\ PROPERTIES OF SOLUTIONS

We have seen in Chapter 6 that the thermodynamic properties of homogeneous pure substances
depend only on the state of the system. The relationships developed for pure fluids are not
applicable to solutions and need modification. The thermodynamic properties of solutions and
hetcrogencous systems consisting of more than one phase are influenced by the addition and
removal of matter. The term solution includes homogeneous mixtures of two or more components
in the gas, liquid or solid phase. The pressure, temperature and the amount of various constituents
present determine the extensive state of a solution; and pressure, temperature and composition
determine the intensive state. In this chapter, we discuss how the thermodynamic properties of a
solution are determined and introduce certain concepts that are essential to the study of phase
equilibria and chemical reaction equilibria.

7.1 PARTIAL MOLAR PROPERTIES

The properties of a solution are not additive properties of its components. For example, the volume
of a solution is not the sum of the volumes of the pure components constituting the solution. It
means that when a substance becomes part of a solution it loses its identity. But it still contributes
to the property of the solution as is evident from the fact that by changing the amount of substance,
the solution property also changes. Thus we need a new set of concepts that enable us to apply
thermodynamics to solutions of variable composition. In this connection, the concept of partial
molar properties is of great use. The term partial molar property is used to designate the property
of a component when it is in admixture with one or many components. To be more precise, the
partial molar property of a particular component in a mixture measures the contribution of that
component to the mixture property. If M’ is the total value of any extensive thermodynamic

property of a solution, the partial molar property Ei‘ of the component i in the solution is defined

as
— (M oM’
M, = (—) = (“—) 7.1)
&,‘ T.PJII,‘ t}l' T.f'.lll,‘ (

In Eq. (7.1), n is the total number of moles and M is the molar property of the solution. n, denotes
the number of moles of component i in solution, so that n = Zn,
In general, any partial molar property A, is the increase, in the property M of the solution
resulting from the addition at constant temperature and pressure, of one mole of that substance to
254
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y unchanged. It 1s an
perature and
the solution

§uch a large quantity of the system that its composition remains virtuall
Intensive property and its value depends only on the composition at the given lem
pressure. The subscript n;,; indicates that the number of moles of all components in
other than the number of moles of i are kept constant.

7.1.1 Physical Meaning of Partial Molar Properties

To understand the physical meaning of partial molar properties let us consider the partial molar
yolume, the simplest partial molar property to visualise. It is the contribution that a component
in the solution makes to the total volume. Consider an open beaker containing a huge volume
of water. Assume that one mole of water is added to it. The volume increases by IS X UAS
which is the molar volume of pure water. If the same amount of water is added to a large amount
of pure ethanol taken in the beaker, the ircrease In volume will be approximately 14 x 107 m,
which is the partial molar volume of u&memanol. The difference in the increase in
volumes can be explained thus: the volume occupied byvil given number of water molecules
MQM'M- When water is mixed with a large volume of alcohol.
there is so much alcohol present that each water molecule is surrounded by pure ethanol. Consequently,
the packing of the molecules would be different from that in pure water, and the molecules occupy
lesser volume.

If one mole water is added to an equimolar mixture of alcohol and water, the increase in
volume of the solution would be different from that resulted when the same quantity were added
to pure alcohol. The partial molar properties of the components of a mixture vary with composition
because the environment of each type of molecule changes as L_hg_g_o_rgpgsﬁigq changes. The
-intermolecular forces also get changed resulting in the chgﬂg_gs_ig_illg thermodynamic properties
6f solutions with compositions. The variation of partial molar volumes with concentration is

shown in Fig. 7.1 for ethanol (E) — water (W) system.

2.0
Ethanol 58
g 1.8 =
Z 56 E
E l‘.?.
é Water *E
X 1.6 i
I~ S 'Lg
54 |8
|.4 - 5~2
0.0 0.2 0.4 0.6 038 1.0

xg> mole fraction of ethanol

Fig. 7.1 Partial molar volumes in alcohol-water mixture.
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et S—————— — - ————

We have seen that the etfective molar volume ol water added to the cllmnnl—\\u\l-cr solution,

. the partial molar volume V. the solution is less than the molar volume Vi of pure water

at the same temperature and pressure, To be specitic, when pure water is added to an ethanol water

solution of volume V' and allowed sufticient time for heat exchange so that temperature remaing

the same as that before addition, the increase in volume of the solution AV*# AnyVy where any,
is the moles of water added. The increase in volume is given by

AV = Any Wy, (:2)
Equanon (7.2) can be written as
— AV
W= — (7.3)
Any,

In this process, a finite drop of water was added which may cause a finite change in composition.
If V,, were to represent a property of the solution, it must be based on data for the solution at this
composition. For an infinitesimal amount of water added, Eq. (7.3) becomes

— . av (av
VW= lim —=|—
“amy=0 Any | ony

Since temperature, pressure and number of moles of alcohol are kept constant during addition of
walter, :

= V'
Vv = E (74)
W IT.Ping
where ng represents the number of moles of alcohol present in the solution.
In general, the partial molar volume V. of component i is defined as
- [V
V= (7.5)
al‘: T.P.ll’-,.-

and it denotcs the incremental change in mixture volume which occurs when a small quantity of
component i i+ added at constant pressure and temperature. The amount of ¢ added is so small that
no detectable change in composition occurs. While the molar " volume is always positive, the partial
molar \:gl_u‘luay even be negative. The partial mular “volume of MgSO, in water at infinite
llution (i.¢. in the imit of zero concentration) is —1.4 x 107 o' Ymol which means that the
additon of one mole of MgSO, to a large volume of water results in a decrease in volume of
1.4 x 107 m*. The contraction may be due (o the breaking up and subsequent collapse of the open
structure_of water as the ions become h)drmcd
Though different from molar properties of the pure components, to get a physical picture of
the concept of partial molar properties, we can treat them as the molar properties of the components
in solution. However, it is 1o be borne in mind that the components of a solution are intimately
intermixed and cannot have individual properties of their own. The partial molar properties in fact,
represent the contribution of individual components constituting the solution to the total solution
property as described in the following section.
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\/7.1.2 Partial Molar Properties and Properties of Solution

Consider any thermodynamic extensive property (such as volume, free energy. heat capacity. etc.)
its value, for a homogeneous system, being completely determined by the temperature, pressure
and the amounts of various constituents present. Let M be the molar property of a solution and
M’ be the total property. Then, M' = nM, where n is n, + n, + ny + - - - . Here, ny, g, n3, .. . are

the number of moles of the respective components 1, 2, 3, . . . of the system. The solution property
is a function represented by

M =f(P, T,n,ny...0...) (7.6)

If there is a small change in the pressure, temperature and the amounts of various constituents, then

d t 1 !
dM' = (aaip) dP + (6’M J dT + (—a—M—] dn +---+ [—aaﬁ—:—] dn; + ... 7.7
T.N . P.N oy PTn.... i /PT.nj,

The subscript N in the first two partial derivatives indicate that the number of moles is kept
constant, and the subscript n;,; indicates that the number of moles of all components other than
that of component i is kept constant.

At constant temperature and pressure, dP and dT are zero, so that Eq. (7.7) reduces to

n 4
M’ = 5 (%} dn (7.8)
; =l i P.T,nj,,-

1

The partial derivatives appearing on the right-hand side are, by Eq. (7.1), the partial molar
properties M;. That is, at constant temperature and pressure,

dM' =

M™M=

Z M, drn, (7.9)
It is evident that the partial molar properties M; are not extensive properties, but are intensive
properties of the solution. They depend, therefore, nol upon the total amount of each constituent,
but only upon the composition, or the relative amounts of the constituents. If we add several
constituents simultaneously to a given solution at constant temperature and pressure, keeping the
ratio of the various constituents constant, the partial molar properties are not changed. Then, the
change in property

where x; represents mole fraction of component i in the solution. Integration of Eq. (7.10) yields

M' = (Myx, + Myx, +--)n =M, + Myn, + ... (7.11)

Therefore, M', the total property of the solution, is the sum of the partial molar properties of the

constituents_each weighted according to its number - of moles. That is,

M'=%n W, (7.12)
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This equation along with Eq. (7.9), which can be written in the following form serves as the
relationship between partial molar properties and total solution property.

dM' = 3 M, dn, (7.13)

For one mole of the solution it cun be easily shown (see Example 7.1) that

M=% xM, (7.14)
dM = T M, dx, (7.15)
Thus the molar volume V of a solution made up of components 1, 2, . . . can be written as

V =0T+ 57 4 -

We see that the partial molar property M; of any constituent may be regarded as the contribution
of one mole of that constituent to the total value of the property under the specified conditions.

In other words, the partial molar properties may be treated exactly as though they represent the
molar properties of the components in the solution.

EXAMPLE 7.1 Give an alternative derivation for Eqgs. (7.12) and (7.14) starting from Eq. (7.9)
Solution Equation (7.9) gives
dM' = £ M, dn,

Using x;n = n;, d(x; n) = n dx; + x;dn and dM" = d(nM) = n dM + M dn, where M, as pointed out
earlier, is the molar property. Equation (7.9) becomes

ndM + M dn =X M,(x; dn + n dx,)
On rearranging the above result, we get
(M — ZM;x)dn = EM, dx, - dM) n

n represents the total amount of various constituents and dn the changes in the total number of
moles. One is free to choose any value for n as well as dn. In short, n and dn can be independently

changed. For all possible values of n and dn, the above equation is to be satisfied. This is possible
only if the terms in brackets reduce to zero.

M- x,-;ii =0 or M=X xi—M—i (714)

M dq-dM=0 or dM=3XM, dx, (7.15)
Multiplying Eq. (7.14) by n, we get

nM =M =3 nM, (7.12)

EXAMPLE 7.2 Will it be possible to prepare 0.1 m® of alcohol-water solution by mixing
0.03 m? alcohol with 0.07 m® pure water? If not possible, what volume should have been mixed
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in order to prepare a mixture of the same strength and of the required volume? Density of ethanol
and water are 789 and 997 kg/m? respectively. The partial molar volumes of ethanol and water
at the desired compositions are: Ethanol = 53.6 x 10~ m¥mol; water = 18 x 107 m*/mol.

Solution  Let us first find out the number of moles of ethanol and water mixed and their mole
fractions in the resultant mixture. '

Moles of ethanol in the solution = (0.03 x 789 x 10%/46 = 514.57 mol.

Moles of water in the solution = (0.07 x 997 x 10°)/18 = 3877.22 mol

Mole fraction of ethanol desired = 514.57/(514.57 + 3877.22) = 0.1172

Mole fraction of water = 1 — 0.1172 = 0.8828 T '

Actual volume of solution is

514.57 x 53.6 x 107 + 3877.22 x 18 x 10 = (0.02758 + 0.06979) = 0.09737 m?

That is, by mixing 0.03 m? alcohol with 0.07 m? watér, we would get only 0.09737 m? of solution.
To prepare 0.1 m? of solution the volumes to be mixed are:

Ethanol = (0.03/0.09737) x 0.1 = 0.03081 m’ and Water = (0.07/0.09737) x 0.1 = 0.07189 m*

EXAMPLE 1.3 A 30 per cent by mole methanol-water solution is to be prepared. How many
cubic metres of pure methanol (molar volume, 40.727 X 10 m3mol) and pure water (molar
volume, 18.068 x 10" m*/mol) are to be mixed to prepare 2 m? of the desired solution? The partial
molar volumes of methanol and water in a 30 per cent solution are 38.632 X 10° m*mol and 17.765

x 1078 m*mol, respectively.

Solution Molar volume of the desired solution is
V= x,\_/,-+ xz_\72 = (0.3 x 38.632 x 10° + 0.7 x 17.765 x 10 = 24.0251 x 10 m>3/mol

Therefore, 2 m> of the desired solution contains
| 2/(24.0251 x 1076) = 83.2463 x 10° mol

Number of moles of methanol in 2 m? of solution = 83.2463 x 10° x 0.3 = 24.9739 x 10> mol
Number of moles of water in 2 m’ of solution = 83.2463 x 10° x 0.7 ='58.2724 x 10° mol
Volume of methanol to be taken = 24.9739 x 10% x 40.727 x 10°° m? = 1.0171 m?
Volume of water to be taken = 58.2724 x 10° x 18.068 x 10 m* = 1.0529 m’

EXAMPLE 7.4 Laboratory alcohol containing 96% alcohol and 4% water is to be diluted to a
solution containing 56% alcohol and 44% water. All percentages are on weight basis. The partial

specific yolumes are as follows: In 96% alcohol solution, V, = 0.816 x 10 m%kg, V; = 1.273
x 10~ m¥/kg. In 56% alcohol solution, Vj, = 0.953 X 102 m¥%kg, V; = 1.243 x 10 m¥kg. The
density ‘of water may be taken as 0.997 x 10° kg/m>.

