PHASE EQUILIBRIA

A system is said to be in a state of equilibrium if it shows no tendency to depart from that state
either by energy transfer through the mechanism of heat and work or by mass transfer across the
phase boundary. Since a change of state is caused by a driving force, we can describe a system at
equilibrium as one in which there are no driving forces for energy or mass transfer. That is, for a
system in a state of equilibrium, all forces are in exact balance. It may be noted here that the state
of equilibrium is different from a steady state condition. Under steady state there exist net fluxes
for material or energy transfer across a plane surface placed anywhere in the system. Under
equilibrium the net flux is zero. )

Transfer of material or energy across phase boundaries occurs till equilibrium is established
between the phases. In our daily experience, we come across a number of processes in which
materials are transferred from one phase to another. During breathing we take oxygen from the air
through the lungs and dissolve it in the blood. During the preparation of tea or coffee we extract
the soluble components in the powder into boiling water. Dilute aqueous solution of alcohol is
concentrated by distillation in which a vapour rich in alcohol is produced from the boiling solution.
The phase equilibrium thermodynamics is of fundamental importance in many branches of science,
whether physical or biological. It is particularly important in chemical engineering, because majority
of manufacturing processes involve transfer of mass between phases either during the preparation
of the raw materials or during the purification of the finished products. Gas-liquid absorption,
distillation, liquid-liquid extraction, leaching, adsorption, etf:.., are some of the important separation
techniques employing mass transfer between phases. In addition to these, many industrial chemical
reactions are carried out under conditions where more than one phase exist. A good foundatio__n in
phase equilibrium thermodynamics is e_ssentlal for the analysis and design of these processes.

In this chapter due emphasis is given to the development of the relaslf)nship between the
various properties of the system such as pressure, telppc?rature and composition when a state of
€quilibrium is attained between the various phases consh?u.tm.g the system. The temperature-pressure-
composition relationships in multiphase system at equ;hbnum. form the basis for the quantitative
treatment of all separation processes. The two types of phase equilibrium problems that are frequently

€ncountered are:
1. The determination of composition of phases which exist in equilibrium at a known temperature
and pressure
2. The determination of conditions of temperature and pressure required to obtain equilibrium
between phases of specified compositions.
The present chapter tries to provide solutions to these problems.
309
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./ 8.1 CRITERIA OF PHASE EQUILIBRIUM

Consider a homogeneous closed system in a state of internal equilibrium. The criteria of interng]
thermal and mechanical equilibrium are that the temperature and pressure be uniform throughoy
the system. For a system to be in thermodynamic equilibrium, additional criteria are to be satisfied,
Consider a closed system consisting of two phases of a binary solution, for example, the vapoyr
and liquid phases of an alcohol-water solution. The requirement of uniformity of temperature and
pressure does not preclude the possibility of transfer of mass between the phases. If the system is
in thermodynamic equilibrium, mass transfer also should not occur. It means that additional criteria
are necessary for establishing the state of thermodynamic equilibrium. 4
A system can interact with the surroundings reversibly or irreversibly. In the reversible
process, a state of equilibrium is maintained throughout the process. So it can be treated as a
process connecting a series of equilibrium states. The driving forces” are only infinitesimal in
magnitude and the process can be reversed by an infinitesimal change (either increase or decrease)
in the potential for the system or the surroundings. The irreversible process, in contrast, occurs
with a finite driving force, and it can not be reversed by infinitesimal changes in the external
conditions. However, all irreversible processes tend towards a state of equilibrium. We have shown
in Chapter 4 under ‘Clausius inequality’,

p .
ds > ?Q (4.44)

In this equation, the equality sign refers to a reversible process which can be treated as a succession
of equilibrium states and the inequality refers to the entropy change for a spontaneous process
whose ultimate result would be an equilibrium state. The first law of thermodynamics expressed
mathematically by Eq. (2.5) can be rewritten as ' ek

dQ =dU + dW (8.1)
Substituting Eq. (8.1) into Eq. (4.44), we get
' | TdS 2dU + dwW
dU < TdS - dwW (8.2)

dW in Eq. (8.2) may be replaced by P dV so that |
dU<TdS - Pdv | (8.3)

Equation (8.3) is valid for cases where external pressure is the only force and the work is,
therefore, the work of expansion only. By this, we exclude other effects like those due to
gravitational and electromagnetic fields and surface and tensile forces. Equation (8.3) can be
treated as the combined statement of the first and second law of thermodynamics applied to a
closed system which interact with its surroundings through heat transfer and work of volume
displacement. This equation is utilised for deriving the criteria of equilibrium under various sets
of constraints, each set corresponding to a physically realistic or commonly encountered situation.
These different criteria are discussed now.

ConstantUand V. An iso!ated system does not exchange mass, heat or work with the surroundings:
In Eq. (8.1), dQ = 0, dW = 0 and hence dU = 0. A well-insulated vessel of constant volume would
closely approximate this behaviour. Thus in Eq. (8.3) dU = 0 and 4V = 0 so that

y
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dSy v =0 (8.4)

The entropy is constant in a reversible process and increases in a spontaneous process occurring
In a system of constant U and V. Since an irreversible process leads the system to an equilibrium
state, the entropy is maximum at equilibrium when no further spontaneous processes‘are possible.

Constant T and V. Helmholtz free energy is defined by Eq. (6.1).
A=U-TS .
Rearranging Eq. (6.1), we get
U=A+TS
dU=dA + TdS + 5 dT
Substitute this result in Eq. (8.3) and rearrange the resulting expression to the following form
| dA <-P dV - SdT (8.5)

Under the restriction of constant temperature and volume, the latter implying no work, the equation
simplifies to ‘

dA;y <0 (8.6)

Equation (8.6) means that the spontaneous process occurring at constant temperature and volume
is accompanied by a decrease in the work function and consequently, in a state of thermodynamic
equilibrium under these conditions the Helmholtz free energy or the work function is a minimum.

Constant P and T. Equation (6.6) defines Gibbs free energy as
G=H - TS

Since H = U + PV we can write Eq. (6.6) as
G=U+PV-TS

Taking the differentials ‘
dG=dU+PdV +VdP -TdS - S dT

rearranging these as
dU=dG - P dV-VdP +TdS + 8§ dT

and combining this result with Eq. (8.3), we obtain

dG <V dP - SdT (8.7)

At constant temperature and pressure, Eq. (8.7) reduces to

dGrp < 0 (8.8)

Equation (8.8) means that the free energy either decreases or remains unaltered depending upon
whether the process is spontaneous or reversible. It implies that for a system in equilibrium at a

given temperature and pressure the free energy must be minimum.
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Since most chemical reactions and many physical changes are carrl@f :_)il(l)tnug? ?;ec:;:gg;?:;;?f
constant temperature and pressure, Eq. (8.8) is the commonly used l:rlf? asibility of a pro ose(ci
equilibrium. It also, provides a very convenient and s1mp1e_ testrfor. t ef € Snereg o theis 2(6
process. No process is possible which results in an increase in the Gibbs ree ﬁ?aneous };0 m,
because according to Eq. (8.8) the Gibbs free energy always decreases 1n a sIl)_lo Process
and in the limit of the reversible process, the free energy doesn’t change at all.

