. 

While the ideal solution model is adequate for many gas mixtures for reasonable temperature 
and pressure, the same is not true for the case of liquid solutions. Very few solutions follow 
Eq. (7.66) over the entire composition range. Ideal liquid solution behaviour is often approximated 
by solutions comprised of molecules not too different in size and chemical nature. Thus a mixture 
of isomers (e.g. ortho-, tneta- and para-xylene), adjacent members of homologous series of organic 
compounds (e.g. n-hexane and n-heptane, ethanol and pmpanol, benzene and toluene, ethyl 
bromide and ethyl iodide) etc., are expected to form ideal solutions. 

Raoultb Law. The criterion of phase equilibria permit us to replace the liquid phase fugacities 

1 fi with fugacities in the gas phase with which ihe liquid is in equilibrium. Thus, jL =$' 
under ajuilibrium. Hen superscripts - V and L refer to the vapour phase and the liquid phase 
resp(ively. ~ h u s ,  fugacity f; in Eq. (7.66) is equal 10 Le fugacity of constituent i in the vapour 
phase, 11 the vapour phase is assumed to bc ideal B"., which is true if the pressu~ is not tm high, 
the vapour phase fugacity jv is the same as partial pressure Fi of con~ponent i in the vapour. ~f 
he liquid p h s  is pure i, the fugacity of pure i in the VapOUr phase cnn be replaced with h e  
vapour pressure i jS .  Under these conditions the Lewis-Randall rulc, Eq. (7.66). becomes 

- This expression is known as Raoult's Lawe This is ii simplilicd lorn or the Lcwis-Randall rule. 

) ' q  Whereas the Lewis-Randall rule is obey4 by idc.1 S O ~ U ~ ~ O ~ S ,  1 1 1 ~  Rt10ull's law is applicable 
I to ideal if the vapour p h a ~  will1 which it is in c~uilibriu~n is an idcal gas. 

I 
~ ~ ~ u l t ' s  law provides a very simple ex~nssion f0r calculating the fugacity of a component 

in the liquid mixture which is the same as the partial prcssurc of llle component in the vapour. 
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It says that the partial pressure is directly proportional to the mole fraction in the liquid solution. 
Ideal solutions which conform to Raoult's law over the entire range of conccnlrations are rare. A 
frequently cited example for ideal solutions is mixtures of optical isomers of organic compounds. 
Raoult's law applies as fair approximation to mixtures of hydrocarbons showing a reasonable 
similarity in mole'cular structure such as are encountered in petroleum indus~y. In most other cases 
Raoult's law applies only over a limited concentration range. , 

7.4 HENRY'S LAW AND DILUTE SOLUTIONS 

Solutions conforming to ~aouli 's  law over the entireconcentration range are rareas pointed out 
earlier. A solution. any of whose components does not obey Raoult's law is designated as non-ideal 
solutiort. Even non-ideal solutions exhibit a common form of ideal behaviour over a limited 
concentration range where the fugacity (or, the partial pressure E )  is directly proportional to 
the concentration in the liquid. This behaviour is exhibited by the constituent as its mole fraction 
approaches zero, and is generalised by Henry's law. . . . 

Often, the solute portion of the non-ideal liquid sdlution can be assumed to follow Henry's law. - 
f i  is the partial pressure of the solute over the solution, xi is its mole fraction in the solution and 
Ki is a proportionality constant known as Henry's law constant. Ki may be greater or less than v ,  
the vapour pressure of the solute at the temperature and total pressure in question. When Ki and 
qS are equal, Henry's law and Raoult's law are identical. Henry's law may be thought of as a 
general rule of which Raoult's law is a special case. Henry's law is obeyed in all solutions by the 
solute at extremely low concentrations. Essentially all liquids will obey H e n r ~ ' ~  law close to mole 
fraction zero, but many will deviate from the law above 0.01-0.02 mole fraction. ~~d almost dl 
liquids deviate above 0.1 mole fraction. But in some exceptional cases, Henry's law is found to 
be obeyed quite well up to xi = 0.5. 

For ideal solulions, the partial fugacily (or partial pressure) of a component is propo~ional 
ia mole fraction. For a real solution it has been found experimentally tha as the mole fraction 

of the component approaches unity, its fugacily ~pp rox ima t~~  lo thc value for an idudl 
though at lower mole fraclions. the behaviour Jcpnrts nxwkcdly from ideal buh;lviour. 

In Fig. 7.4. lhe fugacily Curve hecomes nsyniptolic in the straight line showing ideal khoviour 
mole fraction approaches unity. I n  a dilute solution, the componmt prcscnl in larger propor~iuns 

designated as S O ~ V C ~ ~ ,  obeys Raoull's law evcn tllollgh it lllfiy d~p i~ r t  I'm111 iJeul solulion hchnviour 
in  a more conceniraled sulu~iun. AS the molc fraction OT the s ~ l u t e - ~ ~ ~ ~  colllpnellt p m n t  in 
smaller proponions-approa~ha zero, il will conk)nn lo the ideal hchnvioor p~Jir tct l  hv Henry's 
law. Thus, we can generalise by saying lllal the so/urr in ct clillrtr s o l u t i ~ ~ ,  ohcy.v .r ierlrv~~. n,ld 
rhe solvent obeys Nu(Ju~'J'  Iuw. I[' Gun h hl~owa tl\t\t wcr tl~e rnrpc of ~ o l l \ ~ l m i l i o n ~  wlsw the 
solvent obeys Raoull*~ law. ltle nolul~ nbcya flellry'r lnw (set! L:.xi\~npl~ 7.15). 

7.4.1 Ideal Behavlour of Real Solutfons 

The ideal behaviour rxhibilcd non-aeal vululions can hc su~\\mi\ris~d following 
mathematical slatcmenls. 

- 'I 

I 
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Fig. 7.4 Fugacity (partial pressure) versus concentration of real solutions. 
. - .-. . 