(a) How much water should be added to 2 x 10~ m’ of the laboratory alcohol?
(b) What is the volume of the dilute alcohol obtained?

Solution Basis: 2 x 10 m? Iaboratory alcohol.
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| kg laboratory alcohol = (0.96 x 1.273 + 0.04 x 0.816) x 107 = 1.255 X 107 m? |
5 % 10~ m* of laboratory alcohol = 2 x 107Y(1.255 % 107*) = 1.594 kg
(a) Let the mass of water added be m kg. Taking an alcohol balance, we get
1.594 x 0.96 = (m + 1.594) 0.56
Thus mass of water added is,

m = (1.594 x 0.96)/0.56 — 1.594 = 1.1386 kg
and volume of water added is

1.1386/(0.997 x 10%) = 1.142 x 102 m’
(b)
Mass of dilute alcohol obtained = 1.594 + 1.1386 = 2.7326 kg

Specific volume of 56% alcohol = (0.56 x 1.243 + 0.44 x 0.953) x 107 = L.115 X 1073 m/kg
Therefore,

Volume of dilute alcohol obtained = 1.115 x 107 x 2.7326 = 3.0468 x 1072 m?
7.1.3 Determination of Partial Molar Properties

Method 1 (Analytical). If the volume of a solution is known as a function of its composition,
the partial molar volume of a constituent may be found by partial differentiation with respect to

the amount of that constituent.
%
Vi=|5-
i P.T.n;

Method 2 (Graphical). Let V', the volume of the solution containing a fixed amount of one of the
constituents (say, n,) is known for several values of the amount of other constituent (say, ;). We
may plot V* against n,. See Fig. 7.2. The slope of the tangent to the curve is (dV ’I&nz)P_rJ,l which,
by definition is Vz, the partial molar volume of component 2. The volume of solution is assumed

P, T constant

I
Slope of tangent = (?;;,V )
P.T.H|

Total solution volume, V'

"

A

ny: moles of second component
Fig. 7.2 Determination of partial molar properties by Method 2.

e I
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sF) !arge that no significant change in composition occurs when n, is changed. This method has
limitation of not yielding values of V; directly. Also, it is not advisable to use this method for
dClCl"m.lnflllO.n of V; when n,is large compared to n,. The method of tangent intercepts 1s free from
such limitations and is therefore preferred for the determination of pa;tial molar propertics.

Metho_d 3_ (The tangent-intercept method). This is a graphical method widely used for the
determination of partial molar properties of both components in a binary solution. The molar
volume V is plotted against mole fraction of one of the components (say. x». the mole fraction of
component 2). To determine the partial molar volumes. draw the tangent to the curve 21 the desir=d
mole fraction. The intercept that this tangent makes with the vertical axis at x; = 1 gives V; aad
the intercept on the vertical axis at x, = 0 (or x, = 1) gives ﬁ In Fig. 7.3. BD = T’; and AC=V,.

Molar volume, V m¥/kmol

x,: mole fraction of 2

Fig. 7.3 The method of tangent-intercepts for the determination of partial mol -

To prove this result, consider a binary solution containing n, moles of component | 20d =,
moles of component 2. Let the total volume be V' and let V be the molar volume. Then

V=nV=(n +ny)V 116
Differentiating Eq. (7.16) with respect to ny, keeping n;, T and P constant
BV') —rrd av
(a'l T.P.n, &‘l - G.ITJ

The mole fraction x; is given by

x:=_-‘_

n o+ n, (i.

Differentiating Eq. (7.18) with respect 10 n, keeping n, constant, we get
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which can be rearranged as

n+m '
=- 7.19
dn, dx, (.19
Equation (7.19) can be substituted into Eq. (7.17) to yield the following:
— av
Vi=V-x,— : 7.20
1 2 o, | (7.20)
Similarly it can be shown that
= av
Vo=V —x;—
2 Xy % (7.21)

1

Since, for a binary solution, x; = 1 — x, and dxy = —dx,, Eq. (7.21) can be put in another form:

— av
V,=V+(-x,) ) (7.22)

In Fig. 7.3, the length BD = BE + ED, where BE is the slope of the tangent at P times the length
PE. That is,

BE = (1 — xy) (dV/ox,)
and ED = V, the molar volume at the mole fraction x. Thus
BD =V + (1 - x;) (dV/oxy)
which, by Eq. (7.22) is Vz: Similarly, the length
AC=FC-FA=V -x, (Vid)) = V|

The above methods are applicaiile for the determination of various other partial molar properties
also. Of the various mixture properties, only the volume can be determined absolutely. For the
determination of other properties like (_3,-,171,-, etc., it becomes necessary to work with property
changes on mixing (discussed later in this chapter) like AG, AH, etc. The method of tangent
intercept for the determination of, say 61 and (';_2, requires the plot of AG per mole versus x,.

EXAMPLE 7.5 At 300 K and 1 bar, the volumetric data for a liquid mixture of benzene and
cyclohexane are represented by V = 109.4 x 10 — 16.8 x 10~5x — 2.64 x 1075x%, where x is the

mole fraction of bgnzene and V has the units of m*mol. Find expressions for the partial molar
volumes of benzene and cyclohexane.

Solution The molar volume of the solution as a function of composition is given:

V=1094 x 10° - 16.8 x 107, — 2.64 x 10522 (7.23)
where x; = mole fraction of component 1 (in this case, benzene). By Eq. (7.20),
Vi=v-g, (7.24)

2
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— av 7.25)
V=V+(1-x)— (.
1 ( ]) axl
Differentiating Eq. (7.23), we get
oV
—=-16.8x 10 — 528 x 107%x,
ox,

Substitute this in Eq. (7.25), we get

Vi =109.4 x 105 - 16.8 x 10, — 2.64 x 10°x + (1 — x;) (- 16.8 x 1076 — 5.28 x 107°xy)

=92.6 x 10° — 5.28 x 10x, + 2.64 x 10-5x?
Using Eq. (7.21), Vz can be found out.

V=V —x—
1

V, = 109.4 x 10 - 16.8 x 10%x, - 2.64 x 105x — x,(- 16.8 x 10 — 5.28 x 10-x,)

= 109.4 x 107 + 2.64 x 10x]
The partial molar volume of benzene:
V, =92.6 x 107 - 5.28 x 10, + 2.64 x 10°x?

The partial molar volume of cyclohexane:

V, = 109.4 x 1078 + 2.64 x 106x?

EXAMPLE 7.6 The enthalpy at 300 K and 1 bar of a binary liquid mixture is
H = 400xl + 6me + x,x2(40x| + 2012)
where H is in J/mol. For the stated temperature and pressure, determine:

(a) Expressions for H, and 172 in terms of x,
(b) Numerical values for the pure component enthalpies H, and H,
(c) Numerical values for the partial molar enthalpies at infinite dilution H? and Hy.

Solution The molar enthalpy of the solution as function of concentrations of the constituents
is given:
H = 400x, + 600x; + x1x,(40x; + 20x;) (7.26)

(a) Differentiating Eq. (7.26), we get

oH _ * 40 +20 %2 ok
79;._—40(.”600&.”"2( ™Y AR A Kb wl g
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Since x; = | - xy, dx; = - dx, and dvy/dx, = 1, the above equation simplifies to

2 2
L 400 - 600 + x,x,(40 — 20) + (40x, + 20x,) (x, — x;) = — 200 + 40x;x; = 40x7 + 20x;

ar,

= oH
Hy=Ho+ (- x) <=

1

‘ ’ 2
= 400x) + 600x; + x;x2(40x, + 20x,) + (I — x;) (— 200 + 40x.x; — 40)(,2 + 20x3)

=420 - 60x; + 40 x; (7.27)
’72 =H - x 2}1
ox

= 400x; + 600x; + x;.x)(40x, + 20x,) — x;(~ 200 + 40x,x, — 40x% + 20x3)

=600 + 40x] (7.28)

(b) Hy = H, when x, = 1. Using Eq. (7.27), we get,
H,'= 420 - 60 + 40 = 400 J/mol
H, = H, when x, = 1 or x; = 0. Using Eq. (7.28), H, = 600 J/mol

[Alternatively, H, = H, when x; = 1, x, = 0. H, = 400 J/mol, using Eq. (7.25) H, = H, when
x1=0, x =1 =600 J/mol using Eq. (7.23).] '

(c) ﬁf":i_l, as x; > 0and H, = H, as x, = 0(rx - 1)
Put x, = 0 in Eq. (7.27). H = 420 J/mol
Put x; =1 in Eq. (7.28). H;" = 640 J/mol

EXAMPLE 7.7 The volume of an aqueous solution of NaCl at 298 K was measured for a series
of molalities (moles of solute per kg of solvent) and it was found that the volume varies with
molality according to the following expression.

V=1.003x 102 + 0.1662 x 107%m + 0.177 x 105m'3 + 0.12 X 10752

where m is the molality and V is in m’. Calculate the partial molar volumes of the components
at m = 0.1 mol/kg.

Solution The partial molar volume of NaCl:

v,=(‘7_" =(£]
an) — \om Ay

V'=1.003 x 107 + 0.1662 X 10~m + 0.177 x 10~m"5 + 0.12 x 1052 (7.29)
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Differentiating Eq. (7.29) with reference to m,

W =0.1662 x 10 + 0.177 x 1.5 x 1075m%3 + 0.12 x 2 X 107%m
= 0.1662 x 10 + 0.2655 x 10-5m®5 + 0.24 x 10-m

Substituting m = 0.1, this equation gives V| = 0.1748 x 10* m*/mol. Substituting m = 0.1 in
Eq. (7.29), V = 1.0047 x 10733 But,

1000 "72

V=nV +n; = mV +
Rearranging this €quation and substituting the values, we find

V2 = (1.0047 x 107 _ 01 x 0.1748 x 10™) x

il 18.05 x 10 m*/mol

1000
Partial molar volume of water = 18.05 x 10 m?/mol
Partial molar volume of NaCl = 17.48 x 10 m3/mol

/" 7.2 CHEMICAL POTENTIAL

The chemical potential, denoted by the symbol g,

used as an index of chemical equilibrium in the same manner as temperature and pressure are used
as indices of thermal and mechanical equilibrium. The chemical potential #; of component i in

a solution is the same as its partial molar free energy in the solution, G;. That is, chemical potential
. of a component i in a solution can be defined as

— [oG* % i
M =G; = (——J (7.30)
: (}ﬂ.‘ T,P,nj

The total free energy G’ of a solution is a function of pressure, temperature and number of moles
of various components.

is a widely used thermodynamic property. It is

G =f(P,T,n,n,, ... n,...) (7.31)

The total differential dG' is

ac' =] ap+ [25) ar. 96" dn, (7.32)
oP . or PN on, PT.n

Then using Eq. (7.30),

t t
dG' = (iG_J dP + [%] dT + X, dn, (7.33)
P ) PN '
We h hown that for a closed system, when there is no change in the amount of various
e have show

constituents,
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dG=VdP-S5dr - (6.18)
Considering the total properties of the system, .

 dG'=V'dP - §'dT

ac;l' a(;r | ‘ '
e - — Sr’ _— = ‘/I
& 5,

Equation (7.33) can be written as

from which, it follows that

dG' = V' dP — §' dT + X ; dn; : (7.35)

This is the fundamental relationship for changes in the free energy of a solution. At constant
temperature and pressure, the change in the free energy is due entirely to the changes in the number
of moles and is given by ' '

dG}p =, dn, . (7.36)

- By reasoning analogous to that used in the derivation of Eq. (7.12), we have, at constant temperature

and pressure,
. G'= X um;
For a binary solution, thé molar free energy of the solution is
G =xp + xofty

The chemical potential of a component is thus seen to be the contribution of that component
to the Gibbs free energy of the solution. The chemical potential is an important property of
solution extensively used in the study of phase and chemical equilibria.

/ 7.2.1 Effect of Temperature and Pressure on Chemical Potential

Effect of temperature. Consider Eqgs. (7.30) and (7.34). Differentiate Eq. (7.30) with respect to
temperature. Then

] PG - -
[%] = o (7.37)
PN ] _
Differentiating Eq. (7.34) with respect to n;, we get
! t 2~1 ‘
. [ai] - a‘i(;_ | (7.38)
Equations (7.37) and (7.38) imply that
3#.—] [as‘] e | -
il S~ b == (7.39)
[aj‘ PN a"’l P'T'"j " . o .
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where S; is the partial molar entropy of the component i in the solution. This result, though gives

the variation of chemjca] potential with temperature, can be put in a more useful form [compare
with Eq. (6.73)] as follows: Since

G=H-TS, G=H-15, u=H-T5
Wwe can write

4 g _M-H - (7.40)
] T .
We know that ;

W) _ TEWIIT) -,
T |, T?