In the equilibrium state, differential variations can occur in the system at constant Feng)erature
and pressure without producing any change in the Gibbs function. Thus, the equality in Eq. (8.8)

can be used as the general criterion of equilibrium or as a thermodynamic statement that characterises
the equilibrium state.

dG =0 (at constant T and P) ' (8.9)
To apply this criterion for
function of the number of

equation along with the
problems.

phase equilibrium problems we need formulate an expression for dG as
moles of the components in various phases and set it equal to zero. This
mass conservation equations provides the solutions to phase equilibrium

/8.2 CRITERION OF STABILITY

unmixed state. The molar free energy of the mixture is t

hus less than the sum of the molar free
energies of the constituents for all possible concentratio

ns. That is,
G-X x,G,- <0 (8.10)
The left-hand side in the above €quation is the free energy change on mixing AG. Therefore
AG <0 (81 1)

: ‘ In Fig. 8.1. The dotted line MN
-phase mixture obtained when t i i
Xy and xy, respectively, are mixed togeth

solution. Any point on the line MN represe
two phases of mole fraction Xy and xy. Th
dotted line MN, there is a decrease in the fi

» the syste i ilj it
moves from a homogeneous to a heteroge YSIem attains stability when

neous state, Therefore, for mixtures of composition lying
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X

Fig. 8.1 Free energy of mixing plotted as a function of composition.

between points M and N, the equilibrium or stable state consists of two immiscible phases. We see
that the second derivative of AG with respect to x, is always positive for stable liquid phase and
if it becomes zero or negative, phase separation occurs. The criterion of stability is that ar constant
temperature and pressure the free energy change on mixing AG, its first and second derivatives
are all continuous functions of the concentration x and

d*AG
.2

>0 (at constant T and P) (8.12)

EXAMPLE 8.1 Show that for a stable liquid phase, the fugacity of each component in a binary
mixture always increases with increase in concentration at constant temperature and pressure.

Solution The excess free energy of mixing was defined in Chapter 7. It was shown there that
AGE = AG - AG"
AGE=GE=RTZ x;Iny,
AG"Y = RT X x;In x,
Combining these three equations we find that
AG = RT Z x;In (yx)

-A’g =2 x;In (7x) = x1 In (%1x)) + x3 In (95x,)

Differentiating this with respect to x,
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‘ : a]n Y] aln
‘ 4 (4G _d = In(xy¥5) + X % “(8.13)
| x In(y,x) + x, In(y,x,)] = In(xy7)) 272 Ix

\ dx, (RT) d,[ 1 In(yx, 2 2 :
| By Gibbs-Duhem equations,

| dln y
! | % dln y, =% dlny, _ =%, 3—2
1 ‘ _ When this is substituted into Eq. (8.13), we get
| d (AG

§ ] x) —In (y,x,) (8.14)
u | | i, (RTJ n (?’1 D= In(y,x,
P

Activity coefficients are defined as [see Eq. (7.77)],

b ¥, = fi b
I X fy X 0
i = -

b where fjandf, are the fugacities of com

components. Substituting these into Eq

ponents in solution and f;
. (8.14), we get

i(ﬁ):lni_]né_

leferentlatmg Eq. .(8.14) again with r gacities of pure components
are independent of concentration, we get

and f, are the fugacities of pure

, 1 (8.16)
[ According to Gibbs-Duhem €quations, the fugacities in a binary mixture are Interrelated as indicated
1 below

f

| - -

( dln dln

1 i ()fl‘_'xz f2=—xa—“-alnf2

,' Therefore,

dx

Using this equation, Eq. (8.16) can be written as

lnf - _5 dlnf]
[ Xy dxl

dz (AGJ d - x d
— il LBl | -
dq \RT )™ @ M+ iz —nj

Xy dx, Xy dx,
: d’AG _RT 4 _
dx, Xy dx, nf
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Equation (8.12) reveals that the left-hand side of the above equation is greater than zero. Therefore,

AL wfi>o
X, dx

d - .
—Inf,>0 !
dx, " .

In a similar way, we can show that

d '
—Inf, >0
dx, 5

The last two equations imply that fugacity of components in a stable solution always increase with
Increase in concentration.

‘/8.3 PHASE EQUILIBRIA IN SINGLE-COMPONENT SYSTEMS

Consider the thermodynamic equilibrium in a system consisting of two or more phases of a single
substance. Though the individual phases can exchange mass with each other and are therefore open,
‘the system as a whole is closed. As an example, we can treat the equilibrium between vapour and
liquid phases of a single substance at a constant temperature and pressure. Applying the criterion
of equilibrium [see Egs. (8.8) and (8.9)] to this closed system,

dG =0
dG* + dG" = 0 (8.17)

where the dG® and dG? are the changes in free energies of the phases *a’ and ‘b’ respectively. Since
each phase is open, the change in its free energy’ may be due to the changes in temperature,
pressure and the number of moles of the components that constitute the phase. Equation (7.35)
expresses this mathematically as

dG =V dP - § dT + £G; dn
Applying this equation to the phases ‘a’ and ‘b’, we can write
dG® = V2 dP® — §% dT° + G® dn®,  dG® = V* dP" — §" dT" + G" dn”

At constant temperature and pressure,

dG® = G dn,  dG’ = G" dn” (8.18)

As the system as a whole is closed,

dn® + dn” = 0, or dn® = = dn” (8.19)
Substituting Egs. (8.18) and (8.19) into Eq. (8.17), we get
(G° - G"dn* = 0 (8.20)

Scanned with CamScanner



-

316 A Textbook of Chemical Engineering Thermodynamics

Equation (8.20) means that
G = Gb A (821)

Whenever two phases of the same substance are in equilibrium under a given temperature and
pressure, the molar free energy is the same in each phase. N

We can verify the above result easily by considering the example of boiling water. As long as
both phases are present, an appreciable transfer of material from one phase to the other at constant
temperature and pressure would not disturb the equilibrium. The change in the frec_a‘ energy for the
equilibrium process (or reversible process) of evaporating a mole of liquid water is

AG = AH - TAS (8.22)
As pressure is constant, AH = Q, and the process being reversible, O = TAS. Equation (8.22) gives
AG =0

For vaporisation of 1 mol of liquid, AG = G" — G*, where G* and G are the molar free energy
of water in the liquid and vapour states at the given T and P. Therefore, under equilibrium

GY= Gt ' (8.23)
As the molar free energies are related to the fugacity of the substance by

G=RTInf+C

Equation (8.21) can be expressed in terms of fugacity of the phases.

= (8.24)

where f* and f° are the fugacities in phases a and b respectively. It is convenient to work with
fugacities of substances as these have absolute values in contrast to free energies, which are usuélly
expressed as differences.

The above conclusions can be extended to three

phases, which is the maximum number of
phases that can coexist under equilibrium in a system

of one component,

EXAMPLE 8.2 Using the criterion of
phase changes can be calculated from t
as AS = AH/T.

phase equilibrium, show that the change in entropy during
he latent heat of phase change and the absolute temperature

Solution Suppose that two phases a and b are in quilibrium. Using the deﬁnition of free
energy [Eq. (6.6)], '

G = H — Ts¢ Gb = Hb _ st

Here, H and S denote the enthalpy and entropy of the substance, Substituting these results in Eq. (8.21),
H® - TS® = H® _ Tsb

This equation can be rearranged as,

Sb_Sa=Hb—Ha
T
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The left-hand side of the above equation is the entropy change accdmpanying the phase change of
one mole of the substance (AS), and the numerator on the right-hand side represents the enthalpy

change for the phase change of one mole of the substance or the latent heat of phase change (AH).
That is, - .

AS’J;&
T

EXAMPLE 8.3 Deduce the Clapeyron equation using the criterion of equilibrium, Eq. (8.9).