Propertjes of Solutions 1 275 1 

lim -& = A  [Lewis-Randall rule] 
.ti ' 1 Xi 

7 . ., 1im 1 = K, [Henry's law] ., .ri-bo xi 

7.4.2 Henry's Law and Gas Solubility 

Since the solubility of the gases in liquids is usually very low, the mole fraction of a C eas in  a 
saturated liquid solution is very small. The solute $as obeys Henry's law and therefore its fugacity 
(or the partial pressure) would be directly proportional to its mole fraction. the proportionality 
consrant being the Henry's law constant [Eq. (7.6911. In other words, the mole fraction or the 
solubility of the gas in the liquid is sproportionnl to the partial pressure of the gas over the liquid 
as given by 

where K, is the Henry's law constant., 

EXAMPLE 7.10 Thc Henry's law consti~nt for oxygen in water at 298 K is 4.4 x 10' bur. Estimntc 
the solubility of oxygen in  water at 298 K for a partial prcsalw o!' oxygen crt 0.25 bar. 

Solution Equation (7.72) gives: the soluhi!i(y ol'u gus in liquid in lelals ot' its n~crlt. I'rtction. 
~ubst i tu t in~  h e  values K, = 4.4 x 104 bar, ul lJ  EI 0.25 hur in Eq. (7.72) we put ,r, = U . O S ~ S  x 
lo4. For very dilute solulions, wc cun wrilc 

- Mules ill' oxygen Molcs ol'oxygcn . v $ 

1 - Molcs of'oxygen + moles of wcller Molcs t11' wilcer 9 li-* 
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. - .  

Therefore, the solubility of oxygen is 0.0568 x lo4 moles per mole of water. In mass units, it can 
be written as 

0.0568 x lo4 x 32 x 1/18 = 0.101 x lo4 kg oxygen per kg water 

EXAMPLE 7.11 The partial pressure of acetone (A)  and chloroform (B) were n~easured at 298 K 
and are reported below: 

XB 0 0.2 0.4 0.6 0.8 1 .O 

P A ,  bar 
- 

0.457 0.355 0.243 0.134 0.049 0 

%, bar 0 0.046 0.108 0.187 0.288 0.386 

(a) Confirm that the mixture conforms to Raoult's law for the component present in excess 
and Henry's law for the minor component. 

(b) Determine the Henry's law constants. 
1 

SoZunbn The partial pressures are plotted against mole fraction x~ as shown in Fig. 7.5. 

From the data given, Can be seen lhal PAS = 0.457 and = 0.386 bar, The dotted line 
representing the ideal behaviour (Raoull'r law) of cott~ponmt A is  drawn hy joining the origin and . 
(x = 1, p = 0.457) by a straight line. R~ouli's luw ibr co~npottrltl N is nlso drown. The dotted lines 
PA and QB represent the ideal behuviuur. The Henry's luw line PR is druwn tangential to the curve - p, versus x~ as XA tends 10 0 and the line QS is drawn tangential to the A versus .rA cume as xA 

tends to 1. 

(a) We see that the p d a l  Pressure curve for component A coincides with the Raoult*a law 
line in the region where mole fraction of bomponent A approaches unity and in this 
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region. the partial pressure of component B coincides with the Henry's law line- Thus* in 
the region where Raoult's law is obeyed by A, Henry's law is obsyed by B, and vice versa- 

(b) The slops of the Henry's law line PR gives KA, the Henry's law constant for A. KA = 0.23 
bar. Similarly slope of QS is KB. KB = 0.217 b ~ .  
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Fugacities of Solids and Llquids 

 eve^ Or liquid has a definite vapour pressure although it may be immeasurably small. in 
some cases. At this Pressure. the solid (or the liquid) will be in equilibrium with its vapour. When 
two phases of a substance are in thermodynamic equilibrium. (he molar free energies in both 
phases should be equal. This follows from the criterion of phase equilibrium, which will be 
discussed in detail in Chapter 8. By this criterion the molar free energy of the liquid (or the solid) 
in equilibrium with its vapour is equal to the molar free energy of the vapour. That is. G~ = GV 
and GS = GV. where the superscripts L, S and V refer to liquid. solid and gas respectively. Since 
the molar free energy is related to the fugacity as G = RT In f + C, where C is constant that depends 
only on temperature, it follows chat 

Equation (6.143) means that the fugacity of solid (or liquid) is equal to the fugacity of the 
vapour with which it is in equilibrium, provided that the reference state is taken to be the same 
in each case. If the vapour pressure is not very high, the fugacity of the vapour would be equal 
to the vapour pressure; hence, the fugacity of a liquid (or a solid) is approximately equal to its 
vapour pressure. 

If the vapour pressure is very high and the vapour cannot be treated as ideal gas its fugacity 
is related to the saturation pressure as in Eq. (6.142) 

8 
is the saturation pressure of the gas andp" is the saturation fugacity. The latter should in nun 

be equal to the fugacity of solid or liquid at the desired temperature and the saturation pressure, 
by Eq. (6.143). Since. RT d(ln = V dP and the liquid can be assumed to be incompressible. the 
fugacity of the liquid at any other pressure P is readily obtailied as 

where V is the molar volume of the liquid. , 

EWMPLE 6.28 Calculate the fugacjty of liquid water at 303 K and 10 bar if the saturation 
prcsMc a 303 K is 4241 kPa and the specific volume of liquid water at 303 K is 1.004 x 1OJ 

sozuth  he molar volume is 
V = 1.004 x 1@ % 18 . 18.072 x lo4 m3/mol 

,, 

Assuming that the vapour behaves as an ideal p s ,  we have 

Using Eq. (6.144)s a 
f , 18m2 (10 - .0424) x 10' P 7.1435 x 

, ,In r, 8.314 x 303 

Therefore, f = 0.0427 bar* 

- 
-- - 
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EX AMP^^ 6.29 Calculate the fugacity of n-butane in the liquid state at 350 K and 60 bar. The 
vaPour pressure of n-butane at 350 K is 9.35 bar. The molar volume of saturated liquid at 350 
is 0.1072 x m3/rnol. The fugacity coefficient for the saturated vapour at 350 K is 0-834. 

Solution The fugacity of saturated vapour at 350 K = 0.834 X 9.35 = 7.798 bar. Therefore, 
fugacity of saturated liquid at 350 K = 7.798 bar = f a t .  Using Eq. (6.1441, 

Thus the fugacity of the liquid at 60 bar and 350 K, f = 9.4 bar. 