Substituting Egs. (7.39) and (7.40) into the above equation, we get,

|ewin| _ H
or |,y T?

(7.41)
Equation (7.41) predicts the effect of temperature on chemical potential.
Effect of pressure. Equations (7.30) and
that predict the effect of pressure

(7.34) are further differentiated to develop equations
pressure, we obtain

on chemical potential. Differentiating Eq. (7.30) with respect to

; A (742
Differentiating Eq. (7.34) with respect to n,,
3G [av'] v s
on, oP on, - A
Compare Eq. (7.42) with Eq. (7.43)7
| J u.] —_
Zhi =V
: 7.44
[aP TN , _ S (7.44)
The rate of change of chemical potential with pressure is thus equal to the partial molar- volume
of the constituent. A
EXAMPLE 7.8 Prove the alternative definition of chemical potential that y; = (8Ulé?ni)3_wn_.

i
Sol t n The internal energy of a system may be expressed as a function of thermodynamic
tat . l:iur,noles of the components like the Gibb’s free energy. For the present purpose, it is
state and . _ :
convenient to express It as
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U =f(Srs ny ny, ny, ..., 0 .. ) .

which gives
ty t !
dU' = {au} ) ds’ + (@TJ dv' + z(‘;iJ dn, (743)
as M) Ny ) yn
Since dU = T'dS - P dV for a closed system,
au'] (au')
— =T, |—| =-P (7.46)
(33‘ V,N v’ SN

Combining these with Eq. (7.45)
! t ! an
dU' =TdS - PdV' + | — dn; (7.47)
S,V.n

But, we know that
G=H-TS=U+PV-TS
so that
dG=dU +PdV+VdP-TdS -SdT

The change in the total free energy at constant temperature and pressure is therefore,
dGrp =dU' + P dV' - T dS' (7.48)

Combining Egs. (7.47) and (7.48)

oU'
dGT p= Z( ) dn,
on; - (7.49)

Compare Eq. (7.49) with Eq. (7.36). We now have

4
Ty dn =% (aiJ dn;
anf S.Vonj

Since dn,, dn,, etc., are independent of one another, it follows that

u = (LU'J '. (150)
ani SVinjs;

Equation (7.50) is an alternative definition of chemical potential. But it should be understood that
(AU'dns,v,n,,, is not partial molar internal energy, for it refers to constant entropy and volume

-and not to constant temperature and pressure. Partial molar internal energy is not equal to chemical

potential.

Scanned with CamScanner



Thermodynamic Properties of Pure Fluids 225

yo [THI (6.114)

[P, H]
Using Eq. (6.87),

[H, T} =T1S, T] + V[P, T}

(H, P] =T1S, P] + V[P, P} =TS, P]
Substituting these in Eq. (6.114), we get

- [H,T] _ T[S, T]1+ V[P, T] (6.115)
(H, P] T[S, P]

Using Egs. (6.90) and (6.91), Eq. (6.115) becomes

u

_TIV,P1+ VIP,T] _ T@V/dD)p -V
CplT,P) C, (6.116)

Equation (6.116) may be rearranged as

Cp = T(%) -V (6.70)
P

6.6 FUGACITY

The concept of fugacity was introduced by G.N. Lewis (1901) and is widely used in solution
thermodynamics to represent the behaviour of real gases. The name fugacity is derived from the
Latin for ‘fleetness’ or the ‘escaping tendency’. It has been used extensively in the study of phase
and chemical reaction equilibria involving gases at high pressures. Though the ‘fugacity’ is
mainly applied to mixtures, the present discussion is limited to pure gases.

For an infinitesimal reversible change occurring in the system under isothermal conditions,
Eq. (6.18) reduces to

dG =V dP
For one mole of an ideal gas V in the above equation may be replaced by RT/P, so that

dP
4G = RT - = RT d{in P) (6.117)

Equation (6.117) is a licable only to ideal gases. If, however, we represent the influence of
pressure on Gibbs free energy of real gases by a similar relationship, then the true pressure in the
above equation should be replaced by an ‘effective’ pressure, which we call fugacity f of the gas.

The following equation, thus, provides e partal definition ol fugacity.

dG = RT d(In f) (6.118)

Equation (6.118) is satisfied by all gases whether ideal or real. Integration of this equation gives
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G=RTInf+C (6.119)

where C is a constant of integration that depends upon the temperature and nature of the gas.

Fugacity has the same dimension as pressure, usually atmosphere or bar.

6.6.1 Standard State for Fugacity

Consider the molar free energies of a gas in two states both at the same temperature. Let G, and
G, be the free energies and f; and f, be the corresponding fugacities In these states. By Eq. (6.119),
the change in free energy is

AG=G,- G, =RTlhL (6.120)
1

The free energy change can be experimentally measured and by the above equation the measured
free energy change gives the ratio of fugacities f,/f;. The fugacity in any state can be evaluated
if the fugacity is assigned a specific value in a particular reference state.

For an ideal gas integration of Eq. (6.117) gives the free energy change as

P
AG:GZ—GI=RT1nF2 (6.121)
1

Whereas Eq. (6.121) is applicable only to ideal gases, Eq. (6.120) is valid for all fluids, ideal or
real. It follows that in the case of ideal gases, folfy = P,/P,, or fugacity is directly proportional
to pressure. The proportionality constant is chosen to be unity for convenience. That is, fiP = |

or f = P, for ideal gases. The fugacity is always equal to the pressure for an ideal gas. However,
for real gases, fugacity and pressure are not proportional to one another, and f/P is not constant.

As the pressure of the gas is reduced, the behaviour of the real gas approaches that of an ideal
gas. That is, at very low pressures, the fugacity of a real gas should be the same as its pressure.

“So the > gas at a very low pressure £ Is chosen as the reference state and it is postulated that the

ratio of fugacity to pressure at this state 1s unity. Thus the déanition of fugacity is completed
by stating that NS Nl M

S f
ill-inOF_I or F-—)l asP—>0 (6.122)

Thus, the standard state of a real gas is a hypothetical state in which the gas is at a pressure
P° where it behaves perfectly. By this choice, the standard state has the simple propertics of an
< ideal gas. If the standard state were chosen as the one for which fis equal to say, | bar, the standard
state of different gases would have different and complex properties. If the standard state chosen
were the gas at zero pressure, the free energy would have become — oo gy the standard state. The
choice of the hypothetical standard state standardises the interaction between the particles by
setting them to zero. Since all intermolecular forces are absent in the standarg state chosen, the
differences in the standard free energies of different gases arise solely from the internal structure
and properties of the molecules, and_ not from the way they interact with each other,

Equation (6.122), which sets the lugucil'y of the real gas equal 10 its pressure at low pressures,
permits the evaluation of absolute values for fugacities at various pressures, It is this property
that makes fugacity a widely accepted thermodynamic property in practical calculations.
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6.6.2 Fugacity Coefficient

The ratio of fugacity to pressure is referred to as fugacity coefficient and is denoted by ¢. It is
dimensionless and depends on nature of the gas, the pressure, and the temperature. Integrating
Eq. (6.118) between pressures P and PO,

G-G'=RTIn L (6.123)
£
Since f= P% and f = ¢P, we can write the above equation as

P
G=G°+RTlnF)-+RTln¢ (6.124)

For ideal gases, by Eq. (6.120), G = G® + RT In P/P°. Combining this result with Eq. (6.124) we

see that the freg: energy pf a real gas = free energy of an ideal gas + RT In ¢. The quantity RT In ¢,
therefore, expresses the entire effect of intermolecular interaction.
Since all gases becomes ideal as pressure approaches zero, we can say that

f>P a P50
¢—>1 as P20

6.6.3 Effect of Temperature and Pressure on Fugacity

In Eq. (6.123), G° and f° refer to the molar free energy and fugacity respectively at a very low
pressure where the gas behaves ideally. This equation can be rearranged as

; 0
Rln—%=£—c—
: T T

Differentiate this with respect to temperature at constant pressure.

. (Blnf) [amﬂ) ]_ (B(G/T)J ! [a(c;"m)
ar Jp a ), ar- J, a ),
Substituting the Gibbs—Helmholtz equation, Eq. (6.73), into the above result and observing that
fOis equal to the pressure and is independent of temperature, we get

dinf) _H'-H
T 5 - RTZ (6l25)

H is the molar enthalpy of the gas at the given pressure and H° is the enthalpy at a very low
Pressure. H® — H can be treated as the lncrg_i_l._qg_gf_t_:l_ﬂhnlp)_r_;lccumpunying the expansion of the

as o pressure at constant temperature. Equation (6,125 indicates the
E_H\f_r_@ pressure P to zero pressurc at 5 - 1] ( Yindicates the e?fect

of temperature on the fugacity. ot cmitd o
The effect of pressure on fugacity 15 evident from the defining equation for fugacity [Eq. (6.118)).
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dG = V dP = RT d(In f) (6.118)

which on rearrangement gives:

(‘”“f) = (6.126)
o ). RT

6.6.4 Determination of Fugacity of Pure Gases

Using compressibility factor, Z. The compressibility factor Z of a real gas is the ratio of its
volume to the volume of an ideal gas at the same temperature and pressure.

PV v Z

Z= or —=—
RT RT P

Introducing this in Eq. (6.126) and rearranging, the following result is obtained.

% Z
d(Inf) = — dP = = dP
N =27 P

The above result, as such, is of not much use for the determination of fugacity, because as P — 0,
Z/P — . This difficulty can be overcome if we add and subtract dP/P on the right-hand side of
the preceding equation.

af R AR i Ll
dinf)="7-+@Z-D-p-=dInP)+ @ - D=

L\oz_pdt
d[ln P)_(z D=

When this is integrated between 0 and P we get

f_(z-1
in 7;‘,[, (“_p )‘”’ (6.127)

As (Z - 1)/P is finite as pressure approaches zero, there is no difficulty in using Eq. (6.127) for
the evaluation of f. The values of the compressibility factor, Z, from zero pressure to pressure P
are calculated from the volume of the gas at the corresponding pressures,
Eq. (6.127) is found out graphically by plotting (Z - 1)/P against P,

The integral in

EXAMPLE 6.21 Derive an expression for the fugacity coefficient of a gas obeying the equation

of state P(V - b) = RT and estimate the fugacity of ammonia at 10 bar and 298 K given that
b = 3.707 x 107> m*mol. :

Solution Since, P(V = b) = RT, we have,

PV = RT + Pb, Z=—r—=14+—

PV Pb
RT RT
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EXAMPLE 7.9 Show that for an ide

al gas,

[ﬁ - RT
o) P
Solution For a mixture of ideal gases,

RT
V’: nmn+ny+...) —
(ny + ny ) b

where 1y, n,, etc., are the moles of various constituents. Differentiating this with respect to n;, we get

4 —
(%_J _yo AT
lj P.T.njﬂ I::

[ﬁé‘_f) _y=RT
T ]

By Eq. (7.44),

_” 7.3 FUGACITY IN SOLUTIONS

The concept of fugacity was discussed in Chapter 6 with reference to pure substances. It was
pointed out that fugacity is a useful concept in dealing with mixtures. For pure fluids, the
definition of fugacity is provided by Eq. (6.118) and (6.122):

dG = RT d(In f)
lim i=l
PO P

The fugacity of a component i in a solution (gaseous, liquid or solid) is defined analogously by -

dy; = RT d(in f;) (7.51)
.
e (1.52)

Here y; is the chemical potential, Ji the fug‘;ncily :md. Pi is the partial pressure of component i in
the solution. For an ideal gas mixture, the luguculy ol a component is equal to its partial pressure.
All gaseous mixtures behave ideally on 'uppl.'nnulu.ng zero pressure. The partial pressure is defined
as product of total pressurc and mole fraction of i(y;) in the mixture.

B=nP (7.53)
7.3.1 Fugacity in Gaseous Solutions

The fugacity of a component i in a gaseous solution is given by Eq. (7.51). Equation (7.44) gives
the effect of pressure on chemical potential.
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dG = VdP - SdT
(&

where V, is the partial molar volume of the component in the solution. Rearranging this equation

dy; = V..dp 7 (7.54)
Compare Eq. (7.54) with Eq. (7.51). We get
RT d(Inf)=V,dP (7.55)

-V
d(nf)=—dP
(nf) -

Subtracting d(In p,), where p; is the partial pressure of component i in the gas mixture, from both
sides,

£)_ 1 = -
d[ln E] =27 V4P~ RT d (np)] (7.56)

Since p; = y;P, where y; is the mole fraction,
d(Inp,) =d(n P) + d(In ¥)

At constant composition, d(In y;) = 0, so that the above equation reduces to

d(np) = d(lnP):i;:

Substituting this in Eq. (7.56) we obtain,

d(ln-j:r'- =_‘_(V, LY [
5 )" RT P

As P — 0, f;=p, and the above equation can be readily integrated to give

- ~ Py
(ln {L)=|n ¢‘=_.|_ [V‘_EPE),W
0

P RT (7.57
where ¢, denotes the fugacity coefficient of a component in solution.
o=dl o
‘ P, ) P (7.58)

For a mixture of ideal gases, we have the following simple equation of state:

PV’=(n,+u2+nJ+---)RT

1
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(o
an;
T. P.nj

Substituting this into Eq. (7.57), it follows that

which states that the fugacity of a component in a mixture of ideal gases is equal to the partial
pressure of that component in the mixture. However, this is not true for real cases. Equation (7.57)
provides the means for computing fugacities in the real gascous solution. But this requires the
evaluation of V; as a function of pressure, which in turn requires the knowledge of how the solution
volume varies with composition at each pressure. These types of data are rarely available, and
hence rigorous calculation of fugacities in gaseous mixlures using Eq. (7.57) is rarely done.