Solution In Chapter 6 we have derived the Clapeyron equation, Eq. (6.25), using Maxwell’s
relations. '

dP  AH

dT ~ TAV
The criterion of equilibrium provides an alternate route for its derivation. Consider any two phases
a and b of the same substance under equilibrium. Since G® and G? are both functions of temperature
and pressure, and these functional relationships are different for different phases, the two phases -
can. coexist only at such values of the temperature and pressure that G° = G?. If the temperature

and pressure are altered infinitesimally without disturbing the equilibrium, the change in the free
energy must be the same in each phase.

dG" = dG* - (8.25)
In a phase change there is no work other than the work of expansion, so that
dG=VdP -5dT
Using this in Eq. (8.25),
ohé V' dP — §°dT = V* dP - S* dT (8.26)
V and § are the molar volume and molar entropy of the fluid with the superscript representing the
phase for which the properties correspond to. Equation (8.26) can be rearranged to the following
form.
B o5 8 -~
dT ~ Vi - vt AV (82)

In the above equatioh, AS and AV are the entropy change and volume change respectively,
accompanying the phase change. Since the transition between phases is occurring reversibly, the
entropy change can be evaluated if the latent heat of phase change is known.

AH

AS = — (8.28)

where AH is the latent heat for the phase change. Substituting Eq. (8.28) into Eq. (8.27) the
Clapeyron equation results.

dp _ A 550
dT ~ TAV e
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This relation gives the increase in pressure that is necessary 0 mgintain the qu_llllbr'luml_belw_een
phases for a pure substance when the temperature 1s increased. By using the follOWI?g simp lﬁca'UOl.]S
Eq. (8.29) can be modified to yield the Clausius-Clapeyron equation applicable for vapour-liquid
cquilibria.

1. The latent heat of vaporisation is constant and independent of temperature.

2. The molar volume of liquid is negligible compared to that of vapour.

3. The vapour behaves as ideal gas.

The Clausius—Clapeyron equation was derived [Eq. (6.28)] in Chapter 6 and is reproduced below.

S
W (1L .30
PFR\T, T

where P° and PS are the vapour pressures at temperatures 7; and T, respectively.

/8.4 PHASE EQUILIBRIA IN MULTICOMPONENT SYSTEMS

The criterion of equal molar free energy [Eq. (8.21)] is applicable for equilibrium between phases
of a single component. This criterion needs modification when dealing with heterogeneous
multicomponent systems. A heterogeneous closed system is made up of two or more phases with
each phase behaving as open system within the overall closed system. Because each phase consists
of two or more components in different proportions, it is necessary that the criterion of multicomponent
phase equilibrium be developed in terms of partial molar free energies or the chemical potentials
of the components. The criteria of thermal and mechanical equilibrium are, as discussed earlier, the
uniformity of temperature and pressure. For the system to be in equilibrium with respect to mass
transfer, the driving force for mass transfer—the chemical potential—must have uniform values for
each component in all phases. This criterion of internal equilibrium is derived in the following
paragraphs.

Consider a heterogeneous system consisting of 7 phases indicated by the letters, ¢, B
m. The various components that constitute the system are 1, 2, 3, ..., C. The symbol 4¥ denotes
the chemical potential of component ‘i’ in phase ‘k’. Suppose that small amounts of various
components are transferred from one phase to another, the system being in equilibrium and the
temperature and pressure kept constant. Since the system as a whole is closed, the proposed transfer
should satisfy the following criterion.

dG =0 (at constant T and P) (8.9)
The free energy change in a multicomponent system is given by Eq. (7.35) as
dG =V dP - S dT + X y; dn;
At constant temperature and pressure, the above equation becomes
dG = X ;1,- dn;
Substitute this into Eq. (8.9) to get
X U dn=0 ‘ 8.31)
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K . .
Let dn; denote the increase in the number of moles of component ¢ in phase x. Equation (8.31)
may then be written as

C =
L Z pidn=0

izl x=a

Expanding this equation, we get
Uy dnl + pB dnf v+ oyl dnf o+
ugdn§‘+ufdnf+...+u§dn§+
; : ) (8.32)
ug dng + ub dnP +...+p§dng =0
Since the system as a whole is closed, it should satisfy the mass conservation equation given below.
dn +dnP + ... +dnf =0
dnd +dnf + ... +dnf =0
e : : T ‘ (8.33)
dug +dnb + ... +dnk =0

The variations in the number of moles dn; are independent of each other. However, they are subject
to the constraints imposed by Eq. (8.33). For all possible variations dnf, Eq. (8.32) is to be
satisfied. This is possible only if

uf=pf=...=pf
p=pl=. = pf
. . (8.34)
a_ B _ Y 4
pE=pl=..=p?

Equation (8.34) means that when a system consisting of several components distributed between
various phases is in thermodynamic equilibrium at a definite temperature and pressure, the chemical
potential of each component is the same in all the phases. If they are different, the component for
which such a difference exists will show a tendency to pass from the region of higher to the region
of lower chemical potential. Thus the equality of chemical potential along with the rcq?xircmcnt of
uniformity of temperature and pressure serves as the general criterion of thermodynamic equilibrium
in a closed heterogeneous multicomponent system. In short, we can write

T = constant; P = constant

pf=pl=...=pf for i=1,23..,C (8.35)

Since the chemical potential is related to fugacity as

K =RTInf +C

_
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where C is a constant, an alternative and equally general criterion of equilibrium can be written in
terms of fugacities as

T = constant; P = constant .
re B = (8.36
fe=fP=.. . =f for i=123...,C )

Fugacity is a more useful property than chemical potential for defining equilibrium §1nce it can
be expressed in absolute values, whereas chemical potential can be expressed only relative to some
arbitrary reference state. Equation (8.36) is therefore widely used for the solution of phase equilibrium
problems.

EXAMPLE 8.4 Uéing the criterion of phase equilibrium show that the osmotic pressure over an
ideal solution can be evaluated as

p _ RTx 4

osmotic
VB

where x, is the mole fraction of solute and Vj is the molar volume of the solvent.

Solution Consider a vessel which is divided into two compartments by a semi-permeable
membrane. Pure solvent (say, water) is taken in one of the compartments and a solution (say,
sucrose in water) is taken in the other. Let 7 be the temperatures on both sides of the membrane
and P be the pressure. While the membrane is impermeable to the flow of the solute, it permits the
flow of solvent into the solution. This phenomenon of a solvent diffusing through a membrane
which is permeable to it, but is impermeable to the solute, is known as osmosis.

Osmosis is caused by the difference in the chemical potentials of the solvent on the two sides
of the membrane. At a given pressure, the chemical potential of a pure solvent is greater than that
of the solvent in the solution. By increasing the pressure at the solution side of the membrane, the
chemical potential of the solvent in the solution can be increased. When the pressure is increased
to P’ keeping the temperature constant, the chemical potential of the solvent in the solution would
become equal to that of the pure solvent at pressure P, and the diffusion would stop. If the pressure
is increased above 7’, the direction of diffusion would be reversed. In that event, the solvent would
diffuse from the solution to the pure solvent. This process is known as reverse osmosis. The excess
pressure P’ — P to be applied over the solution at constant temperature to arrest the process of
osmosis is known as the osmotic pressure. Thus, osmotic pressure is

Posmolic =P -p

Let the mole fraction of the solutes constituting the solution be represented by x, and the mole
fraction of the solvent be represented by xp. Let u% denotes the chemical potential of the solvent
at pressure P’. Equation (7.51) relates the chemical potential of a component in a solution to i
fugacity. Thus

9 Uy =RT lnf8_+ C
The chemical potential of the pure solvent at pressure P is given by

Hp=RTInfy+C

A
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Combining the preceding two equations, we get

Js

B
In this equation, M3 is the chemical potential of pure solvent at pressure P’, fp is its fugacity and
fg is its fugacity in the solution. Since the solution is ideal, the above equation may be simplified
utilising the Lewis—Randall r 1le which relates f5 and that fB asz = xg fz. Now we get the following

result for the chemical potentlal of the solvent'in the solution at pressure P’.
' )

’/ luB__'AuB*_'_RTlan

Up = g +RT In

/
Under equilibrium this should be equal to the chemical potential of the solvent in the pure state
at pressure P which may be denoted by ug.. That is

Rearranging this, we obtain

Mo — pe == RT Inx,

The left-hand-side of this ‘equalion involves the chemical potentials of pure B at pressures P and
P’. Since the temperature is constant, we can use Eq. (6.18) to replace the chemical potential in
terms of the pressure and volume. Equation (6.18) leads to dG = du = V dP. Thus

P
I VdP = =RT In x,
P .