6.7 ACTIVITY 

. . t i .  

The vapour pressures of relatively non-volatile solids and liquids may be extremely low, SO, an 
experimental determination of their fugacity is impractical. When dealing with such substances, 
it would be convenient to work with another function called activity rather than with f~gacity 
itself. 'Activity' is, in fact, relative fugacity and is defined as the ratio of fugacity to fugacity in 
the standard state. It finds wide application in the study of homogeneous chemical reaction 
equilibria involving solids and liquids. Activity is denoted by the letter a, where 

The standard state at which fugacity i s p  is chosen arbitrarily, but the temperature in the standard 
state is the same as the temperature in the given conditions. For gases, the standard state fugacity 
is chosen by convenience to be unity, and therefore, fugacity and activity are numerically equal: 0 

The change in the free energy accompanying the process in which the substance is undprgoing 
a change of state from the standard state to the given conditions is related to the activity of the 
substance as - 

. . . L , 
Since dG = V dP - S dl: the change in the free energy when the substance is compressed 
isothermally is given by 

' t  Je'. -' 
I .  

Assuming that the substance is incompressible between the standard state pressure PO and the 
given pressure P, Q. (6.147) can be integrated as 

AG=V(P-PO) , 
The assumption of constant V is a good approximation and will not introduce much error for 
solids and liquids up to very high Pressures, provided the temperatun is well below the critical , 
value. Comparison of Eqs. (6.146) and (6.148) shows that 
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n Thennodynamic Properties of Pure FluMs 

The concept of activity is particularly useful in the study of solutions. The commonly used 
standard states and their properties are discussed in detail in Chapter 7. , . 

EXAMPLE 6-30 Determine the activity of solid magnesium (MW = 24.32) at 300 K and 10 bar 
if the reference state is 300 K and 1 bar. The density of magnesium at 300 K is 1.745 x kdm3 
and is assumed constant over this pressure range. 

Solution Using Eq. (6.149), we obtain 

Therefore, a = 1.00504. 

6.7.1 Effect of Pressure and Temperature on Activity 
! t 

+ 
From Eq. (6.146) we see that, 

.Differentiating with respect to T at constant pressure, * 
' -+ - . 

a a 
I 

Using Gibbs-Helmholtz equation (6.7311 in the above eauation. we see that 

Equation (6.152) predicts the effect of temperature on activity. Combining E ~ S .  (6,146) and 
(6.147) we get, for constant temperalure. 

1 R T d I n a n  V d P  

Equation. , (6.154) .. p r d c "  the of presaure on activity, 

~h~ methods for the evaluation of fhermodynamic properties from experimental P-V-T data or 
ib 
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region* the partial pressure of component B coincides with the Henry's Iaw line- n~huh in 
the region where Raoult's law is obeyed by A, Henry's law is obeyed by B. and vice versa. 

@) The slopes of the Henry's law line PR gives KA, the Henry's law constant for A* KA = 0.23 
bar- Similarly slope of QS is KB KB = 0.217 bar. 

7.5 ACTIVITY IN SOLUTIONS 

The activity with reference to pure substance was defined [see Eq. (6.145)] and the concept was 
discussed in Chapter 6. The activity of a component in a solution can be defined in a similar way. 
It is the ratio of fbgacity of a component in the solution in a given condition to the fugacity of 
that component in the standard state. It is denoted by ak 

. ,  v 

Since the fugacities are related to the chemical potential as 

it follows that 

* is the increase in the chemical potential of species i when it is brought into mbtim &*=&-Pi 
from its standard state. 

The concept of activity plays an important role in solution thermodynamics because activity 
can be related to compositions directly. For example, let the standard state for a substance be the 
p ~ c  component at the temperature and presswe of the solution. Then the activity of thpt component 
bwmes  equal to its mole fraction in the case of ideal solutions and is a strong function of mole 
fraction in the case of real solutions. 

i -.*".. q- 
For ideal rolutiong as = the activity a, = xp For solutions. tho activity can & o m  
to & equal to h e  product of activity coefficient and mole fraction. Tho activity coefficient is 
discussed later in this chapter. 

The activity is a ratlo without dirncn~ions. It 18 a widely UW hnction in mlution 
th-~dynamics~ particularly in dealin$ with pmprtY chanllcs of mixing. The relationship btwecn 

change of mixing and activjty il dileu~8ed l ~ t ~  in this chapter. 

7.5.1 Selection of Standard state8 

The numerical values of activity depend upon the choice of the standard state, this choice being 
based largely on experimental convenfen~ and re~rod~ibility. For all such standard states, the 

Scanned with Camscanner 



1278) A Textbook of Chemical Engineefing T,ermodynamics 

tempcrature.is the same as the temperature of the solution under study and it is not a fixed value. 
Following are the commonly accepted , standard states: 

_ . -\ 

Gases. 7ivo standard states are common: 
1. The purr component gas in its ideal state at 1 bar. At this state, the fugacity is unity if 

expressed in bar. The activity becomes 

That is, the activity of a- component in a mixture of gases is equal to its fugacity, 
numerically. If the mixture behaves as an ideal gas atethe given conditions the activity 
and partial pressure are the same. This standard state is used in the study of chemical 
reaction equilibrium. 

2. The pure component gas at the pressure of the system. With this choice the activity of 
each component in ideal gas solution becomes equal to its mole fraction. 

'Ihis standard-state becomes hypothetical at temperatures where the total pressure exceeds 
the saturation pressure of the component gas in the pure state. Vapour-liquid equilibrium 
studies conventionally use this standard state. ' - 

Uqujds. Two standard states are common for liquids also. 
.- , 

1. The pure component liquid at a pressure of 1 bar. This state is hypothetical if the vapour 
pressure of the pure liquid 'exceeds 1 bar. 

2: The pure liquid dt the pressure of the system. This state becomes hypothetical at temperams 
' above the critical or saturation'temperature of the pure liquid. This standard state is used 

in vapour-liquid equilibrium studies. 

 solid^= The standard state chosen for solid is usually the pure component in the solid state at 
a pressure of 1 bar. 