7.3.2 Lewis—-Randall Rule

As the calculation of fugacity in a mixture of gases through the general equation [Eq. (7.57)] is
very difficult, we devise a model for mixtures known as the ideal solution model the fugacity of
which can be easily evaluated. The fugacity in actual solution is then determined by taking into
account the deviation of the actual solution from this ideal model behaviour. As an ideal gascous
solution we can consider a gas mixture formed without any volume change on mixing the

components. A gas mixture that follows the Amagat’s law js an ideal gaseous solution. For such
solutions, the volume of the mixture is a linear function of the mole numbers at a fixed temperature

and pressure. That is,
Vi =X nV; (Amagat's Law) (7.60)

where V. is the molar volume of pure i at the same temperature and pressure. For such ideal
i .

solutions,
— (V'
V, = [a—-] =V (7.61)
" T.I’.nj

Note that the right-hand side of Eq. (7.57) reduces to the same result as that given by Eq. (6.128)
where the residual volume for the pure component is given by @ =V, = RT/P. That is, for pure

components at a temperature 7 and pressure [,
Lo (" (y-K0)gp
% -l;!; = 7\;7:- (0 Vj P dr (7.62)

i > j I IIL same I |“1I1"ll'|llur‘| an i i .

Lo (V_Bl 3
g [V o | (7.63)
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Subtracting Eq. (7.62) from Eq. (7.63),

7 P
It L J' WV - V) dP (7.64)
fie RT Jo
Since Pi =P, we can simplify the above equation to the following form:
7 P
1ni=LJ V- V) dP
Y fi RT Jo

On substitution of Eq. (7.61), in the preceding equation, we get,

In /. 0 or |f=yf| (Lewis-Randallrule) (765

Yi f;

which is commonly known as Lewis—Randall rule or Lewis fugacity rule. It states that fugacity
of a component in an ideal solution is directly proportional to the mole fraction of the component
in the solution. In Eq. (7.65), f is the fugacity of the species i in an ideal gaseous solution, and
f; 1s the fugacity of pure i evaluated at the temperature and pressure of the mixture. Thus, we have
now, _,-= v.f; for ideal gaseous solution |and, ﬁ =p;, =y;P for ideal (perfect) gases.

For a gas mixture to behave as an ideal solution, it requires only that the molar volume in
the pure state and the partial molar volume in the solution be the same, or V; = V,. For the mixture
to be an ideal gas it requires that V,-: V. = RT/P, which means that the molar volumes of all the
components are the same whether in the mixture or in the pure state. For ideal solutions, the
volumes of components may differ from one another. In short, the concept of an ideal gaseous
solution is less restrictive than that of a mixture of ideal gases.

The Lewis-Randall rule is a simple equation and is therefore widely used for evaluating
fugacities of components in gas mixtures. It allows the fugacity of a component in the mixture
to be calculated without any information about the solution except its composition. However, it
is not reliable because of the severe simplification inherent in Amagat’s law of additive volumes.
But at high pressures it is often a very good assumption, because, at liquid like densities. fluids
tend to mix with little or no change in volume (J.M. Prausnitz et al., 1986). Lewis fugacity rule
is valid for systems where the intermolecular forces in the mixture are similar to those in the pure
state. Thus, it can be said that this rule is valid -

1. At low pressures when the gas phase behaves ideally

2. At any pressure if the component is present in excess

3. If the physical properties of the components are nearly the same
4

. At moderate and high pressures, the Lewis-Randall rule will give incorrect results if the

molecular properties of the’ components are widely different and the component under
consideration is not present in excess. '

7.3.3 Fugacities in Liquid Solutions

Calculation of fugacity of a component in a liquid solution using Eq. (7.57) is not practical
because the volumetric data at constant temperature and composition are rarely available. These
data are required for the integration over the entire range of pressures from the ideal gas state to
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Properties of Solutions 203

o~ pressure of the solution including the two-phase region. For calculation of fugacities in liquid
solutions, another approach is used. We define an ideal solution whose fugacity can be easily
calcu-latcd knowing its composition and measure the departure from ideal behaviour for the real
solution. A quantitative measure of the deviation from ideality is provided by the function known
as the activity coefficient which will be discussed in Section 7.6.

7.3.4 ldeal Solutions and Raoult’s Law
A solution in which the parti ; same as their molar
volumes in_the pure state is called an_ideal solution. There is no volume change when the
components are mixed together to form an ideal solution. That is, for an ideal solution V = PP AT
= X x;V,, where V is the molar volume of the solution, V; and V, are the molar volume and partial
molar volume respectively of the component i, and x; is the mole fraction of component i in the
solution. If a mixture of two liquids is to behave ideally, theoretical considerations reveal that the
two_types of molecules must be similar. The environment of any molecule and hence the force
acting on it is then not appreciably different from that existing in the pure state. We have shown
that for ideal gaseous solutions, the Lewis-Randall rule is applicable which states that fugacity
of each constituent is directly proportional to the number of moles of the constituent in the
solution. The Lewis—Randall rule is applicable to ideal liquid solutions also. It can be written as

}} =xf; (7.66)

where f is the fugacity of component i in the solution, f; is the fugacity of i in the pure state,
and x; is the mole fraction of component i in the solution. _

While the ideal solution model is adequate for many gas mixtures for reasonable temperature
and pressure, the same is not true for the case of liquid solutions. Very few solutions follow
Eq. (7.66) over the entire composition range. Ideal liquid solution behaviour is often approximated
by solutions comprised of molecules not too different in size and chemical nature. Thus a mixture
of isomers (e.g. ortho-, meta- and para-xylene), adjacent members of homologous series of organic
compounds (e.g. n-hexane and n-heptane, ethanol and propanol, benzene and toluene, ethyl
bromide and ethyl iodide) etc., are expected to form ideal solutions.

Raoult’s Law. The criterion of phase equilibria permit us to replace the liquid phase fugacities
J-'.- and f; with fugacities in the gas phase with which the liquid is in equilibrium. Thus, e =fj"
under equilibrium. Here superscripts V and L refer to the vapour phase and the liquid phase

respectively. Thus, fugacity f; in Eq. (7.66) is equal to the fugacity of constituent i in the vapour
phase. If the vapour phase is assumed to be ideal gas, which is true il the pressure is not too high
the vapour ph&SCﬂ%ﬂCily fr‘v is the same as partial pressure Pi of component i in the vapour. If
the liquid phase is pure i, the fugacity of pure i in the vapour phase can be replaced with the
vapour pressure P,-S . Under these conditions the Lewis-Randall rule, Eq. (7.66), becomes

p=xP  (Raoult's Law) (7.67)

This expression is known as Raoult’s Law. This is a simplilied form of the Lewis-Randall rule.

Whereas the Lewis-Randall rule is obeyed by all ideal solutions, the Raoult's law is applicable
to ideal solutions if the vapour phasc with- which it is in equilibrium is an ideal gas.
Raoult's law provides a very simplc €Xpression for calculating the fugacity of a component

in the liquid mixture which 1s the same as the partial pressure of the component in the vapour.
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It says that the partial pressure is directly proportional to the mole fraction in the liquid solution.
Ideal solutions which conform to Raoult's law over the entire range of conccnlrangns are rare. A
frequently cited example for ideal solutions is mixtures of optical isomers of organic compounds.
Raoult’s law applies as fair approximation to mixtures of hydrocarbons showing a reasonable
similarity in molecular structure such as are encountered in petroleum industry. In most other cases
Raoult’s law applies only over a limited concentration range.

7.4 HENRY’S LAW AND DILUTE SOLUTIONS

Solutions conforming to Raoult’s law over the entire concentration range are rare as pointed out
earlier. A solution, any of whose components does not obey Raoult’s law is designated as non-ideal
solution. Even non-ideal solutions exhibit a common form of ideal behaviour over a limited
concentration range where the fugacity f; (or, the partial pressure 7) is directly proportional to
the concentration in the liquid. This behaviour is exhibited by the constituent as its mole fraction
approaches zero, and is generalised by Henry's law.

f = xK; (7.68)
-ﬁ,- = x;K; : (7.69)

Often, the solute portion of the non-ideal liquid solution can be assumed to follow Henry’s law.
Pi 1s the partial pressure of the solute over the solution, x; is its mole fraction in the solution and
K; is a proportionality constant known as Henry’s law constant. K; may be greater or less than B,
the vapour pressure of the solute at the temperature and total pressure in question. When X; and
P’ are equal, Henry's law and Raoult’s law are identical. Henry's law may be thought of as a
general rule of which Raoult’s law is a special case. Henry’s law is obeyed in all solut?ons by the
solute at extremely low concentrations. Essentially all liquids will obey Henry’s law close to mole
fraction zero, but many will deviate from the law above 0.01-0.02 mole fraction. And almost all
liquids deviate above 0.1 mole fraction. But in some exceptional cases, Henry’s law is found to
be obeyed quite well up to x; = 0.5.

For ideal solutions, the partial fugacity (or partial pressure) of a Component is proportional
to its mole fraction. For a real solution it has been found experimentally that as the mole fraction
of the component approaches unity, its fugacity approximates to the value for an ideal solution,
though a_l lower mole frqctions, the behaviour departs markedly from ideg] behaviour )

In Fig. 7:4, the fugacity cu::vc hccnn?cs nsympt.nlic to the stzaight line showing ideal behavicur
as mole fraction approaches unity. In a dilute solution, the component present in ls
designated as solvent, obeys Raoult’s law even though it may depart from ide
in a more concentrated solution. As the mole fraction of the solute—(he
smaller proportions—approaches zcro, it will conform to the ideal be
law. Thus, we can gencralise by saying that the solute in a dilute
the solvent obeys Raoult's law. It can bhe shown th
solvent obeys Raoult’s law, the solute obeys |

arger proportions
al solution behaviour
component present in
haviour predicted by Henry's
solution obevs Henrv's law and
at over the range of compositions where the
nry's law (see Example 7.15),

7.4.1 Ideal Behaviour of Real Solutions

The ideal behaviour exhibited by non-idea) solutions can be

i summarised by the following
mathematical slatements.
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or p;
%
N\

S

e.“d
Real solution W
behaviour\/xZ:

fi

Fig. 7.4 Fugacity (partial pressure) versus concentration of real solutions.

lim -fL =f; [Lewis—Randall rule] (7.70)

=l oy

lim i =K, [Henry’s law] (7.71)

7.4.2 Henry’s Law and Gas Solubility

Since the solubility of the gases in liquids is usually very low, the mole fraction of a gas in a
saturated liquid solution is very small. The solute gas obeys Henry's law and therefore its flugac%t_v
(or the partial pressure) would be directly proportional to its mole fraction, the proportionality
constant being the Henry’s law constant [Eq. (7.69)]. In other words, the mole fraction or the
solubility of the gas in the liquid is proportional to the partial pressure of the gas over the liqud

as given by

n=L (7.72)

where K; is the Henry’s law constant.
EXAMPLE 7.10  The Henry’s law constant for oxygen in water at 298 K is 4.4 x 10* bar. Estimate
the solubility of oxygen in water at 298 K for a partial pressure ol oxygen at 0.25 bar.
Solution Equation (7.72) gives the solubility of a gas in liquid in terms ot its mole lraction.
Substituting the values K; = 4.4 X 10* bar, and 7 = 0.25 bar in Eq. (7.72) we get ;= 0.0568 X
10~*. For very dilute solutions, we can wrile
Moles of oxygen Moles of oxygen
X, = . - = -
02 ™ Moles ol oxygen + moles ol water Moles ol water

e
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Therefore, the solubility of oxygen is 0.0568 x 10~ moles per mole of water. In mass units, it can
be written as

0.0568 x 10~ x 32 x 1/18 = 0.101 x 10~ kg oxygen per kg water

EXAMPLE 7.11 The partial pressure of acetone (A) and chloroform (B) were measured at 298 K
and are reported below:

Xp 0 0.2 0.4 0.6 0.8 1.0
P4, bar 0.457 0.355 0.243 0.134 0.049 0
Ps, bar 0 0.046 0.108 0.187 0.288 0.386

(@) Confirm that the mixture conforms to Raoult’s law for the component present in excess
and Henry’s law for the minor component,
(b) Determine the Henry’s law constants.