Since volume of a liquid is not affected by change in pressure, the integral in this equation can be
easily determined in terms of the molar volume V. Thus

Vg (P~ P)=—RT In x
Noting the definition of the osmotic pressure, the preceding equation may be written as

Fosmotic =~ V, V,
For small values of x4, we can use the approximation In (I - x4) = —x,. Thus we get
RT x
P:)smou'c . VB 4

/8.5 PHASE RULE FOR NON-REACTING SYSTEMS

The essence of a phase equilibrium problem is to express quantitatively the relationship between
the variables that describe the state of equilibrium of two or more homogeneous phases, which are
free to interchange energy and matter. For a homogeneous phase at equilibrium the intensive
properties are the same everywhere. In phase equilibrium studies, the intensive properties of interest
are pressure, temperature, density and composition.
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between the number of variables and the number of equations is therefore two indicating that only
two independent variables need be fixed to define the state of the system completely. These may
be either intensive or extensive. If F < 2, at least one extensive variable must be fixed for complete
determination of the system. For example, for water and water vapour in equilibrium, since the
number of degrees of freedom is one, the intensive state of the system is specified by fixing either
the pressure or the temperature. But the total properties can be evaluated only if the amount of
liquid or vapour is also specified. However, for a binary mixture, say, water and alcohol, in vapour-
liquid equilibrium, since the number of degrees of freedom is two, no additional specifications are
needed to predict the amount of liquid and vapour present in equilibrium, provided, we know the
amounts of the components from which the system is formed. Duhem's theorem is applicable to
reacting systems as well (see Chapter 9).

8.7 VAPOUR-LIQUID EQUILIBRIA

The vapour-liquid equilibrium (VLE) data are essential for many engineering calculations, especially
in the design and analysis of separation operations such as distillation, absorption, etc.
Thermodynamics provides a system of equations relating the necessary experimental data and the
unknown vapour-liquid equilibrium compositions, temperature and pressure.

The conditions of equilibrium [Eq. (8.36)] require that the fugacity of a component in the
liquid phase be equal to that in the vapour phase. That is,

fr=f" for i=L23....C (8.41)

f,'- represents the fugacity of component i in the solution and the superscripts V and L represent
the vapour and liquid phases respectively. Using this equation, the problem of determining the
composition of the liquid and vapour phases in equilibrium is quite simple: it is necessary only
to evaluate the compositions so that the fugacity of each component be the same in both phases.
For example, for a binary mixture of ethanol and water in vapour-liquid equilibrium, at a definite
temperature and pressure, the mole fractions in the liquid and vapour must be such that the fugacity
of ethanol is the same in both phases. That is, fe =f¢ . Here, fe is the fugacity of ethanol in the
mixture. To evaluate quantitatively the equilibrium compositions, the fugacity of a component should
be expressed in terms of its mole fraction in the mixture. Using the definition of activity coefficient,
the fugacity of a substance in the vapour phase can be written in terms of its mole fraction y; in
the mixture and the fugacity of pure i as a vapour at the system temperature and pressure.

F=rivns (8.42)

If the stable state for i at the given temperature and pressure is not a vapour, evaluating ﬁv
requires the introduction of a hypothetical state. The use of the concept of fugacity coefficient
helps to overcome this difficulty. The fugacity of a component in a gas mixture can be written as

.ﬂv =i 6.' P (8.43)

where a,- is the fugacity coefficient of i in the mixture. The fugacity ceefficient 5,- may be
evaluated from an equation of state for the mixture.

For the liquid phase, the fugacity of a component can be expressed as the product of its mole
fraction x; in the solution, the activity coefficient 3 and the fugacity of the component in the

standard state.
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fr=xyl g (8.44)

Substituting Eqs. (8.43) and (8.44) into Eq. (8.41) and dropping the superscript L from the activity
coefficient, we get la DR-tRs Debapisy 0f-f

5 P
\m"'-‘ » ) L

N - ',_ ) ; |
Y 9P = 'J’ixiﬁo | (£4)
Equation (8.45) is the fundamental relatioﬁship in the study of vapour-liquid equilibrium. Vapour—

liquid equilibrium problems may be solved, by dividing them into the following grouping for
convenience.

Case 1: Ideal gas-phase, ideal liquid solution. For mixtures of ideal gases, ¢; = 1. For
ideal liquid solutions, % = 1, and the fugacity, f° at low pressures, is equal to the saturation
pressure of pure liquid- E-S at the temperature of interest. Equation (8.45) becomes

yiP = x;B (8.46)

Case 2: Low-pressure VLE problems. If the pressure is low enough that the assumption
of ideal gas behaviour for the gas phase would not introduce any significant errors in practical
calculations, Eq. (8.45) can be modified as

yiP = yx; P’ ' (8.47)

Case 3: High-pressure VLE problems. In the general case where ideal behaviour cannot
be assumed for the gas and liquid phases, the fugacity coefficient a,- and the activity coefficient
% should first be determined for solving vapour-liquid equilibrium problems using Eq. (8.45).
These are normally complex functions of temperature, pressure and compositions and can be
written as

¢ =F(T, P,y,ys... Yn-1)
7,‘ . F"’(T', P, X1y X25 ¢« o xn-l)

The fugacity in the reference state £ is the fugacity of pure i at the same T, P and state of
aggregation as the mixture. To calculate this, it is convenient to determine first the fugacity of
pure i in the liquid state at T under its equilibrium vapour pressure P,.S and then apply a correction
term for the fact that P # }}s. The fugacity of the liquid under its equilibrium vapour pressure is
equal to the vapour pressure times the fugacity coefficient ¢; - (¢ tends to unity if the vapour
behaves as an ideal gas.) Using Eq. (6.31), we can write

o1

S oS BT
¢; R, RT ;;_s

In V,dP

(8.48)

Here the liquid phase molar volume V, can be assumed not to change appreciably with pressure
S0 that the above equation can be written as

£V s
R A
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Therefore,

£9 = 95 P exp [.Vf (P - Pfs)}

This result is substituted into Eq. (8.45).

Y =) ES)} (8.49)

- S
Y9, P = Yixifpfﬂ' exPl: RT

This is the general equation for vapour-liquid equilibria. The exponential in the? above equation is
known as the Poynting correction and it is approximately unity when pressure 18 low. Also at low
pressures when gas behaves ideally, o, = ¢,~S = 1 and the above equation reduces to Eq. (8.47).
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Therefore,
V.(P-F)
£ =9 B exp [TJ
This result is substituted into Eq. (8.45).
. V.(P-P’)
%0 P=7v%0; ES CXP[ RT ’ (8.49)

This is the general equation for vapour-liquid equilibria. The exponential in th?j above equation is
known as the Poynting correction and it is approximately unity when pressure is low. Also at low
pressures when gas behaves ideally, ¢; = ¢} = 1 and the above equation reduces to Eq. (8.47).