7.6 ACTIVITY COEFFICIENTS 
. 

We have already lhal lhe concept of ideal solution enables us to culculatc the ~u;*c~[Y of 
a component in the liquid solution from the knowleJyc of its concentration in the solution and 
its fugacity in the Pure state* The calculvliun of fugucity of c o m p ~ n t  in a ma, solution should 
take into account the degree Jepaflure from ideal behaviuur, Activity curficie,lls mensure he 
extent to which the real solulion depam from id odity. Activity coeflicient of the component i in 
solution is denoted by ?'i and is defined by L e  following rclotionship. 

w h m  .f is me fugacity in state. For ideal solutions x =  1, and we have 
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which is same as the Lewis-Randall rule [Eq. (7.66)] with the pure liquid-at the system Pressuw 
as the standard state. 

' b o  types of ideal behaviour are observed; the first conforms to Lewis-Randall rule (or 
Raoult's law) in which case $ =A, the fugacity of the pure species at the system pressure and h e  
second type conforms to an ideal dilute solution behaviour (the Henry's Jaw), in which case 
fP = Ki, the Henry's law constant. Depending upon the standard states on which they are baJed 
the activity coefficients can take different numerical values. For the standard state in the sense of 
Lewis-Randall rule or Raoult's ,law, 

where ai is the activity of i in the solution. Equation (7.77) is, in fact, Lewis fugacity rule modified 
by the factor yi to correct for deviation from ideality. This equation should reduce to Raoult's law 
as x approaches unity and to Henry's law as x approaches zero. For this to be possible, ymust equal 
unity as mole fraction approaches unity (Raoult's law region) and K f i ,  as mole fraction, approaches 
zero (Henry's law region). In terms of partial pressures, Eq. (7.77) may well be written as 

If the hypothetical state, where the pure component fugacity = Henry's law constant, is chosen 
as the standard state, we get, 

Then the activity coefficient approaches unity as x approaches zero. In Eqs. (7.81) and (7.82), 7; 
is the activity coefficient referred to infinite dilution. 

When activity coefficients are defined with nference to an ideal solution in the sense of 
Raoult's law, then for each componenl i, , . r l  

On the other hand, if activity caefficicnts wc defined with reference to on ideal dilute solution, 
then 

y, + 1 as xl + 1 (solvent) 

1 as x + 0 (solute) . ,  
1 ;  

Activity coefficients with reference to ideal dilute solution would be useful when dealing with 
liquid mixtures that cannot exist over the entire composition range as happens, for example, in 
a liquid mixture containing gaseoussolute. If the critical temperature of the solute is lower than 

I - - - - -L 
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the temperature of the mixture, then a liquid phase cannot exist as X2 -+ 1, and the relations based 
on an ideal mixture in the sense of Raoult's law can be used only by i n d u c i n g  a hypothetical 
standard state for component 2. However, relations basd on an ideal dilute solution eliminate this 
difficulty. 

Activity coefficients are very strong functions of concentration of solution- The variation of 
Y with x over the entire range of composition is usually complex, but can often be roughly 
approximated in binary solutions by the empirical equations such as the one proposed by Porter: 

2 
. In y , =  bxz, iny,=bx, 

, . . . ,. 
where b is an empirical constant. These relationships apply best when the components are not too 
dissimilar in structure and polarity. 

7.6.1 Effect of Pressure on Activity Coeff iclents 

The effect of pressure on fugacity was derived in Chapter 6 [Eq. (6.126)]. 

Herefi is the fugacity of pure i and Vi is its molar volume. In a similar way it can be shown that, 
1, the fugacity of i in solution varies with pressure according to 

Combining Eq. (6.126) with Eq. (7.83), we get 

According to Eq. (7.77) = yci, so that Eq. (7.84) can be written as 
- v - v  (?IT = 

As the mole fraction q is independent of pressure ( d  in xi/dP) = '0,  and hence 

The molar volumes and V, correspond to the panicular phase under consideration. For liquid 
solutions, the effect of pressure on activily cml'ficienls is negligible at pressues below atmospheric. 
 or gaseous mixtures. activity coefficien~ are nearly unity at reduced pressures below 0.8. 

7.6.2 Effect of Temperature on Activity Coefflclents 
1,- 

 he effect of temperatun on fugacity of a pure substance was given by E ~ ,  (6.125) as , 
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' . 

similarly, for the substance in the solution 

- 
Combining the above two equations, and noting that Jlfr  = ygi, where xi is independent of 
temperature,. 

-' . . 1.'. t l  .! .: . . ' , . . - . . ,,: : - ,  

Equation (7.88) gives the effect of temperature on activity coefficients. The term ( g  - Hd is the 
partial heat of mixing ofcomponent i from its pure state to the solution of given composition both 
in the same state of aggregation and pressure. For gaseous mixtures, this term is riel jble at low 

'" ' ' . * pressures. -*, 

EXAMPLE 7.12 The partial pressures of acetone (A) and chloroform (B) were measured at 298 K 
and are reported below: . c 3 l 

Cdculate the activity and activity coefficient of chloroform in acetone at 298 K, 

(a) Based on the standard state as per Lewis-Randall rule 
(b) Based on Henry's law. . . ?  :I' 

M!ation The Henry's law constant was determined in Example 7.1 1. Kg = 0.217 bar. 
pressure of pure chloroform. P: = 0.386 bar. The activity was defined by Eq. (7.73) md 

A v i t y  cocffiient by Eq. (7.75). Combining these two we get. 

Based on the Lewis-Randall rule. the acliOity, 4 1 

*'.I * .- - .-  

.d'l**:,, f %  0 , 
~d op the Henry's law. the d v i l y ,  
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The activity coefficient based on the Lewis-Randdl rule is 

The activity coefficient based on the Henry's law is 

The above equations are used to calculate the activity and activity coefficients for different 
concentrations. A sample calculation is provided below for the second set where 

XA = 0.2, xB = 0.8. FA = 0.049 bar, FB = 0.288 bar. KB = 0.217 bar. = 0.386 bar 
' 

(a) For the standard state referred to the Lewis-Randall rule: 
. . 