Solution The partial pressures are plotted against mole fraction x, as shown in Fig. 7.5.

Fig. 7.5 Partial pressure versus mole fraction data for Example 7.11,

From the data given, it can be seen (hat l‘,f = 0.457 and P = 0.386 bar. The dotted line
representing the ideal behaviour (Raoult’s law) of component A is drawn by joinin
(x =1, p=0.457) by a straight line, Raoult’s law for component s also drawn,
PA and QB represent the ideal behaviour, The Henry's law line PR is drawn ¢
P4 versus x4 as X, tends o 0 and the line QS is drawn tangential to the p
tends to 1.

g the origin and
The dotted lines
angential to the curve
Pr versus X4 curve as xy,

(a) We see that the partial pressure curve for component A coincides with (he Raoult’s law
line in the region where mole fractjop of tomponent A approaches unity and in this
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Eﬁg!?:g,i:;e \Ssrtiall;{prcslsure of component B coincides with the Henry’s law line. Thus, in

ere Raoult’s law is obeyed b ; i '
©) The spones mrere e yed by A, Henry’s law is obeyed by B, and vice versa.

ope line PR gives K, the Henry's law constant for A. K, = 0.23
bar. Similarly slope of QS is K. Kp =0.217 H:)ar. ” !
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6.6.5 Fugacities of Solids and Liquids

Every solid or liquid has a definite va
some cases. At this pressure, the solid
two phases of a substance are in the
phases should be equal. This follow

pour pressure although it may be immeasurably small, in
(or the liquid) will be in equilibrium with its vapour. When
rmodynamic equilibrium, the molar free energies in both
diseussed i detai] | s fr(?m .the criterion of phase equilibrium, which will be
: sed in detail in Chapter 8. By this criterion the molar free energy of the liquid (or the solid)
n equ;llbrluvm with its vapour is equal to the molar free energy of the vapour. That is, G- = G¥
and G° = G”, where the superscripts L, § and V refer to liquid, solid and gas respectively. Since

the molar free energy is related to the fugacity as G = RT In f+ C, where C is constant that depends
only on temperature, it follows that

fl=fY, FS=4 (6.143)

Equation (6.143) means that the fugacity of solid (or liquid) is equal to the fugacity of the
vapour with which it is in equilibrium, provided that the reference state is taken to be the same
in each case. If the vapour pressure is not very high, the fugacity of the vapour would be equal
to the vapour pressure; hence, the fugacity of a liquid (or a solid) is approximately equal to its
vapour pressure.

If the vapour pressure is very high and the vapour cannot be treated as ideal gas its fugacity
is related to the saturation pressure as in Eq. (6.142)

vps

sat __
f RT

(6.142)

PS is the saturation pressure of the gas and f* is the saturation fugacity. The latter should in turn
be equal to the fugacity of solid or liquid at the desired temperature and the saturation pressure,
by Eq. (6.143). Since, RT d(In f) = V dP and the liquid can be assumed to be incompressible, the
fugacity of the liquid at any other pressure P is readily obtained as

L

where V is the molar volume of the liq}lid.

4
=—= (P-P (6.144)

LE 6.28 Calculate the fugacity of liquid water at 303 K and lO_bar if the saturation
ﬁf;:ﬁpaz 303 K is 4.241 kPa and the specific volume of liquid water at 303 K is 1.004 x 10~ m'/kg.

Solution The molar volume is
V = 1.004 x 1076 x 18 = 18.072 x 10"® m¥mol

Assuming that the vapour behaves as an ideal gas, we have
PS = 4,241 kPa = 0.0424 bar = f*

Using Eq. (6.144),
18072 x 10°°
s

- 3 -3
In o =t 303 (10 - .0424) x 10° = 7.1435 x 10

Therefore, f = 0.0427 bar.
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o 0 bar. Th
EXAMPLE 6.29 Calculate the fugacity of n-butane in the liquid state at 350 I((j E]llﬂ(i“% ata350 Ig
vapour pressure of n-butane at 350 K is 9.35 bar. The molar volume of saturated liq

i is 0.834.
is 0.1072 x 10~ m¥mol. The fugacity coefficient for the saturated vapour at 350 K is ..

_ : fore,
Solution The fugacity of saturated vapour at 350 K = 0.834 x 9.35 = 7.798 bar. Therefore

fugacity of saturated liquid at 350 K = 7.798 bar = f**. Using Eq. (6.144),

=
n f — 0.1072 x 10 (60 — 9.35) x 105 = 0.18659
™ 8.314 x 350

Thus the fugacity of the liquid at 60 bar and 350 K, f = 9.4 bar.

6.7 ACTIVITY

The vapour pressures of relatively non-volatile solids and liquids may be extremely low, so, an
experimental determination of their fugacity is impractical. When dealing with such substances,
it would be convenient to work with another function called activity rather than with fugacity
itself. ‘Activity’ is, in fact, relative fugacity and is defined as the ratio of fugacity to fugacity in
the standard state. It finds wide application in the study of homogeneous chemical reaction
equilibria involving solids and liquids. Activity is denoted by the letter a, where

a=-3 (6.145)

The standard state at which fugacity is f° is chosen arbitrarily, but the temperature in the standard
state is the same as the temperature in the given conditions. For gases, the standard state fugacity
1s chosen by convenience to be unity, and therefore, fugacity and activity are numerically equal.

The change 1n the free energy accompanying the process in which the substance is undergoing
a change of state from the standard state to the given conditions is related to the activity of the
substance as

AG =RT In % =RT Ina (6.146)

Since dG = V dP - § dT, the change in the free energy when the substance is éompressed
isothermally is given by

AG = _[ Vdp (6.147)

Assuming that the substance is incompressible between the standard state pressure P° and the
given pressure P, Eq. (6.147) can be integrated as

AG = V(P - PY (6.148)

The assumption of constant V’is a good approximation and will not introduce much error for
solids and liquids up to very high pressures, provided the temperature is well below the critical . ©
value. Comparison of Eqgs. (6.146) and (6.148) shows that
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4
Ina=—@P-p° 14
RT( ) (6.149)

The concept of -'iCllVity is particularly useful in the study of solutions. The commonly used
standard states and their properties are discussed in detail in Chapter 7.

EXAMPLE 6.30 Determine the activity of solid magnesium (MW = 24.32) at 300 K and 10 bar

if lht‘: reference state is 300 K and 1 bar. The density of magnesium at 300 K is 1.745 x 10° kg/m’
and is assumed constant over this pressure range.

Solution Using Eq. (6.149), we obtain

5
n e 2432x(0-1x10

. - =5029 x 107
1.745 x 10° x 8314 x 300

Therefore, a = 1.00504.

6.7.1 Effect of Pressure and Temperature on Activity

From Eq. (6.146) we see that, _
AG=G-G’=RTIna

0
Rlna=£—§— _ (6.150)
= T
Differentiating with respect to T at constant pressure,
R(alna.) (B(GIT)] [a(c"mJ | ;
- B 151
ar Jp \ ar Jp a |, | (6.151)
Using Gibbs—Helmholtz equation [Eq. (6.73)] in the above equation, we see that
dina) _H°-H
ar ), RT? (6.152)

Equation (6.152) predicts the effect of temperature on activity. Combining Eqgs. (6.146) and

(6.147) we get, for constant temperature,
‘ RTdIna=VdP (6.153)

dlna) V
o ) RT (6.154)

ssure on activity.

Equation (6.154) predicts the effect of pre

6.8 DEPARTURE FUNCTIONS AND GENERALISED CHARTS

The methods for the evaluation of thermodynamic properties from experimental P-V-T data or
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:‘;El?n.. the partial prcss?re of Component B coincides with the Henry’s law line. Thus, in
egion where Raoult’s law is obeyed by A, Henry’s law is obeyed by B, and vice versa.

(b) The sl-op?s of the Henry’s law line PR gives K, the Henry’s law constant for A. K, = 0.23
bar. Similarly slope of QS is Kp. Kz = 0.217 bar.

7.5 ACTIVITY IN SOLUTIONS

T_he activify with reference to pure substance was defined [see Eq. (6.145)] and the concept was
discussed in Chapter 6. The activity of a component in a solution can be defined in a similar way.

It is the ratio of .fugacity of a component in the solution in a given condition to the fugacity of
that component in the standard state. It is denoted by a;.

7 .
%G ==5 7.73
£ (7.73)
Since the fugacities are related to the chemical potential as

p;=RTInf+C, pl=RThhf’+C

it follows that

Apg; =RTIn }f;{- =RT In g (7.74)

Ap; = p; — p? is the increase in the chemical potential of species i when it is brought into solution
from its standard state.

The concept of activity plays an important role in solution thermodynamics because activity
can be related to compositions directly. For example, let the standard state for a substance be the
pure component at the temperature and pressure of the solution. Then the activity of that component
becomes equal to its mole fraction in the case of ideal solutions and is a strong function of mole
fraction in the case of real solutions.

=’=—].L
. £

bz,l\l

For ideal solutions as f} = x, f;, the activity a; = x;. For real solutions, the activity can be shown
to be equal to the product of activity coefficient and mole fraction. The activity coefficient is

discussed later in this chapter. ) . o
The term activity is a ratio without dimensions. It is a widely used function in solution

thermodynamics, particularly in dealing with property changes of mixing. The relationship between
property change of mixing and activity is discussed later in this chapter.

7.5.1 Selection of Standard States

The numerical values of activity depend upon the choice of the standard state, this choice being
based largely on experimental convenience and reproducibility. For all such standard states, the
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- it is not a fixed va
temperature is the same as the temperature of the solution under study and it is n lue.

Following are the commonly accepted standard states:

Gases. Two standard states are common: .
1. The pure component gas in its ideal state at 1 bar. At this state,

expressed in bar. The activity becomes
a = -‘}L =
0

f;

That is, the activity of a component in a mixture of gases is equal to its fugacity,

numerically. If the mixture behaves as an ideal gas at the given conditions the activity

and partial pressure are the same. This standard state is used in the study of chemical
reaction equilibrium.

2. The pure component gas at the pressure of the system. With this choice the activity of
each component in ideal gas solution becomes equal to its mole fraction.

the fugacity is unity if

— |

This standard state becomes hypothetical at temperatures where the total pressure exceeds
the saturation pressure of the component gas in the pure state. Vapour-liquid equilibrium
studies conventionally use this standard state.

Liquids. Two standard states are common for liquids also.

1. The pure component liquid at a pressure of 1 bar. This state is hypothetical if the vapour
pressure of the pure liquid exceeds 1 bar.

2. The pure liquid at the pressure of the system. This state becomes hypothetical at temperatures

?bove the cr.mc.al or s_a!ur?uion temperature of the pure liquid. This standard state is used
in vapour-liquid equilibrium studijes.

Solids. The standard state chosen for solid is usually

the pur i » solid state at
a pressure of 1 bar, pure component in the solid state

7.6 ACTIVITY COEFFICIENTS

We have already seen that the concept of ideal solution enables us to calculate the fugacity of
a component in the l"'l“_‘f] solution from the knowledge of its concentration in the solution and
its fugacity in the pure state. The calculation of fugacity of a component in a real solution should
take into acc_ounl the degree f’f departure from ideal behaviour, Activiry coefficients measure the
caian! m.WhICh the real SOIUUOP departs from ideality. Activity coellicient of the component i in
solution is denoted by  and is defined by (he following rcfationship S

fi=1ixf0 (7.75)

0 . S
where f; is the fugacity in the standard stae, For ideal solutions % = 1, and we have

Scanned with CamScanner



Properties of Solutions 279

fi=xf? (1.76)

which is same as the Lewis-Randall rule [Eq. (7.66)] with the pure liquid at the system pressure
as the standard state.