8.8 PHASE DIAGRAMS FOR BINARY SOLUTIONS

8.8.1 Constant-pressure Equilibria F=C-P+2

Consider a binary system made up of components A and B. Component A is assumed to be more
volatile than B, i.e. the vapour pressure of A is greater than that of B at any given temperature. For
a binary liquid mixture in equilibrium with its vapour, according to the Gibbs Phase rule, the
number of degrees of freedom is two. When the pressure is fixed, only one variable, say liquid
phase comp?)ﬁtion, can be changed independently and other properties such as the temperature and
the vapour phase compositions get uniquely determined. Vapour-liquid equilibrium data at constant
pressure are usually represented by means of either the temperature-composition diagrams (the
T-x-y diagrams or the boiling point diagrams) or the distribution diagrams (x-y diagrams or equilibrium
curves).

Boiling-point diagram. The boiling point diagrams are plots of temperature as ordinate against
composition of liquid and vapour as abscissa. The composition of liquid is usually indicated by the
mole fraction of more volatile component in the liquid, x, and the composition of the vapour is

indicated by the mole fraction of the more volatile component in the vapour, y. Therefore, the
boiling point diagrams are also called 7-x-y diagrams. The upper curve in Fig. 8.2 gives the

temperature versus vapour composition (y), and is known as the ‘dew-point curve’. The lower curve
in_the figure is temperature versus liquid composition (x), also called the ‘bubble-point curve’.
Below the bubble-point curve the mixture is subcooled liquid and above the dew-point curve the

mixture is superheated vapour. Between the bubble-point and dew-point curves the mixture cannot

exist as a single phase, it spontaneously separates into saturated liquid and vapour phases that are
in_equilibrium.

To make these points clearer, consider a mixture whose temperature and composition (x;) are
such that it is represented by point A in Fig. 8.2. Since the point A lies below the bubble-point
curve, the solution is entirely liquid. The mixture is taken in a closed container and the pressure
over the system is maintained at a constant value by a piston. The mixture is heated slowly so that
its temperature increases along the vertical line passing through point A till point B on the bubble-
point curve is reached. The temperature T, corresponding to point B, is the bubble point of the
original mixture. The first bubble of the vapour is produced at this temperature and it will have the
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Constant pressure

TJ

I Vapour

T-y curve
y % T H /1Y
> G (Dew-point curve)

Temperature

T,
\— T-x curve A

A l (Bubble-point curve)

X,y
Fig. 8.2 T-x-y diagram (boiling-point diagram).

composition (y;) represented by point C on the upper curve. The vapour is richer in the more
volatile component. Therefore y; > x;, and the dew-point curve lies above the bubble-point curve.
The mixtures at points B and C are the liquid and vapour at equilibrium at the system pressure and
temperature T. Since both are at the same temperature, they can be joined by a horizontal line BC,
known as a ‘tie line’. Further heating will result in the vaporisation of more liquid, and at temperature
T, the system will consist of saturated liquid represented by point D and saturated vapour represented
by point E, which are in equilibrium. Since the vapour formed is not removed from the system, the
overall composition of the combined mixture of liquid and vapour will be same as x,, the composition
of the original mixture. However, the relative amounts of the liquid and the vapour change as the
temperature is changed.

These relative amounts are given by the ratio in which the point representing the combined
mixture (in this case, point F) divides the tie line DE. By material balance consideration, it can be

easily verified that

Amount of liquid _ Line EF
Amount of vapour  Line DF

If heating is continued, eventually a temperature T3 is reached when almost all liquid is vaporised.
The last drop of liquid getting vaporised at this temperature has a composition denoted by point
G and the equilibrium vapour has the composition at H same as the original mixture. Temperature
T; is the dew point of the original mixture. The mixture temperature increases along the vertical
line HJ on further heating. On cooling the superheated mixture at point J, the first drop of condensate
appears when the temperature drops to T, the dew point of the mixture and the composition of the

liquid is given by point G.
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We have seen that the mixture at point A has vaporised over a temperature range from 7, (the
bubble point) to T; (the dew point), unlike a pure substance, which vaporises at a _smgle t.err:perature
known as the boiling point of the substance. For a solution, the term ‘b011mg_ poit has no
meaning, because, at a given pressure the temperature during vaporisation of a solution varies from-
the bubble point to the dew point.

Equilibrium diagram. The vapour-liquid equilibrium data at constant pressure ca.n.be r.epresented
on a x versus y plot or an equilibrium distribution diagram. If the vapour composition is taken as
the ordinate and the liquid composition is taken as the abscissa, a tie line such as lll?e BC.on the
boiling point diagram gives rise to a point such as point P on the distribution diagram
(Fig. 8.3). Since the vapour is richer in the more volatile component, the curve lies above the
diagonal on which x = y. '

1
— Constant P /
2 /
g /
2 /
= y = flx) Y Diagonal
g P ' /
._a. ) /
E /
P /
S %
= |/
0 x: mole fraction of A in the liquid 1

Fig. 8.3 x-y diagram (Equilibrium distribution diagram).

A liquid—vapour equilibrium curve very close to the diagonal means that the composition of
the vapour is not much different from the composition of the liquid with which it is in equilibrium;
when the curve coincides with the diagonal, x and y are equal.

Effect of pressure on VLE. On the boiling point diagram the temperatures corresponding to
x=0and x = 1 are the boiling points of pure substances B and A respectively. The boiling points
of pure substances increase with pressure. This is true for the bubble and dew points of a mixture
of given composition. Consequently the boiling point diagrams at higher pressures will be above
the boiling point diagrams at lower pressures as shown in Fig. 8.4. Since the relative volatility
decreases as pressure is increased, the closed loop formed by the dew-point and bubble-point
curves become narrow at high pressures. Figure 8.5 indicates the effect of pressure on the distribution
diagram. In Fig. 8.4, P; is the critical pressure for component A and above this pressure, the looped
curves are shorter.
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Constant P

Temperature

0 '\‘! .\) l

Fig. 8.4 Effect of increasing pressure on T-x-y diagram.

Fig. 8.5

[—

Constant P

y: mole fraction of A in the vapour

x: mole fraction of A in the liquid

Effect of varying the pressure on the equilibrium diagram.
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, 8.8.2 Constant-temperature Equilibria

| V.apour—-liquid equilibrium data at constant temperature are represented by means of P-x-y diagrams;
Fig. 8.6 shows a typical P-x-y diagram.