(b) For the standard state referred to the Henry's law: 

The above calculations are repeated for other concentrations a d  th m& given blow 

~ ~ p l , , E  7.13   he hgacity of component I in binary liquid mintm of componenw 1 aed 2 
,t 298 K and 20 bar is given by 

S ; = s o x ,  - 8 0 x ; + 4 0 x :  

whet 3 is in bar and is the mole fraction of component 1. Deternine: 

(a) The fugacity fi of Pure Component 1 
The fugacity coefficient 41 
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(c) The Henry's law constant K, ,; . , ., ...,. . .. ' c t 8 . d b  :a , ~ ~ 4 : .  e r.., .,.?ty@$& 
(d) The activity coefficient n. 
Soldon (a) When the mole fraction approaches unity, the hegacity of a component in the 

solution becomes equal to the fugacity of the pure component. That is, 

(c) By Eq. (7.71). the Henry's law constant is 
i . . - " a  -. I&:= ,. A">:* - 

A K,= lim -= lim (50-80~,+40$)=50bar 
x ~ + O X ,  xl+o 

- 
y , = L  SOX, - 80x2 + 40x: =5-Sx, +4x, 2 

x*fi 10 x* 

h a mixture, the partial molar properties of -the components are related to one another by one of 
the most useful equations in thermodynamics. the Gibbs-Duhem equations. It tells us how the 
parrial molar properties change with compositions at constant temperature and pressure. 

We have seen that at constant temperature and pressure, the property M' of the solution is the 
of the partial molar properties of the constituents, each weighted according to the number of 

molts of the respective constituents. -,, . . a -  - -  - . . -  i 

fivative dkf gives the change in the property of the solution at CbnStant T and p. 

when Y is the molar value of the pmperty of the solution h#. But. since M =f(T ,  p, nl, n2, ,), 
a m m t  7 and P we have Eq. (7.13). which gives 

Comparing ~ q .  (7.93) with Eq. (7.13) we get the important result. 
' 1 -  . \*  

. t n , d @ m 0  . . (7.94) 

a n  : : - 
Scanned with Camscanner 



1284 J 
...& - A Textbook of C w c a /  Engineering Thermodynamics 

Dividing throughout by n, fie total number of moles in the solution* we get 

S dpi = 0 (7.96) 

Here y is'the mole fraction of component i in the solution and f i  is the chemical potential of the 
component. 

Other fotm~ of Gibbo-Duhem quation. Consider a binary solution made up of components 
1 and 2 whose mole fractions in fie solution are xl and x2 respectively. muation (7.96) can be 
written as 

XI dpl + xz d h  = 0 ('7-97) 

where pl and 112 are the chemical potenti* of componenW 1 and 2 respectively. This can be 
rearranged as 

. . 
Xl dcrl = - x2 d ~ 2  

Dividing by dr, and noting that = -dx2 in binary m i x ~ r s ,  the above result gives 
C 

r ' 

Introducing the relationship between chemical potential and the fugacity [Eq. (751)l into the 
above, we get 

.. .. . I  .-• 1 .  . 

4: * . *  - 0 99) 
- . ..:; . . .  

- .  L 
sins activity q =j l f ,  fugacities in Eq. (7.99) may be replaced in tams of activity as - .. . ,. . '-.. . , . JL. . . . . . -  1 - . . . -  : 

- J ~ n ( ~ f i  .. - -- : . _ !  . 
XI 

ax1 
-5 

3% 
~ h c  f ,  the fugacity in the standard statc, is independent U rhe cornpasition of the solution* 

,w, ,* , . t  a 

ax, 
kur k Gbb-Duhem quation in terms of activity is 

By Eg. (7.79)s 7% S I J W ~ I J ~  thin into Q* (7.100) thus the Inor, i l n p o ~ ~ ,  md widely 
f- of th. ~ibbs-Duhem qmtionp h i t  involvin8 the rtivity camcicnb, is O b b d  

dln x $,A dlny2q  
3x1 = x2 

ax, 
310 y dln x x ~ - + ~ - - L ~  ah  dln 

ax1 3x1 x a 2 + + 4  an, 3% 

Scanned with Camscanner 



0 ! .  . . 
. , 'Properties of- Solutions - . ,; a I 285 1' 

The second terms on both sides of the above equation vanish, as they are equal to unity. Therefore, 

As the activity coefficients directly measure the deoarture from the ideal solution behaviour, 
Eq. (7-101) is the most useful form of the ~ i b b s - ~ u h e m  equation. 

The various forms of Gibbs-Duhem equations are rigorous thermodynamic relations that we 
valid for conditions of constant temperature and pressure. They tell us that the partial molk proper- 
ties of a mixture cannot change independently; in a binary mixture, if the partial molar property 
of one of the component increases, the partial molar properties of the other should decrease. 

Gibbs-Duhem equatidns find -*ide applications in solution thermodynamics. These include: 
, 8 I .  

(a) In the absence of complete experimental data on the properties of the solution, Gibbs- 
Duhem equations may be used to calculate additional properties. For example, if experimental 
data are available for the activity coefficient of one of the compontinu in a binary solution 
over certain concentration range, the activity coefficient of the other component over the 
same composition range can be estimated usingl~ibbs-~uhem equations. This is particularly . 

useful wherever the volatilities of the two components differ markedly. The measurements 
usually give the activity coefficient of the more volatile component whereas that of the 
less volatile component is calculated using Eq. (7.101). Thermodynamic properties of 
some high-boiling liquids (e.g. polymers) dissolved in a volatile liquid (say, benzene) c q ,  
be computed by measuring the partial pressure of the latter in the solution. 

(b) Thermodynamic consistency of .experimental data can be tested using Gibbs-Duhem 
e+ations. If the data on the partial molar property of each component measured directly 
in experiments satisfy the Gibbs-Duhem equation, it is likely that they are reliable, but 
if they do not satisfy the Gibbs-Duhem equation, it is certain that'they are incorrect. 