Two types of ideal behaviour are observed; the first conforms to Lewis-Randall rule (or
Raoult’s law) in which case f;o =;, the fugacity of the pure species at the system pressure and the
second type conforms to an ideal dilute solution behaviour (the Henry’s law), in which case
=K, the Henry’s law constant. Depending upon the standard states on which they are based,

the gctivity coefficients can take different numerical values. For the standard state in the sense of
Lewis-Randall rule or Raoult’s law,

F= 1 @17
_h_a

Ve xf X (7.78)

a = 1 (1.79)

where g; is the activity of i in the solution. Equation (7.77) is, in fact, Lewis fugacity rule modified
by the factor % to correct for deviation from ideality. This equation should reduce to Raoult’s law
as x approaches unity and to Henry’s law as x approaches zero. For this to be possible, y must equal
unity as mole fraction approaches unity (Raoult’s law region) and K//f;, as mole fraction, approaches
zero (Henry’s law region). In terms of partial pressures, Eq. (7.77) may well be written as

pi= Tifois (7.80)

If the hypothetical state, where the pure component fugacity = Henry’s law constant, is chosen
as the standard state, we get,

| fi=7xK, (7.81)
p=vixK (7.82)

Then the activity coefficient approaches unity as x approaches zero. In Eqs. (7.81) and (7.82), y;

is the activity coefficient referred to infinite dilution,
When activity coefficients are defined with reference to an ideal solution in the sense of

Raoult’s law, then for each component i,
=1 as x -1

On the other hand, if activity coefficients are defined with reference to an ideal dilute solution,

then
n—1 as x — 1 (solvent)

ys =1 as x; = 0 (solute)

Activity coefficients with reference 10 ideal dilute solution would be useful when dealing with
liquid mixtures that cannot exist over the entire composition range as happens, for example, in
a liquid mixture containing gaseous solute. If the critical temperature of the solute is lower than
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AN - e relations based
the temperature of the mixture, then a liquid phase cannot exist as x; -*)' 1, agd t:l a hypothetica]
On an ideal mixture in the sense of Raoult’s law can be used only by introducing a hyp

. . i i iminate thj
standard state for component 2. However, relations based on an ideal dilute solution eliminate this
difficulty.

Activity
¥ with x ov
approximate

coefficients are very strong functions of concentration of solution. ';‘he \;Jﬂrlatlonh:)f

er the entire range of composition is usually complex, but can o tend lc: r;ug y

d in binary solutions by the empirical equations such as the one proposed by Porter:
Iny,=bx?, In Yy = bxl2

where b is an empirical constant. These relationships apply best when the components are not tog

dissimilar in structure and polarity.

7.6.1 Effect of Pressure on Activity Coefficients

The effect of pressure on fugacity was derived in Chapter 6 [Eq. (6.126)].

Here f; is the fugacity of pure i and Viis its mol

ar volume. In a similar way it can be shown that,
i, the fugacity of i in solution varies with pr

essure according to

df) V.

oP . " RT (7.83)
Combining Eq. (6.126) with Eq. (7.83), we get

Infif) _Vi-v

According to Eq. (7.77) };/ﬁ = ¥Xi» so that Eq. (7.84) can be written as

dnyx) _V - v
P . T RT : (7.85)

As the mole fraction x; is independent of pressure (d In x/oP) = 0

» and hence

dIn Y| V-V
ar ) RT (7.86)
The molar volumes ¥, and V,
solutions, the effect of pressure
For gaseous mixtures, activity

correspond to the particular phase unde
on activity coefficients is negligible at

o . pressures below atmospheric.
coefficients are nearly unity at red

uced pressureg below 0.8.

7.6.2 Effect of Temperature on Activity Coefficients

The effect of temperature on fugacity of Pure substance was given by Eq. (6.125) as
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(alnf,-J _H)-H,
or ),  RT?

Similarly, for the substance in the solution

onf)  HO-T,
o | =" rp (7.87)
P

Combining the above two equations, and noting that f-Ilf, = ywx;, where x; is independent of
temperature,

dny;) _H -H '
ar ), RT? (7.88)

Equation (7.88) gives the effect of temperature on activity coefficients. The term (17,- - H)) is the
partial heat of mixing of component i from its pure state to the solution of given composition both
in the same state of aggregation and pressure. For gaseous mixtures, this term is neghg:ble at low

pressures. ¢

EXAMPLE 7.12 The partial pressures of acetone (A) and chloroform (B) were measured at 298 K
and are reported below:

Xy 0 0.2 0.4 0.6 0.8 1.0
P4, bar 0 0.049 0.134 0.243 0.355 0.457
Pg, bar 0.386 0.288 0.187 0.108 0.046 0

Calculate the activity and activity coefficient of chloroform in acetone at 298 K,

(a) Based on the standard state as per Lewis—Randall rule
(b) Based on Henry’s law.

Solution The Henry’s law constant was determined in Example 7.11. Kz = 0.217 bar. The
vapour pressure of pure chloroform, P; = 0.386 bar. The activity was defined by Eq. (7.73) and

activity coefficient by Eq. (7.75). Combining these two we get,
a; =YX

Based on the Lewis-Randall rule, the activity,

4= ;)’3. (7.89)
i
Based on the Henry’s law, the activity,
= B
&= (7.90)
ki
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The activity coefficient based on the Lewis—Randall rule is
i_a
Yi=—0_ = (791
x X )
The activity coefficient based on the Henry's law is

The above equations are used to calculate the activity and activity coefficients for different
concentrations. A sample calculation is provided below for the second set where

x4 = 0.2, x5 = 0.8, P4 = 0.049 bar, Pg = 0.288 bar, Kz = 0.217 bar, P; = 0.386 bar

(a) For the standard state referred to the Lewis—Randall rule:

ap =28 20288 _ 475
P 0386

']’B = a—B' = E =0.94
xg 08

(b) For the standard state referred to the Henry’s law:

pg 0288
p=——=——=133
=k, 0217 .
ag 133
B=—=——=1.66
T= s, " 08
The above calculations are repeated for other concentrations and the results are given below:
Xp 0 0.2 04 0.6 0.8 1.0
a 0.12 0.28 0.48 0.75 1.0
7 0 0.21 0.50 0.86 1.33 1.78
y 0.60 0.70 0.80 0.94 1.0
¥’ 1.0 1.05 1.25 1.43 1.66 1.78

EXAMPLE 7.13 The fugacity of component 1 in binary liquid mixture of components 1 and 2
at 298 K and 20 bar is given by '

Ji= 505, - 80 3% + 40 2}
where j—] is in bar and x, is the mole fraction of component 1. Determine:

(a The fugacity f; of pure component 1
(b) The fugacity coefficient ¢
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(c) The Henry’s law constant K,
(d) The activity coefficient ¥;.

Solution (a) When the mole fraction approaches unity, the fugacity of a component in the
solution becomes equal to the fugacity of the pure component. That is,

f, = f, when x; = 1. Therefore, f, = 50 — 80 + 40 = 10 bar

(b)
¢ = f,/P = 1020 = 0.5

(c) By Eq. (7.71), the Henry’s law constant is

K, = lim 2L = lim (50 - 80.x, + 40x) = 50 bar

n=>0x 5 -0
(d

7 50x —80x+40x

= = =5-8x +4x
71 Ilfi 10.\:1 ! !

7.7 GIBBS-DUHEM EQUATIONS

In a mixture, the partial molar properties of the components are related to one another by one of
the most useful equations in thermodynamics, the Gibbs-Duhem equations. It tells us how the
partial molar properties change with compositions at constant temperature and pressure.

We have seen that at constant temperature and pressure, the property M’ of the solution is the
sum of the partial molar properties of the constituents, each weighted according to the number of

moles of the respective constituents.
M'=ZnM, (7.12)
The total derivative dM' gives the change in the property of the solution at constant T and P.
dM' = ZndM, + ZM, dn, (7.93)

where M is the molar value of the property of the solution M'. But, since M = T, P, ny, ny, . . ),
at constant T and P we have Eq. (7.13), which gives

dM' = M, dn, (7.13)
Comparing Eq. (7.93) with Eq. (7.13) we get the important result,
-E"' d‘ﬁT’; =0 (7.94)

This result is the gcncral form of the Gibbs=Duhem equation. If the property under consideration
is the Gibbs free energy of the solution, then the above equation becomes

z n d“l = () (7 95)
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Dividing throughout by n, the total number of moles in the solution, we get
Txpdy=0 (7.96)

Here x; is the mole fraction of component i in the solution and p; is the chemical potential of the
component.

Other forms of Gibbs-Duhem equation. Consider a binary solution made up of components

1 and 2 whose mole fractions in the solution are x, and x, respectively. Equation (7.96) can be
written as

X) dﬂl + Xy dﬂz =0 (7.97)

where u, and p, are the chemical potentials of components 1 and 2 respectively. This can be
rearranged as ‘

xy diy = —x; dil

Dividing by dx; and noting that dx, = —dx, in binary mixtures, the above result gives
W, I,
x —L=x, 12 (7.98)
YAy dy

Introducing the relationship between chemical potential and the fugacity [Eq. (7.51)] into the
above, we get

dln f, dlnf,
Xy ———— = X, ——=
1 o, 2 x,

Since activity 4 =fIf°, fugacities in Eq. (7.99) may be replaced in terms of activity as

(7.99)

3 dn (a, ) — dln (a, £;)
axl $ axZ

Since f;o , the fugacity in the standard state, is independent of the composition of the solution,

aln(foi ) =15

ax;
Thus the Gibbs—Duhem equation in terms of activity is

dina 2In
e _ )
" om oy (7.100)

By Eq. (7.79), a; = ¥x;. Substitute this into E

q.(7.100) and . i
used form of the Gibbs—-Duhem equation, ) and thus the most important and Wi

that involving the activity coefficients, is obtained-
% all;hx. o dln y,x,
% ax,

dlny dln x
il 4 § ——
1 on T ag TR

diny, +x dln x,
dx, 3 dx,
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The second terms on both sides of the above equation vanish, as they are equal to unity. Therefore,

a'"?l; din y,
< 8x, =X Oxz (7.101)

As the activity coefficients directly measure the departure from the ideal solution behaviour,
Eq. (7.101) is the most useful form of the Gibbs-Duhem equation.

The various forms of Gibbs-Duhem equations are rigorous thermodynamic relations that are
v.alid for conditions of constant temperature and pressure. They tell us that the partial molar proper-
ties of a mixture cannot change independently; in a binary mixture, if the partial molar property
of one of the component increases, the partial molar properties of the other should decrease.

Gibbs-Duhem equations find wide applications in solution thermodynamics. These ing:iudc:

(@) In the absence of complete experimental data on the properties of the solution, Gibbs—
Duhem equations may be used to calculate additional properties. For example, if experimental
data are available for the activity coefficient of one of the components in a binary solution
over certain concentration range, the activity coefficient of the other component over the
same composition range can be estimated using Gibbs-Duhem equations. This is particularly
useful wherever the volatilities of the two components differ markedly. The measurements
usually give the activity coefficient of the more volatile component whereas that of the
less volatile component is calculated using Eq. (7.101). Thermodynamic properties of
some high-boiling liquids (e.g. polymers) dissolved in a volatile liquid (say, benzene) can
be computed by measuring the partial pressure of the latter in the solution.

(b) Thermodynamic consistency of experimental data can be tested using Gibbs—Duhem
equations. If the data on the partial molar property of each component measured directly
in experiments satisfy the Gibbs—-Duhem equation, it is likely that they are reliable, but
if they do not satisfy the Gibbs—Duhem equation, it is certain that they are incorrect.

(c) Gibbs-Duhem equations can be used for the calculation of partial pressure from isothermal
total pressure data. Suppose that in an experimental investigation of vapour-liquid
equilibrium, the total pressures are measured as a function of composition of one of the
phases (usually the liquid phase) and the composition of the other phase is not measured.
The Gibbs—Duhem equation facilitates the calculation of the composition of other phase
thereby reducing the experimental work considerably.

(d) Partial pressure data can be obtained from isobaric boiling point data using Gibbs-Duhem
equations. The isobaric 7-x data can be easily converted to x-y data.

These equations find application in various olhcr-siluulions such‘ as in the derivation of the
relationship between Henry's law and Raoult’s law '[u'r a real snlul.n?n (see Example 7.1‘5). in
proving the essential criterion that the vapour and liquid compositions are the same for an
azeotropic mixture (see Example 8.10) ctc.

EXAMPLE 7.14 Show that in a binary solution, i the molar volume of one of the components
increases with concentration, the molar volume of the other must decrease,

Solution When Eq. (7.94) is written for one mole of the solution with M repvl.acc_d by V, we get

z.x‘zd.‘z=0 e s PRITI T 15 § i
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x,dV, +x,dV, =0
This is rearranged as ‘

dﬁ:-ﬁdv,_
Xy

It means that if dVl 1S positive, de must be negative. That is, if partial molar volume of componen; |
increases the partial molar volume of component 2 must decrease.

EXAMPLE 7.15 Prove that if Henry’s law is obeyed by component 1 in a binary solution over

certain concentration range, Lewis-Randall rule (Raoult’s law) will be obeyed by component 2
over the same concentration range.