-, _ |Constant T
Constant T " . _Critical envelope
T< TC, B )" S /
T> TC, A T
Q.
5 Q,
2 g
IS 2
g
N
ps T<Tc 4
i T < TC, B
F
O . .
4’8 ’ x, y: mole fraction of A 1 0 x, y: mole fraction of A 1
_\\, /’(\{7\‘7' L,Fig' 8.6(a) P-x-y diagram. Fig. 8.6(b) Effect of temperature on P-x-y
. Q/S%Q diagram near the critical point.
7/, .-\

" The pressure at x = Os is tl?e vapour pressure .of pure B(P;) and the pressure at x = 1 is the vapour

q ressure of pure A(FPy ). Since component A is assumed to be more volatile, P> P3 and therefore,

" thie P-x-y diagram slopes upwards as shown in the figure. The P-y curve lies below the P-x curve
‘\){isﬁ that for any given pressure, y > x. A solution lying above the P-x curve is in the liquid region
-,/ “and that lying pelow the P-y curve is in the vapour region. In between P-x and P-y curves the
| ",v"/ @ s'olu'tnon is a mixture of s.aturatejd. hgund and'vapour. A horl_zon'tal line such as AB connects the
’ .liquid and vapour phases in equilibrium and is therefore, a tie line. Assume that a liquid mixture

“V whose conditions may be represented by the point C in Fig. 8.6, is taken in a closed container.

i /Zp When the pressure over this system is reduced at constant temperature, the first bubble of vapour
forms at point D, and vaporisation goes to completion at point E. Further reduction in pressure

N leads to the production of superheated vapour represented by point £ The effect of temperature on
e P-x-y diagram is shown in Fig. 8.6(b). When the temperature is less than the critical temperature

of both components, the looped curve such as the one shown at the bottom of Fig. 8.6(b) results.

The other two curves refer to temperatures- greater than the critical temperature of A,

\/ 8.9 VAPOUR-LIQUID EQUILIBRIA IN IDEAL SOLUTIONS

It is possible to determine the vapour-liquid equilibrium (VLE) data of certain systems from the
vapour pressures of pure components constituting the system. If the liquid phase is an ideal solution
and the vapour behaves as an ideal gas, the VLE data can be estimated easily without resorting to
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direct experimentation. A solution conforming to the ideal behaviour has the following characteristics,
all interrelated.
= 1. The components are chemically similar. The average intermolecular forces of attraction
and repulsion in the pure state and in the solution are of approximately the same order
of magnitude.

2. There is no volume change on mixing (AV = 0) or the volume of the solution varies
linearly with composition..

3. There is neither absorption nor evolution of heat on mixing the constituents that form an

: ideal solution (AH = 0); that is, there is no temperature change on mixing.

4. The components in an ideal solution obey Raoult’s law, which states that the partial
pressure in the vapour in equilibrium with a liquid is directly proportional to the concentration
in the liquid. That is, pi =X P,-S, where P; is the partial pressure of component i and x; is
its mole fraction in the liquid. ES is the vapour pressure of pure i This criterion also
implies that the total vapour pressure over an ideal solution is a linear function of its

¥ composition.

For an experimental test of an ideal solution, the last criterion is the safest one to use. For
example, the solution formed by two chemically dissimilar materials like benzene and ethyl
alcohol should definitely be non-ideal. It is found that for an equimolar mixture of benzene and
ethyl alcohol, there is no change in volume during mixing at room temperature. This peculiar
behaviour is because of the fact that when this solution is formed from its constituents, there is
increase in volume up to certain concentration and thereafter the volume decreases as shown in
Fig. 8.7. When the solution volume is plotted against the composition, the curve will intersect the
broken line representing the volume of an ideal solution at a particular concentration represented
in the figure by point P.

> K
Q
£
=
o
> ’
ia ]
'6' ]
E [
Vi \
L]
L}
1
0 xp x 1
Fig. 8.7 A real solution with no volume change of mixing at point P.
l_¥
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T

If the volume were measured for the concentration of the solution corresponding to point P, No
change in volume would be observed. This may be the case for enthalpy change of mixing als, at
some particular composition. The conclusion to be drawn is that negligible volume change ',
temperature change for one particular composition of the mixture is not a safe criterion of ap idea]
solution. If these are to be used as the tests for ideal behaviour, then these tests should be done for
more than one concentration of the solution. In contrast, the criterion that the total vapour pressure
over an ideal solution varies linearly with composition is safe and reliable.

It should be understood that there exists no ideal solution in the strict sense of the word; but
actual mixtures approach ideality as a limit. Ideality requires that the molecules of the constituens
are similar in size, structure and chemical nature; only optical isomers of organic compounds meey
these requirements. Thus a mixture of ortho-, meta- and para-xylene conforms very closely to the
ideal solution behaviour. Practically, adjacent or nearly adjacent members of the homologous series
of organic compounds can be expected to form ideal solutions. Thus mixtures of benzene ang
toluene, n-octane and n-hexane, ethyl alcohol and propyl alcohol, acetone and acetonitrile, paraffin
hydrocarbons in paraffin oils, etc., can be treated as ideal solutions in engineering calculations,

_ Consider an ideal binary solution made up of component 1 and component 2. We have shown
in Chapter 7 that all ideal solutions obey Lewis—Randall rule.

fi=xf, (7.66)
Here f; is the fugacity of the component i in the liquid and f; is the fugacity of pure i. Using the
N ' vgen e =L - . . . .
criterion of equilibrium f* =f£" and noting that if pressure is not too high, the vapour would not
depart too greatly from ideal gas behaviour, it is possible to write

B =x P (1.67)

This is the mathematical statement of Raoult’s law. Here P; is the partial pressure and P,-s is

the vapour pressure in the pure state for component i. Writing Eq. (7.67) for component 1 and
component 2 in the solution we get

P=xF, P=x,P (8.50)
The total pressure P is the sum of the partial pressures and, therefore

‘.

P=xF +x,P =x B +( - x)P

This on rearrangement gives

P=P + (B - P)x, (8.51)

Equation (8.51) shows thz?t_at a given temperature, the total pressure over an ideal solution is 2
linear function of composition thus establishing the fourth criteria given above. When the partial
pressures and total pressure are plotted against mole fraction X1, we get aCCOIdiné to Eq. (8.50) and
Eq. (8.51) the straight lines shown in Fig. 8.8. The broken lines give the partial ressu.res and the
continuous line gives the total pressure. p

The P-x-y diagram can be easily constructed. At any fixed temperature, the total pressure ¢a
be calculated using Eq. (8.51) for various x values ranging from 0 to 1. The cor,respondingpeqUilibriurn

vapour phase compositions are obtained by applying Dalton’s law according to which the partial

|
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Constant T

P-y curve
\ /
~ 7
/\
yd ~ -
/ [2)
P ™ ~

Pressure P

X1, y1: mole fraction of component 1

Fig. 8.8 Pressures over ideal solution.

pressure in the vapour is equal to the mole fraction in the vapour (y) times the total pressure (P).
That is

p=nP.,  p=yP (8.52)
Combining Egs. (8.50) and (8.52), we see that
nP = lelS (8.53)
Equation (8.53) can be rearranged as
pS
e (8.54)

Thus Eq. (8.51) is used to calculate the total pressure at given x and Eq. (8.54) is used to calculate
the corresponding equilibrium vapour phase composition y. The P-x
as shown in the Fig. 8.8.

To prepare the T-x-y diagrams at a given total pressure P we can again use Egs. (8.51) and
(8.54). Assume temperatures lying between the boiling points of pure liquids at the given pressure.,
For the temperature assumed, find the vapour pressures of the pure liquids and calculate x from
Eq. (8.51). Use these in Eq. (8.54) and calculate the vapour composition y. Instead,
to find the equilibrium temperature for the solution of known concentration x, the temperature may
be estimated by trial, such that the sum of the partial pressures is equal to the given total pressure.
Once the temperature is thus known, the vapour phase composition is determined as before. The
T-x curve is the lower curve in the figure and is called the bubble-point curve. The T-y curve is the
upper curve and is called the dew-point curve.