(c) Gibbs-Duhem equations can be used for the calculation of partial pressure from isothermal 
total pressure data. Suppose that in, an experimental investigation of vapour-liquid 
equilibrium, the total pressures are measured as a function of composition of one of the 
phases (usually the liquid phase) and the composition of the other phase is not measured. 
The Gibbs-Duhem equation facilitates the cnlculation of the compo&tion of othei phase 
thereby reducing the experimental work considerably, 

(d) Partial pressure data can bc obtained from isobaric boiling point data using Gibbs-Duhem 
equations. The isobaric 7'-x data can be easily converted to x-y data. ' 

' 

, , . ! 

These quations find applicalion in various other situ~tions such as in the derivation of the 
relationship between Henry's low and Raoult's law for a real solulion (see Bxomplc 7.15). in 
proving the essential criterion Bat the vapour ond'liquid compositions are the same for an 
azotropic mixture (scc Example 8.10) c l ~ .  

EXAMPLE 7.14 Show that in a binary solution, if the molar volume of one of the components 
increases with concentration, the molar volume 0f the other must decrease. .. ' I  I '  ' , I : I .  

solu&- ~ q .  (7.94) is wrillcn for pne 1no1e , of , thp solutioh . . with . . M qplpcefl, , . .  I by V, we . $ I  g& 
p*. , 1 ;  

I I  1 ' .  ;. , .  4 q , . , '  ,.-.:; , I s  ; *- , 
.- :l$ 
4 -la 
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For a binary solution. - - . , -  . A t  . 

This is rearranged as 

n ~ e ~ m  that if f i  is pitive, d< must be negative. That is, if p d d  molar volume of component 1 
increases the partial molar volume of component 2 must decrease. 

EX0fH.E 7.15 Prove that if Henry's law is obeyed by component 1 in a binary solution ova 
certain concentration range, Lewis-Randall rule (Raoult's law) will be obeyed by component 2 
over the same concentration range. 

Solution . . .  Equation (7.99) gives Gibbs-Duhem equations in terms of fugacities 

# .  . Since dx2 = - d t l ,  'E~. (7.99) -becom~s .' . . -  . :,.i!>* . 
'. .- + *  - ,*!:.>i . . . - 

- .  -. u. I.. .*! (>.:: -.,,; .,-!Y;:.. . -; .,: :. . . 
If component 1 obeys'~enry's law, we can write f i  = Klxl and hence Eq. (7.102) gives 

I -. ln Ti = ~n x2 + c .. . I 

here c is &slant of integration. 
Since 72 = f2 when ~2 =' 1, C = In f2 and Eq. (7.103) becomes 

I. a . . b - ,  . 
72 = X , I '  . I : ' 1 

* I !  1 1 1 r , g ( . , ,  ., , ,. ,q i, v - ~ I ? ~ ~ ~  

which is the ~ewis-Randall rule for Component 2, 
In Fig. 7.6, Henry's law comPon~nt I in a binw ovebthe rangc 0 to 3;. 

~ ~ ~ i s - ~ a n d a l l  rule will be appl'cable lo mmponent 2 over he same composition range, 

--, 
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Fig. 7.6 Plot of fugacity versus mole, fraction for Example 7.15. 
- x 

5 
EXAMPLE 7.16 The activity coefficient of component 1 in a binary solution is  give^. dy 

where a, b. c arc constants independent of 'CowcCntrations. Obtain nri expression for f i  in t- of 
XI. 

Sohtion Using the Gibbs-Diihem equation [Eq. (7.lOl)J. we get . . -7 z,qc . . ! . - .. <. I 

8 
dln y dln y . ! *. - x I ( 2 q  ~ 3 b x i + ~ r  

&2 .. a2 

f ' ,  . .- ,, . ' I 1 1 .  

'which y be re&rltkn.'as. 

dln y c 2 O X ,  (2; + 3b.r2 + icx;) 
3x2 * I I 4 

,*-t1, . .3 .,' , ', . ' .. 
Replacing x2 in the preceding equation by ( 1  - xi), we get I . 8 9 .  ' 4 ,  * 

1 4 1  I . .' 

dln y -1 = -x l  (2u+ 3b + 4 ~ )  +x: (-36 - 8 r ) +  x f (44 '  
a x 1  ? , I  

4 I . s t  I I I ,  : 

In1qrpling [he above cqualion, I ' I  I . 
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where C is a constant o f  integration, Integrating and using the boundary condition that when 
x2 = I (or XI = 0 ), a = I we get C = 0. Therefore, we get the required expression: 

4 

. . . .  
In y, = [a + (312) b + 2c] - [b +'(8/3) c] x: + c.$ 

The above example illustrates how the activity coefficient of one of the species in a binary 
mixture can be evaluated if the activity coefficient of the other is known as an analytical equation 
in x. Now, suppose that y, is determined experimentally and is reported as a function of X in a 
tabular form. How is f i  evaluated? Rearrange Gibbs-Duhem equation, Eq. (7.101) in the form 

XI dln y2 = --dln y l  
- .  x2 

1 . .. 
. . -. . - .  . , Integrating the above equation, we obtain . . -,A/ 

... . . . . . . . . .  , .-.. .. ... - . . "  
. . 

. . -  When xl = 0, In f i  ="o and hence, C = 0. As a result, 

The integral in Eq. (7.106) is to be evaluated graphically. For this, plot a graph taking x r /x 2 along 
the y-axis and in y1 on the x-axis. The area under the curve from in y, at xl = 0 to the 
In y, value at the desired concentration xl will give the integral in Eq. (7.106). The negative of 

. ,  this k the value of 1n %'at x,. ' 
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. · the boundary condition that when 
where C is a constant ·of integration. Integrating and ustng h uired expression· 

x2 = 1 (or x1 = 0 ), "2;::: I we get C ~ ~-. Theref~re, ~e. ge~ l e req · 

tn.r =[a+ (3)2sb·~:;:2i1;l :-(6 +·cs/3) c]xf + ext 
I 2 , • 

· · · · ffi · nt of one of the species in a binary 
The above example illustrates how the activity coe ichte . k wn as an analytical equation 

• · · ff' · t of the ot er 1s no 
mixture can be evaluated if the activity coe tcien d . t d as a function of x in a 

. . d · tally an 1s repor e 
in x. Now, suppose that Y1 is determine ex penmen . E (7 IO I) in the form 
tabular form. How is y2 evaluated? Rearrange Gibbs-Du~em equation, q. · 

I 

When x1 = 0, In y2 =·•;•o and hence, C = 0. As a result, 

' . ' • ·• •J t 

- t - . • (I ) t ., " ,: ' ' 11 i,, ,1 
.. : ,·i•·,... ,,;f nr, a .i, x •:,, ... ,..,., .. 
. . ,· ·- . . . .. • . I ,. 