Solution Equation (7.99) gives Gibbs—Duhem equations in terms of fugacities

olnf, _ Jnf,
X &l = X2 axz
Since dx, = - dx,,'Eq. (7.99) becomes

x,&lnﬁ:—xzalnfz

dinfy=- 2L gIn7 (7.102)
%3
If component 1 obeys Henry’s law, we can write J_ﬂ = Kyx; and hence Eq. (7.102) gives

dinf, = —-::—'dln Kx)=- X Kidy _ dx  dx
2

2
=—==dhx
2

Integrating this equation, we get

In fo =1n X+ C (7.103)
where C is a constant of integration,
Since f = f, when x,='1, C = In f2 and Eq. (7.103) becomes

In V] = In x,
2
or
S = X2 fs

which is the Lewis-Randall rule for Componeny 2,
In Fig. 7.6, Henry’s law applies to com

‘ Ponent | ip
Lewis—Randall rule will be applicabl

a binary system over the range 0 to X
e to COmponent 2

over the same Composition range.
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Fig. 7.6 Plot of fugacity versus mole fraction for Example 7.15.
EXAMPLE 7.16 The activity coefficient of component 1 in a binary solution is given by

Iny, =ad + bx; + cxj

where a, b, ¢ are constants independent of concentrations. Obtain an expression for  in terms of
Xy.

Solution Using the Gibbs-Duhem equation [Eq. (7.101)], we get

" din y,

dln 7,
> o,

= ~X e —x,2ax, + 3bx3 + 4¢x})
2

which may be rewritten as

-qlalh = =x Qa+3bx, + dexy)
X

Replacing x, in the preceding equation by (1 - x;), we get
gy, . ~x; Qa+ 3 +4¢) + 3] (=3b - 8¢) + Wdo)
X

Integrating the above cquation,

Iny,= j [x,2a + 3b + 4¢) + x,z(- Ih-8c)+ .\'i‘(ilc')] dy, + C'
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.

, . : : - ary condition that whe
where C” is a constant of integration. Integrating and using the boundary ¢ ; n

Y=1(rx=0) %=1 we get C' = 0. Thercfore, we get the required expression:

o . .
Iny,=[a+ (32) b+ 2¢] x2 — [b + 8/3) ] xi +cxy

The above example illustrates how the activity coefficient of one of the SPECIES Il @ b”‘f"’)’
mixture can be evaluated if the activity coefficient of the other is known as an analylhlcal equa.non
in x. Now, suppose that ¥, is determined experimentally and is reported as a function of x in g
tabular form. How is ¥ evaluated? Rearrange Gibbs-Duhem equation, Eq. (7.101) in the form

d1n y2=—§c‘%d1nyl (7.104)

Integrating the above equation, we obtain

s ; X ‘
Iny, = —j Ldnyy+c | (7.105)

When x; =0,1n p, = 0 and hence, C = 0. As a result,

( it (]Tl T|)ﬂt.\{'|‘ x] .
Iny,=- —d(ny,) (7.106)

(In yy) atx =0 X2

The integral in Eg. (7.106) is to be evaluated graphically. For this, plot a graph taking x,/x, along
the y-axis and In 7 on the x-axis. The area under the curve from In ¥, at x; = 0 to the

In 7 value at the desired concentration x; will give the integral in Eq. (7.106). The negative of
this is the value of In % at x,. ' -
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8.11.1 Activity Coefficient Equations

Wohl's three-suffix equations. The relationship between excess free energy and activity
coefficient was discussed in Chapter 7. Most of the equations relating activity coefficient and
concentration of the solution were derived from these excess free energy relationships. Wohl proposed,
statistically, a general method for expressing excess free energy and provided some rough physical
significance to the various parameters appearing in the equations. Wohl's equation for excess free
energy contained terms for compositions, effective molal volumes and effective volumetric fraction
of the separate constituents of the solution. From these equations, the following empirical relations
for activity coefficient could be written,

Scanned with CamScanner


HP
Line

HP
Line

HP
Line


348 A Textbook of Chemical Engineenng Thermecdynamics

= 11
2 Gl . y.=2B+2A=—B|! (8.63)
1“’/|=32[A+2(3“I—2‘A g|: Im72=2 T 4 J
o . . . the solution and ¢; and
z, and 2, are the etfective volume fraction of the separate components 10 -

g, are the effective molal volumes. Z and g are related as

X~
= ———
T Xt X (gquz)

.X'l

PR, SE—
X + X (q /q,)

- =
>

“l

nvolves three parameters. A. B and (q1/q>)

Equation (8.65) is known as Wohl's three-suffix equation. Iti
which are characteristics of the binary system.
Margules equation. When the term (g,/g3) is unity in Eq. (8.63). we get the following expressien,
which is known as the Margules three-suffix equation.

2 2, _ 2
Iny, =x[A+2(B —A)x]=QB-A)x + 2(A - B) x> (3.66)

Iny,=x [B+2(4 -Bx]=04 - B)x} +2(B - A) X

The constant A in the above equation is the terminal value of In % at x, = 0 and the constnt Bis

the terminal value of In % at x; = 0. The three-suffix Margules equation adequately represents the

VLE data of systems like acetone—methanol, acetone—chloroform, chloroform—methancl. etc.
When A = B in Eq. (8.66), the Margules equation takes the following simple form:

Iny,=Ax; Iny,= Ax} (8.67)

Equation (8.67) is called the Margules two-suffix equation. It represents sufficiently and accurateiv
the activity coefficients of simple liquid mixtures, i.e. mixtures of molecules. which are similar in
size, shape and chemical nature. The constant A may be positive or negative. While n general, e
constant depends on temperature, for many systems it is a weak function of temperamk_ Vapour—
liquid equilibrium data of argon—oxygen, benzene—cyclohexane, etc., are well represented by the

Margules equation [Eq. (8.67)].

van Laar equation. Let (q,/q;) = (A/B) in Eq. (8.65). The resulting two-parameter equation 1S
known as the van Laar equation. The van Laar equations can be written as

AX% . & B'(Z
by =By = : (8.68)

Iny, =Az = 5
[(A/B)x; + x, ) [x, + (Bl &) x, ]

The constant A is the terminal value of In 7 at x; = 0 and B is the terminal value of Im 7
at x, = 0. When A and B are equal, the van Laar equations simplify to the Margules cquatit?‘“:

Eq. (8.67). The van Laar equation (8.68) may be rearrang ) .
very convenient for the evaluation of constants A and ;“ced to the following forms, which =

-
-

X, In 2
A:lnyl[lq.r_zi]' B=1 .t,!ny11
xIny, ny,|l+ —.__x: ey (.69
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etly speaking, Vi ~ e o ;
S:::”;;E::;::;g‘ 1‘3':1}:: "l(:::ﬁ:]'l”"‘ “rl C' ?‘Pl’l‘l?‘ah!c only for solutions of relatively simple, preferably
no p he v - P _ Y. has been found that these are applicable for more complex
mlxlurx:s. T.‘L }9!1 Laar equations are \\ildt.‘l)’ used for vapour-liquid equilibrium calculations because
of their flexibility and mathematical simplicity. Activity coefficients in benzene—-isooctane system,
n.propanol—\\'qlcr system, elc., are accurately represented by the van Laar equations.

The selection of a proper ¢quation for VLE data correlation depends on the molecular complexity
of (he‘ system and the precision of the experimental data. When an equation is selected that fits the
expenmenfal data well, the constants for the constant pressure conditions will be different from
those appllc?lb'le for constant temperature conditions. The effect of pressure on the constants is
usually negligibly small, whereas the effect of temperature is appreciable and cannot be neglected.
The van !.aar constants vary with temperatures unless the temperature range involved is small.
However, in vapour-liquid equilibrium calculations, the effect of temperature on the activity coefficicnt
is usually ignored (Prausnitz, 1985).

The Margules three-suffix equation is suited for symmetrical systems, i.c. where the constants
A and B are nearly the same. The van Laar equations can be used for unsymmetrical solutions,
where the ratio A/B does not exceed 2. Though many systems follow van Laar equations, they
cannot represent maxima or minima in the In y curve. Margules three-suffix equation should be
used in such cases. For choice of an appropriate equation, a rule of thumb usually employed is this:
When the ratio of molar volumes is close to unity, the Margules equation is preferred. When the
ratio is quite different from unity, as is the case when water is one of the constituents, the van Laar
equations are found to be satisfactory. For example, the chloroform—ethyl alcohol system, which
shows a maximum and a minimum on the In y curves and whose ratio between pure component
is accurately represented by the Margules equation. For n-propanol-water
Laar equations are found to represent the behaviour accurately.
ations having only two constants, determination of ¥ and
ts the evaluation of the constants and the complete ¥ curve.
of 7 and 7, when it is rearranged to the following form.

molar volumes is 1.38,
system this ratio is 4.16 and the van

It is to be remembered that in equ
% at a single known composition permi
Equation (8.47) permits the evaluation

y, = (8.70)

The data required are a single set of equilibrium vapour-liquid composition values z.md the vapour
Pressures 0? the pure compi)nents. When an azeotrope is formed, only the azeotropic composition
need be known !fecausc it represents the composition of both the liquid and the vapour phases. The

activity coefficients can be evaluated by putting X =¥ in Eq. (8.70).

P
¥i=— 8.71)

Wilson equati All the activity coefficient equations discussed so far can be deduced '.mm
the orio; quation. A (‘jcr roper simplifying assumptions. However, there are many equations
ginal Wohl’s equation undcr P | equation. Among such equations, the Wilson

that o . Wohl's genera ; : . :
equattignno:] bcl:“(zi}[.{vcd f?m;: }1]:(’1 he UNIQUAC equation are important from practical point of
: n, the equation ¢

View, A he concept of local compositions, which are different from the overall
"‘ininr Il these are baseg ml(;‘(‘;n molecular considerations, Wilson (1964) proposed the following
¢ compositions. Base

L = .o hipary mixture.
*Quations for activity coefficients n @ binary
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Iny, == In(x+ Aty (' A ‘ I./‘\:l-‘t . X
. (8.72)

I“ Y')' = o~ I" ((} } A“'(f) . "/l X' ! A“ ,(‘, A,||| | "'F

Asy. These are rolated to the pugg

Wilson equations have two adjustable positive parameters Agg “"’fl '
. el ene dqences o
component molar volumes and 1o the characteristic energy differences by

LY [ A~ ’,111,’ Y .’flz.'l
il i BT 7 |
| (8,73

Asy o Jd Wyt - ...11.,.‘.,..._&24] ez L cxXp [.¢ E—
A7l T v, "L kT

where V_and V; are the molar volumes of pure liquids and A's_arc_the energies ol interaction
between the molecules designated in_the subscripts, The differences in the characteristic energics
(ay) are assumed (o be temperature independent and this introduces no serious error in practical
calculations, Wilson equation provides a good representation of VLE of a varicty of miscible
mixtures. It is particularly suitable for solutions of polar or associating components like alcohols
in_non-polar solvents for which the Margules and van Laar equations are generally inadequate.

Wilson cquation suffers from two disadvantages, though not serious for many applications.
Firstly, it is not suitable for systems showing maxima or minima of
Secondly, it is not uscful for systems exhibiting limited miscibility. The use of Wilson cquation 1s
lhcrcfr)rc‘rccmnmcp(lcd only for Tiquid systems that are completely miscible, or for partially miscible
systems in the region where only one Tiquid phase cxist,

_the In ¥ versus v curves.

Non-random two-liquid (NRTL) equation, The NRTT, modcl, propose

: . d by Re drausnit’
(1968), also is based on the local composition concepl, y Renon and Pr

The activity coefficients are

v 2 h
Iny, =X?2 T?I(-—O_Zl.‘] " T”(;|2

-4

(8.74)
, G, Y [
4 x G, (x) + ,\',(:,,)’J
In Eq. (874), the adjustable parameters are evaluated ag
Gy = exp (- 115T)9): ;
2T); Ga = exp (- ¢
and | o “
f,z =] -,.Illa T, = _I_)ZL
RT™ "2 Ty (8.76)
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The constants b, . and by are similar to the
differences appeanng in the Wilson equation. The
of compoution and temperature.

constants representing charactenstic cacrgy
! s¢, as well as the constant a,; are independent
The parameter oy, 15 related to the non-randomness in the
mivture. I @y 18 zero, the mixture 15 completely random and the NRTL equation reduces to the
Margeles equanon. It s found from fiting of expenimental data that a,, vanes from about 0 20
to 047 In the absence of the expenimental data, the value of ;s 1s arbitrarily set, a typical
chowee being @3 = 0.3. When @y 1s arbitranly fixed. NRTL cqu.ltvzm becomes a [wo-parameter
model.

NRTL equation 1s applicable to partially miscible as well as totally miscible systems  For
moderately non-ideal systems, it offers no advantage over the van Laar and Margules equations,

But. for strongly non-ideal <olutions and especially partially miscible systems, the NRTL equations
provide a good representation.