The y-x diagram is also prepared from the constant total pressure data. It can be constructed
from the boiling point diagram by drawing horizontal tie lines. The intersections of these lines with
the bubble-point curve give x and the intersections with the dew-point curve give v, Figure 8.10
shows a typical equilibrium diagram,

-y diagram can now be plotted

if we attempt
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X1, ¥1: mole fractions of the component 1

0

Temperature

y, mole fraction in the vapour

There is an approximate method for the construction of the equilibrium diagram, and it is
based on the assumption that the ratio of vapour pressures of the components is independent of
temperature. This assumption may not introduce much error, as it is possible that the vapour
pressures of both components vary with temperature and these variations are to the same extent that

ot

Constant P

T\ = Boiling point of pure 1
T, = Boiling point of pure 2

T-y curve

: |
l ET-xfcurvle ....... . T
: | SR | Fig.8.9 T-x-y diagram of
: | ol .h + an ideal solution.
A
S S
| o
l e
N N
PO %
: T —/I
. T 4
AR
' . Diagonal
------ 7
/
/
s
-
0 1

x, mole fraction in the liquid

their ratio remains unaltered. Thus

Pls
o =—
2

P’

a constant

The quantity & is designated as the relative volatility of the system.
From Eq. (8.54),

F)IS
h=x—r-

P

S

y:x_2
2 2P
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Taking the ratio of the above two equations and noting that y, = 1- y; and x, = 1 — x; we get

W __x B o3
l—y[ l_xl f)zs I"xl

which can be written in the following form.

ax

n= 1+ (@-1)x

(8.55)

Although Eq. (8.55) is not exact over a wide range of temperatures, the effect of variation in « is

so small that an average ¢ value can be used in Eq. (8.55) and the whole y-x data required for the
preparation of the equilibrium curve can be evaluated.

EXAMPLE 8.5 Prove that if Raoult’s law is valid for one constituent of a binary solution over
the whole concentration range, it must also apply to the other constituent.

Solution  Assume that Raoult’s law is obeyed by component 1 in a binary mixture. Then
p=x Pfg

As pointed out earlier, Raoult’s law is obeyed by ideal solutions when the vapour phase behaves
as an ideal gas whereas Lewis-Randall rule is obeyed by ideal solutions irrespective of whether the
gas phase is ideal or not. So for component 1, we can write

h=xh
Differentiating this equation and noting that f, is constant at the given conditions
d(n f) = d(In x,)
which on rearrangement gives

dinf) _
a0 x) (8.56)

Gibbs-Duhem equation relates fugacities of components in a binary mixture as

d(n f, d(nf,
g (:;,m”z (‘1;52)

which on rearrangement gives

d(nf) _ d(nf,)
dnx) _ d(nx,) (8:37)

This equation is sometimes referred to as Duhem-Margules equation. Comparing Eq. (8.56) with
Eq. (8.57) we see that
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T
d(nf) _ |
d(In x,)
lLe.

d(Infy) = d(In x,)

Noting that f, = f, when x, = 1 the above equation can be integrated.

fz - 2
["danfo= [ atn
1

h
lnﬁzln-x—2
) 1
or
A,
b

That is, fz = X,f», which is the Lewis—Randall rule for component 2. If the vapour is an ideal gas,
this can be equally written as

- S
P =xF
This is Raoult’s law for component 2. The conclusion to be drawn from the above derivation is that

if Raoult’s law is applicable to one of the constituents of a liquid mixture at all concentrations, it
must be applicable to the other constituent as well.

EXAMPLE 8.6 n-Heptane and toluene form ideal solution. At 373 K, their vapour pressures are
106 and 74 kPa respectively. Determine the composition of the liquid and vapour in equilibrium
at 373 K and 101.3 kPa.

Solution Refer Eq. (8.51). Then,
K =106 Py =74, P=1013
101.3 = 74 + (106 — 74)x

where x is the mole fraction of heptane in the liquid. On solving this, we get x = 0.853
From Eq. (8.54),
y = 0.853 x 106/101.3 = 0.893
The liquid and the vapour at the given conditions contain respectively 85.3% (mol) and 89.3%
(mol) heptane.

EXAMPLE 8.7 An equimolar solution of benzene and toluene is totally evaporated at a constant
temperature of 363 K. At this temperature, the vapour pressures of benzene and toluene are 13_5-4
and 54 kPa respectively. What are the pressures at the beginning and at the end of the vaporisatio®

process?

A
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Solution Putx =05 in Eq. (8.51). Then P = 94.7 kPa. This is the pressure at the beginning
of vaporisation. Equation (8.51) can be written as

P-P
& =tpS_ pS
R -
Substitute this in Eq. (8.54). Then,
_P-B K
=5 o5 X ——
R -F P
On rearranging this equation, we get
PSP}

Pi=

R -y® -P)

Put y = 0.5 in this. Thus, we get P = 77.2 kPa. (This is the pressure at the end of vaporisation).

EXAMPLE 8.8 The vapour pressures of acetone (1) and acetonitrile (2) can be evaluated by the
Antoine equations

In P’ = 145463 — 229046
T - 3593
In P = 142724 — 224547
T - 4915

where T is in K and P is in kPa. Assuming that the solutions formed by these are ideal, calculate

(a) x;and y, at 327 K and 65 kPa

(b) T and y, at 65 kPa and x;, = 0.4

(c) P P and y; at 327 K and x =04

(d) T and x; at 65 kPa and y, = 0.4

(e) P and x; at 327 K and y, = 0.4

(f) The fraction of the system that is liquid and the composition of the liquid and vapour in
equilibrium at 327 K and 65 kPa when the overall composition of the system is 70 mole
per cent acetone.

Solution (a) From the Antoine equations, at 327 K,

294046

§ = 145463 - ————— = 44441, P’ =8512kP
I A= 14803~ 7 — 3593 ! :

. 2945.47

S _ - =36715, P’ =13931kPa
InP =142724 TTRWTIT. )

Using Eq. (8.51),
65 = 39.31 + x;(85.12 - 39.31) x; = 0.5608
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Using Eq. (8.54),
y1 = 0.5608 x 85.12/65 = 0.7344

(b) Equation (8.51) can be written as
65= P +04(PS - P)

The temperature is to be determined by trial so that this equation is satisfied. Assume T = 34 K.
Antoine equations give P,S = 131.1 kPa and st = 63.14 kPa. Therefore,

PS + 04 (B - P’) = 90.32 kPa > 65 kPa
Assume T = 330 K. At this temperature B’ = 94.36 kPa and P = 44.02 kPa. Thus,
Py +04 (P’ - Pf) = 64.15 kPa < 65 kPa
Assume T = 330.4 K. B’ = 95.65 kPa and P{ = 44.68 kPa. Thus,
P’ +04(P° - BY) = 65.07 kPa N
Thus, equilibrium temperature, 7 = 330.4 K. Using Eq. (8.54),

1 = 0.4 x 95.65/65 = 0.5886

(c) At 327 K, we have Pls = 85.12 kPa and st = 39.31 kPa. Here x, = 0.4. Using these values
in Eq. (8.51), we get P = 57.63 kPa. Using Eq. (8.54)

y1 = 0.4 x 85.12/57.63 = 0.5908
(d) Equation (8.51) can be written as

P-Pp
A
RS- P

Xl =
When this is substituted into Eq. (8.54), we get

B P-p

P Pls _ p25
Here y, = 0.4 and P = 65. Therefore,
N _ pS
-
65 " B - pf

Assume a temperature and calculate the vapour pressures using Antoine equations. Substitute the
vapour pressure values in the above equation. See whether the Left-hand side = 0.4. This i
repeated till the left-hand side of the above equation becomes equal to 0.4.