In y2 = - -d(ln Y1) 

. ' (lnr1) at x1 =0 ~2 . , •., 11•"1 
' • • '' ' ' • ' ' ' ' 11 t ' j ,· • • • ' 1 ) • .• • ; 
•. • , , f ' '" • 4 ··~ •, ' .., ~ t • ' • ' • 

. -
. ' , r , 

(7.104) 

(7.105) 

(?.106) 
••• \•.,,,i. {; ~' 

The integral in Eq. (7.l06) is to be_evaluated gr~~hically. ~pr this, plot a graph taking x1lx2 along 

the y-axis and In r. on the x-ax1s. -- The area under the curve from In y1 at x1 = 0 ~o the 

•~ y1_ y~I~~ ~t t~e _des~r~dJ ~nce~~~ti-~n _:r1 -~il_l _giyf 1~h~ _in!~gral , i~,1~q. Fil_06). _The n~gat~Y-~. ~f 

this is the value of In ~ at x1. • I 

•• , , ~. " t 1 I 

7.8 · PROPERTY CHANGES ·OF MIXING 
• ) : ·, ·1, t ·( , • ... ·' ',;; : ... s I · · 

',"I • I • • -, • • 

' '( \. ' 

We know that the molar· volume:of an ideal solution is si!1)ply the average of the molar volumes 

of the pure components, each weighted according to its mole fraction: That is, V = I x; V; for ideal 

solutions. 'If such a relation co!.!ld be written for all extensive thermodynar;nic properties of a 
" ' . ~ .. . . . ' 

solution, then 

.• ·,: , I . M = I x-M· · : ' ! 
' J • • , I ~ ' • • • • ...... (7.107) 

where M is the molar property of the solution, M; and x1 are the molar property of pure ; and its 

mole fraction respectively. But Eq. (7J_07) is not true even for. .;dea_l solutions when the property 

under consideration is entropy or entropy related functions like free energy. For non-ideal solutions, 

this equation cannot be used ~or, ~e, estimation ~f therm?dynamic properties unless we apply a 

correction term AM, known as the property change of mixing: Thus, in general, when thermodynamic 

properties of a solution, whether ideal or real, are evaluated from the pure component properties 

the equation used should be , . . 
• t \ , J ,,,' I j <I• f • • • 

M ~ I X;M, + AM ··1 (7.108) 
. '. . r 

, , I • I ' ~ I o f ,,. ' 1 

In Eq. (7.l08), AM is the difference in the property of the solution Mand s~~ of the properties 



• 

' 
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of the pure components that make it up, all at the same temperatur~i'.and pressure as the solution. Thus 
. , . · 

t:.M = M-I. x1M1 

Replacing M in Eq. (7 .108) by the molar volume V, , 

V = I, X; V; + AV . ' ... 
where AV is the volume change on mixing. AV = 0, for ideal solutions. 

A more general definition of t:.M can be written as 

t:.M = M - I. X·M~ I I 

(7.109) 

(7.110) 

where. M? is th~ molar ~roperty of pur~ i in a specified st~ndard . sta~~-\r .the ~~mpqnent e~ists in the pure form in the same state of aggregation as the solution and at the temperature and pressure as the solution, then M? = M;. For example, if all components exist in the pure state as stable 
liquids at the temperature and pressure of the solution, ¥;0 = V; and AV = V - I. x; V1• Here, AV is the volume change of mixing when one mole of the solution is formed at constant temperature and pressure from the pure liquid constituents. 

Property change of mixing is a function of te~perature and pressur~ like any other therm00:ynarnic property of solution and its value depends on the standard state specified for the components. Comparison of Eq. (7 .14 ), which relates the properties of the solution to the partial molar properties of the constituent species, with Eq. (7 .108). yields · 

- 0 t:.M = I, X;(M; .- M; ) . (7.111) 
' . 

The quantity M; - M? can be treated as the change in tl1e property of component i when one mole of: pure i in its standard state is brought to .the- solution of given ~omposition at the same temperature and pressure. Using Eq. (7.111 ), the volume change of mixing and free energy change of mixing can be written as 

,, • •• I I ~ -., 

• , l .... , 
I'• _, (7.112) 

- 0 AG = I, X;(G; - G; ) . . 

(7.113) 
Ii' 

7.8.1 Activity and Property Change of Mixing 

Free energy change of mixing, AG. Using the _definition of fugacity, Eq. (6.118), the change in the free energy of a substance when it is brought from its standard state to the solution, can be written as 

G1 - G? = RT In 4 = RT In CJi 
/; 

Substitute this into Eq. (7 .113). The result is 

AG 
- = Ix1 In ai 
RT , 

(7.114) 

(7.115) 
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O.Smol H20 0.2 mol <;H~ OH M/=0 -.. $1 

at298 K + at298K [-
- -

~8 
tiffs ~-

i~ , , ' , 
c,.,,,(T-298) ~ 

1 mol 20% - ""i ,.. 
ethanol-water at 298 K -

~ · Fig. 7.10 Adiabatic mixing process described In Example 7.23. 

7.10 EXCESS PROPERTIES 

The difference between the property of a real solution and that of an ideal solution is important 
in chemical thermodynamics, especially in the treatment of phase equilibria. The excess property, 
ME, is defined as the difference between an actual property and the property that would be 
calculated for the same temperature, pressure and composition by the equations for an ideal 
solution. 

(7.131) 
I • 

M is the molar prope,;ty of the solution a~d Md is the property of an ideal solution under the same 
conditions. · .. . .; · , , . . .. 