Universal quasi-chemical (UNIQUAC) equation. Abrams and Prausnitz (1975) extended
the quasi-chemical theory of liquid mixtures to solutions containing molecules of different sizes.
This extension as called the UNIQUAC theory. The UNIQUAC model consists of two parts—the
combinatonal part, which describes the prominent entropic contribution and a residual part, which
15 due pnimanly to the intermolecular forces that are responsible for the enthalpy of mixing. The
combinatonal part 1s determined by the sizes and shape of the molecules and requires only pure-
component data. The residual part depends on the intermolecular forces and involves two adjustable
binary paramecters.
The UNIQUAC equations for activity coefficients are

Iny, :Inﬁ-w*%q, |n££'*¢;(,1 'ilz)“(ll'l“m; +0;1y)
X & ol r

T L)
0\q, = -
i (6; S0y, 6+ 0] ‘12]
(8.77)
: < 0’ . ry V ] ‘ »
In ‘/zzlngbf-;qz ln—:-*@;(lz""":J“lz In (67 + 6i1,y)
X, 2 0; h
T L5
6.q; ~Top ,
IS T TR TR f:t)
where
’15::; (ry = qy) = try = 1) ’.'"-:'z' (rp-q)-(ry = 1) (8.78)

©1 the coordination number, 7, q and ¢ are pure-component molecular structure constants, The
;“Oia:ulu size and surface area are given by r and g respectively. For (luids other than water or
ower alcohols, ¢ = q". For alcohols, the surface of interaction q" v smaller than the geometnc

.S - )
urface 9 The adjustable binary parameters fy; and 1, are related to the charactenstuc energres Au
& [ollows

¥‘
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- ¢l < 9 * A
=i S Al 93— L | - gin 6] + 0y7y)
1 o)
+ 9'761{( Ty T )
9' + 9‘) T'al 93_ + 6;1’12}
Iny, = lﬂ(p—‘*':‘(]v In 9. + ¢, (12 _i[l) q; In (65 + 9'712)
Xy ¢2 n

} z
11=%(r1—q1)—(r,—1), 12=—2-(r2—q2)—-(r2—l)
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( Auy ( 012)

Ty =€Xp|——=|=€exp|— -
12=¢ P\ RT p T

(8.79)

( A"zx) ( "21)

Ty =€X -——==1=¢€X ==
21 P W P T

The segment fraction (¢*) and the area fractions (6 and &) are obtained as

Q) = M = )
X\h + X0 xn + x;n
6, = I ¢) S 6, = X292
Xq + X9, Xq + %29,
o] = ’anf _, ey= 'xaqé :
xXq + X243 Xq + X,

The UNIQUAC equation satisfies a large number of non-electrolyte mixtures containing non-polar
fluids such as hydrocarbons, alcohols, nitriles, ketones, aldehydes, organic acids, etc., and water,
including partially miscible mixtures. The main advantages of this equation are its wide applicability

and simplicity arising primarily from the fact that there are only two adjustable parameters.
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tabular form. How is 7 evaluated? Rearrange
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where C’ is a constant of integration. Integrating and using the bou.ndary cond'.t '0'_1 AW
xy=1(orx =0), %=1 we get C = 0. Thercfore, we get the required expression:

| FOARR I S 4
Iny;=la+ 32 b+2cx —[b+ @3 X + €x)
coefficient of one of the species in a binary

The above example illustrates how the activity . fiical ;
mixture can be evaluated if the activity coefficient of the other 18 known as an analytical equation

i i i ' i function of x in a
in x. Now, suppose that ¥, is determined experimentally and is reported as a '
H : Gibbs—Duhem equation, Eq. (7.101) in the form

dln 72=‘.‘?‘dln 4 (7.104)
%
Integrating the above equation, we obtair;- i
; -~ "'_,-. % xl AR " -
When x; =0, In P ="0 and hence, C = 0. As a result,

& o ) Lo pnyy) atxp Hxl T ote] : i
ny,=- | 2 dany) (7.106)
i an G T (lnyl)‘atxl-f-ro ;2_‘\. e : 5 vk i
The integral in Eq. (7.106) is to be evaluated graphically. For this, plot a graph taking x;/x, along
the y-axis and In 7 on the x-axis. The area under the curve from In 7 at x; = 0 to the
In % value at the desired concentration x; will give the integral in Eq. (7.106). The negative of
B R e Of. TRt Tytos, s o seusies: A wa Rk an B " Yo

2.8 PROPERTY CHANGES -OF MIXING *

“We know that the molar volume of an ideal solution 'i_s"simply the aVerage of the molar volumes

of the pure components, each weighted according to its mole fraction. That is, V = X x;V; for ideal
solutions. If such a relation could be written for all extensive thermodynamic properties of a
solution, then o8 3N N

b MeXoM . 10 (7.107)

where M is the molar property of the solution, M; and x; are the molar property of pure i and its
mole fraction respectively. But Eq. (7.107) is not true even for ideal solutions when the property
under consideration is entropy or entropy related functions like free energy. For non-ideal solutions,
this equation cannot be usedl fror’ the estimation of thermodynamic properties unless we apply 2
correction te;m AA;I, known as }tlhe property change of mixing. Thus, in general, when thermodynamic
ies 5 , W | :
Slr:p:;L atioon 353(:1 u;;:::; . :,Zl er ideal or real, are evaluated fromr fhg pure compongnt properties

L LR .‘M?z*fMl+AM PRE (7.108)
In Eq. (7.108), AM is the difference in the property of the solution M and sum of the propertics
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of the pure components that make it up,

all at the same temperature and pressure as the solution.
Thus .

AM =M - T xM, (7.109)
- Replacing M in Eq. (7.108) by the molar volume V,

V=}:x,V,- + AV

where AV is the volume change on mixing, AV = 0, for ideal solutions.
A more general definition of AM can be written as

AM =M - X x;M] (7.110)
whérer M,-O is the molar propert
in the pure form in the same stat
as the solution, then M? = M,
liquids at t

y of pure i in a specified standard state. If the component exists
e of aggregation as the solution and at the temperature and pressure
For example, if all components exist in the pure state as stable
he temperature and pressure of the solution, V° = V; and AV = V - X x,V,. Here, AV is
the volume change of mixing when one mole of the solution is formed at constant temperature
and pressure from the pure liquid constituents.

Property change of mixing is a function of temperature and pressure like any other thermodynamic
property of solution and its value depends on the standard state specified for the components.

Comparison of Eq. (7.14), which relates the properties of the solution to the partial molar properties
of the constituent species, with Eq. (7.108) yields

MM = T x,(M, - M}) : ‘ 1 TR

The quantity A_d, — M} can be treated as the change in the property of component i when one mole
of: pure i in its standard state is brought to the solution of given composition at the same

temperature and pressure. Using Eq. (7.111), the volume change of mixing and free energy change
of mixing can be written as

A ANE Bl My A
AG = X x,G; - G%) (7.113)
7.8.1 Activity and Property Change of Mixing

Free energy change of mixing, AG. Using the definition of fugacity,

: S : Eq. (6.118), the change
In the free energy of a substance when it is brought from its standard state to the solution, can
be written as : : ‘ ;

a-cf’:RTln—fL:'RTln J
¥ i i . fO a‘

(7.114)
Substitute this into Eq. (7.113). The result is

RT
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0.8 mol H,0 02mol C;H;OH | AH=0
at298 K " at 298 K

[~ ]

1 mol 20%
ethanol-water at 298 K

%0T 1ou |

e IoleM—jouey)d

Cpp(T - 298)

Fig. 7.10 ' Adiabatic mixing process described in Example 7.23.

7.10 EXCESS PROPERTIES

The difference between the property of a real solution and that of an ideal solution is important
in chemical thermodynamics, especially in the treatment of phase equilibria. The excess property,
ME, is defined as the difference between an actual property and the property that would be
calculated for the same temperature, pressure and composition by the equations for an ideal
solution.

ME = M - M4 (7.131)

M is the molar property of the solution and M is the property of an ideal solution under the same

conditions. : ' b :
The excess property change of mixing is defined in a similar manner.

AME = AM - AM™® (7.132)

AME is the excess property change of mixing, AM and AM™ are the property changes of mixing
for a real solution and an ideal solution respectively, both under the same conditions. As

AM=M-Z M, AM®=M¢_T x,M°

Equation (7.132) can -be written as

E _ i _ : «
. 2 TR RN DS Suesa R (7.133)
Compare Eq. (7.131) with Eq. (7.133). We see that
E _ pE :
tdBiag s ' (7.134)

t- s 4 £ | ! : . . i
faq;::. ion (7.134) means ﬂ\ét Fhe EREOH property qhange of mixing and ‘the exc;ess property are the
Let us consider the excess volume V¥ of a solution. - ‘
. VE=AVE= AV - AV

Since ideal solution involves no volume change of mixi id :
¢ lng! AV‘ - O. The

of a solution and the volume change of mixing AV are the same. The salt:(:;rse.trt;lc tt;:xcess vohtl::;

extensnye }hcrmodynamnc properties like enthalpy, internal energy, heat capa e:t or som; 0‘:ess

properties in these cases do not represent new thermodynamic properties. Howese: 1%} ::;0 p; i

entropy related functions, the excess properties are different from pe m
... r i i
they represent new and useful quantities. pxo Tty changes of mixing and
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E.xc.ess functlpns indicate the deviations from ideal solution behaviour and are easily related
to activity coefﬁcnients.. Excess functions may be positive or negative; when the excess Gibbs free
energy Of = S_Ohm(’“ 18 positive the solution is said to exhibit posi,tive deviation from ideality,
whereas if ll.ls. }ess than zero, the deviation from ideality is negative.

The deﬁpmon of partial molar excess functions is analogous to that of partial molar
thermodynamic properties [see Eq. (7.1)]. )

1N, E ;
ME = (9"”’ J (7.135)
# T.P,IIJ'

’ an;
—E . .

M 18 _the partial molar excess property of component i. Therefore, analogous to Eq. (7.132) we
can write, i

MEzz_x'.A_/[-‘.E (7]36)
Equation (7.136) says that the molar excess property M” of a solution is the average of the partial
molar excess property of each component weighted according to its mole fractions.

7.10.1 Excess Gibbs Free Energy

For phase equilibrium studies the most useful excess property is the partial molar excess Gibbs
free energy which can be directly related to the activity coefficient. Excess Gibbs free energy is
defined as :

' ‘ GE a4, , (7.137)

Using Eq. (7.136), we can write the excess Gibbs free energy as
GE = Zxuf , (7.138)

where UF is the excess chemical potential or excess partial molar free energy of component i. But,

pE =y - pit = Ay~ Ayt (7.139)

ical potential for component i when it is transferred from its standard state

A, the change in chem
me temperature and pressure is related to its fugacity in the solution, as

to the solution at the sa

sl o , i
Ap; =RT In -f—g— (7.140)
component i in solution and £ is the fugacity in the standard state. Similarly,
ideal solution at the same conditions,
=
ol f‘
sl gl (7.141)

f is the fugacity of
if the component becomes part of an

Since fugacity in an ideal solution is f ___lx'_ﬁo' Eq. (7.141) can be written as

Ap=RTInx, (7.142)
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“ - 0
In Eq. ‘(7.140) the fugacity f; is related to x;, y; and f2as fi=x7f ,so that Eq. (7.140) becomes

Ay; = RT In x;y; (7.143)

Substituting Eq. (7.142) and Eq. (7.143) into E‘q. (7.139), the result is

(7.144)

ﬂE = RT lﬂy‘-

Because of this simple relationship between activity coefficient and excess chemical potential it
becomes possible to express the activity coefficient as a function of composition.
From Eq. (7.138), we.see that the molar excess Gibbs free energy of a solution is simply,

GE=RT X x;In ¥ (7.145)

Since 4 = E;E, the partial molar free energy of a component i in the solution, the above equation
can be put in the form of Eq. (7.135)

(7.146)
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EXAMPLE 7.24 The two-suffix-Margules equation is the simplest expression for excess Gibbs
free energy that is obeyed by chemically similar materials.

{IGE = Axfxy Botuin (o / "--=(7147)

where A is an empirical constant independent of composition. Derive the expressions for the
activity coefficients that result from this expression.
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Solution Write Eq. (7.146) for components 1 and 2. Then

[ < ‘
g }"72?[@&] Gt S
¥, b destoms ot o

4

T,P,;Iz

TiARe &
TS A g :l‘n_ylz=[a(_"G__/£Q]

oy on,

Smce Gt Axlxz = A(nlln) (nzln),

23 o -hoass e o n VAR LN Dt i ST WItath s SEHRRY Bl nd
it . wadudiall an ddel nGE=A.l_:z. STHIETUCRIST atile Bl 08 e :(7.148)

Differentiating Eq. (7.148) with respect td ny, ké._eping n, constant, we get
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RT In yl=An2[n _2nl)=A.X§ i :
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Differentiating Eq. (7.148) with respect to ny, keeping ny constant, we get |

% | RT Iny, = Ax?
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. The desired expressnons for acnvnty coefficient are
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Flgure 7.11 shows the plot of In %, In % and GE/RT against composition,
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