The excess property change of mixing is defined in a similar manner. 
( t I ' I t, 

AME= AM-Mfd 
I I • I I' • I I I 

(7.132) 

llME is the excess property change of mixing, AM and Mfd are the property changes of mixing 
for a real solution and an ideal solution respectively, both under the same conditions. As 

llM =· M - ~ x,kf?, 

Equation (7.132) can be written as 

• t ? • • j 

Compare Eq . .(7.131) with Eq. (7.133). We see that . 

AME=ME 

(7.133) 

(7.134) 

Equation (7.134) means .that the excess property change of mixing and the excess rt are the , . . . prope y 
same. · · ,, • · . 1, 

-~ Let us consider the excess volume v£ of ·a 
I 

solution. 
• '· I ' 

y£ = 4 yE' = 4 V - 4 yid 
•1 - . ' 

Since ideal solution involves no volume change of mixing 4 yid - o The " h l e· . . . • - • re,ore, t e excess vo um 
of a solution and the volume change of mixmg 4 V are the same The sam • " h 

· h od · · 1. • c 1s true ,or some ot er 
extensive t erm ynamic properties ike enthalpy internal energy h t . E 
properties in these cases do not represent new therm~dynamic properti'e eHa capacity, etc. xcesds 

ed f 
· h . s. owcver, for entropy an 

entropy relat unctions, t e excess properties arc different from propert ch . . nd 
they represent new and useful quantities. . Y anges of m1xmg a 

◄ 
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Excess functions indicate the d · · . ·1 1 d . . . eviatmns from ideal solution behaviour and are eas1 Y re ate 
to activity coefficients. Excess f t' • • . ' bb f . . unc mns may be pos1t1ve or negative; when the excess G1 s ree 
energy of a solution 1s positive the s I t' · 'd • • • • · · f 'd 1 ·t . . . o u ion 1s sai to exh1b1t pos1t1ve deviat10n rom I ea I Y, 
whereas 1f 1t 1s less than zero, the deviation from 1·d 1·1 · t ' Th d f · · . ea I y 1s nega 1ve. 

e e •~iuon of. partial molar excess functions is analogous to that of partial molar 
thennodynam1c properties [see Eq. (7.1)]. 

M/ = (anMEJ' 
an 1 T,P,nj 

(7.135) 

M;E is the partial molar excess property of component i. Therefore, analogous to Eq. (7. J 32) we 

can write, · 

(7.136) 

Equation (7 .136) says that the molar excess property ME of a solution is the average of the partial 

molar excess property of each component weighted according to its mole fractions. 

7 .10.1 ~xcess GI bbs Free Energy · 
-

For phase equilibrium studies the most useful excess property is the partial molar excess Gibbs 
free energy which can be directly related to the activity coefficient. Excess Gibbs free e~ergy is 

defined as 
' 

GE= G- Gid 

Using Eq. (7 .136), we can write the excess Gibbs free ~nergy as 

GE= I-x;µf 
• I• 

(7.137) 

(7.138) 

where µf is the excess chemi~al potential or excess partial molar free energy of component i. But, 

(7.139) 

/1µ;, the change in chemical potential for component i when it is transferred from its standard state 
to the solution at the same temperature and pressure is related to its fugacity in the solution, as 

.. !iµ . = RT Jn .fL 
I t (7.140) 

i, is die fugacity of component i in solution and f:> is the fugacity in the standard state. Similarly. 

if the component becomes part of an ideal s?l~~ion ~t the same conditions, 

-id 

!iµjd = RT In Ji_ (7.141) .t 
Since fugacity in an ideal solution is fiid ~ X; J;

0
, Eq. (7.141) can be written as 

~µjd = RT In x1 (7.142) 
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In Eq. _(7.140) the fugacity /; is related to x,., y1 and t' as l, = x,r,t', so that Eq. (7.14o) becomes 

. . &µi = RT _ln xm (7.143) 

Substituting Eq. (7.142) and Eq. (7.143) into Eq. (7.139), the result is 
. ' . . . . . . ' I µf = RT In r j I ( . (7.144) 

Because of this simple relationship between activity coefficient and excess chemical potential it 
becomes possible to express the activity coefficient as a function of composition. 

From Eq. (7.138), we.see that the molar excess Gibbs free energy of a solution is simply, 

. GE= RT"'£ x; In i1 .. . . (7.145) 

Since µf = G,E, the partial molar free energy of a component i in the solution, the above equation 
can be put in the form of Eq. (7.135) 

I _ µf -[iJ(nGE I RT)] . nr;--- ~---
.. RT , . iJn; · T P '. 

' ,nl 

(7_.146) 

l ~ - J • • ; \ ' • I •• • • • J • '• j ., • • ~ • : • 

EXAMPLE 7.24 The two-suffix-Margules equation is the simples·t expression for excess Gibbs 
free energy ~at i~ obeyed_ by chemically 

I 
si~i!ar m_aterials . . 1. • • , .. , ••.• 

1 
.. 

•'. . . I. ' ' GE Ax. ! ···i . • • • I • .•• •1. : • • '- = 1X2 . ,.. J • • • ··: i' (7.147) 
: . '·. 

where A is an empirical constant independent of composition. Derive the expressions 'i~~-the 
activity coefficients that result from this expression. . 

•• • ., • •' I •• · " 1 ' I 

Solation Write Eq. (7.146) for components · 1 and 2. Then ; ·· 1
' • • • , • • 

; • • t I J ~ .• : . (7.148) 

µifferentiating Eq. (7.148) with respect to n1, k~eping n2 constant, we get 
. \ 

. . . . RTln r I = An~ ( n :, "'} Ax~ l :. " ' .... ' ' \ • ' - • 

Differentiating Eq. (7.148) 'with respect t~ n'i, ke~ping ~·; consta~t. ~e ·get · •I • 
' I 

r · RT In y 2 = Axf 

. The desired expres~ions for activity coefficient are· 

I
I ', A 2 A 2 

n Y1 = RT X2, In Y2 = RT Xi 

Figure 7.11 shows the plot of In Ya, In Yi and GE/RT against composition. 
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