At T =334 K, B° = 10791 kPa and P’ = 51,01 kpa.

Scanned with CamScanner

4



Phase Equilibria 339

N
B 65-P

65 13[5 _ PQS

= 0.408

As this is very close to the required value of 0.4, T = 334 K.
Using Eq. (8.54), we get

_yP 04 x65

SpiLap = 0.241
PS 10791

1

(e) At 327 K, we have Pls = 85.12 kPa and st = 39.31 kPa. Here y, = 0.4
Equation (8.54) relates y to x. When P in Eq. (8.54) is eliminated using Eq. (8.51) we get

_ X PIS
P +x (P -PB)

N

This can be rearranged to the following form.

N PzS
B -n@E -B)

X, =

Substituting the given values, we get x; = 0.2354.
From Eq. (8.54),

_x P’ 02354 x 8512
Y 04

P

= 50.09 kPa

(f) The composition of the vapour and liquid in equilibrium at P = 65 kPa and T = 327 K were
determined in part (a). They are x; = 0.5608 and y; = 0.7344. Let f be the fraction of the mixture
that is liquid. Then an acetone balance gives

1 x0.7=fx0.5608 + (1 -f)x 0.7344
Solving this, we get f = 0.1982. That is, 19.82% (mol) of the given mixture is liquid.

EXAMPLE 8.9 Mixtures of n-Heptane (A) and n-Octane (B) are expected to behave ideally. The
total pressure over the system is 101.3 kPa. Using the vapour pressure data given below,

(a) Construct the boiling point diagram and
(b) The equilibrium diagram and
(c) Deduce an equation for the equilibrium diagram using an arithmetic average a value.

T, K 371.4 378 383 388 393 398.6
P,, kPa 101.3 125.3 140.0 160.0 179.9 205.3
P;, kPa 444 . 55.6 64.5 74.8 86.6 101.3

Solution Sample calculation: Consider the second set of data. T = 378 K; P, = 125.3 kPa;
Pg=55.6 kPa.
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Using Eq. (8.51),
101.3 = 55.6 + x4(125.3 - 55.6)

Therefore, x4, = 0.656.
Using Eq. (8.54), we see

ya = 0.656 x 125.3/101.3 = 0.811

Relative volatility is
o = Py/Pg = 125.3/55.6'= 2.25

These calculations are repeated for other temperatures. The results are tabulated below:

TI,K 371.4 378 383 388 393 398.6
XA 1.000 0.656 0.487 0.312 0.157 0
Ya 1.000 0.811 0.674 0.492 0.279 0
o 2.28 2.25 2.17 2.14 2.08 2.02

(a) Plot of T versus x and y gives the boiling point diagram
(b) Plot of y against x gives the equilibrium diagram
(c) The average of the last row gives a = 2.16. Use this value of a in Eq. (8.55) to get the

equation for the equilibrium curve.

___ax,  _ 216x,
l+(@-Dx, 1+116x,

Ya

8.10 NON-IDEAL SOLUTIONS

We have seen that the partial pressure of a component in an ideal solution varies linearly with
concentration in the solution. If the solution behaves ideally, the different molecules should be
chemically similar. In that case, the molecules of a particular substance, when brought into solution
with other components, would not experience any difference in the environment surrounding them
from that existed in their pure state. The intermolecular forces in the pure state of the substance
and that in the solution would then be approximately of the same order of magnitude. Therefore,
the fugacity (or the partial pressure) of a substance, which is a measure of the tendency of th
substance to escape from the solution, is not affected by the properties of the other components in
the solution. It depends only on the number of molecules of the substance present, or its concentration:
In short, the components in an ideal solution obey Raoult’s Jaw. But for non-ideal solutions, the
partial pressures do not vary linearly with composition, as shown in Fig. 8.11 for the case of carbon
disulphide-acetone system.

The non-ideal behaviour of liquid mixtures arises due to the dissimilarity among molecules-
The dissimilarities arise from the difference in the molecular structure or from the difference in e
molecular weight. The non-ideal behaviour of light hydrocarbons such as methane ethylene, €t¢
in mixtures of heavier paraffin or crude oil is due to the difference in the molecu,lar weights. In
contrast, it is a type of intermolecular attraction called hydrogen bonding, that is responsible for
the non-ideal behaviour resulting from the difference in the molecular Struc’:ture. Molecules, which

e v p
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0.1876
0.2634 }
| - [0.842 A,,/(0.842 + 0.158 A )] + 5.329 In (0.8639 + 0.1621 A ;)]

x (08639 + 01621 A,) = 1

Aj; = 0.935. Substitute this value in Eq. (8.72) and calculate Ay). So, Ay = 0.467

8.12 VAPOUR-LIQUID EQUILIBRIA INVOLVING HIGH PRESSURES AND
MULTICOMPONENT SYSTEMS

8.12.1 Vaporisation Equilibrium Constants

For high-pressure vapour-liquid equilibrium (VLE) calculations, it is convement to ex'press the
phase equilibrium relations in terms of vaporisation equilibrium constants or K factors. It 1s.deﬁn_ed
as the ratio of mole fraction in the vapour phase y to that in the liquid x or K = (v/x). Since the
fugacities in the liquid and vapour are equal, we can combine Eqs. (8.42) and (8.44) as

ov._ vV, _ L 0L
i Y =xYi )

Using this we can write the K factor as

L ;0L
Vi yi f X
Ki==—"ov - (8.82
P | 7 | (8.82)
K factor is also obtained from Eq. (8.49) assuming a Poynting factor of unity.
O TN L A Y (Yt - o (8.83)
x4 P p .

where @, = (¢;/¢,). If the Poynting factor is not unity, it should also be included in @;. The K
factors contain all the thermodynamic information needed for VLE calculations and are complex
functions of temperature, pressure and the vapour phase and liquid phase compositions.

If the vapour phase is assumed to behave as an ideal gas (¢f/$,-) =1 and K= (y/x) = ()/-PS/P).
In addition, if the liquid phase behaves as an ideal solution %=1and K, = yilx; = PS,/P_ F,Or, e
solutions, K factors depend only on temperature and pressure and are readily corre]a‘ted as function
of these two variables. DePriester nomographs [C.L. DePriester, Chem. Eng. Progr., Symposium
Ser. 7, 49 (1953)] provide such correlations for many hydrocarbons. These nomog;aphs can be
found reproduced in Chemical Engineers Handbook.

-/ 8.12.2 Bubble-point Equilibria

The bubble-point temperature is the one at which the first bubble of vapour is produced from the
liquid on heating at constant pressure. At the bubble point the liquid has the same composition as
the original mixture. Therefore, in problems where bubble-point lemperature is to be determined,
the x; are known. Assume a temperature and get. the K; values at this temperature, Calculate y; using
y; = Kix;. If the assumed temperature is correct then ;

%=L Kyl O (884)

4
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Otherwise, repeat the calculations with another temperature. To find the bubble-point pressure, a
similar procedure as above is adopted by. assuming various values of pressure until X Kyx; = 1.

v8.12.3 Dew-point Equilibria

The dew-point temperature is the one at which the first drop of condensate is formed on cooling
a vapour at constant pressure. The vapour in equilibrium with the liquid at the dew point has the

same composition as the original mixture. In order to find the dew-point temperature, a temperature
1s assumed arbitrarily and K;is determined. Then, o

At the dew point,

Yx =Y =100
; ZK

(8.85)

Otherwise, repeat the calculation by assuming another temperature till this equation is satisfied.

Determination of the dew-point pressure involves a similar procedure assuming pressure instead of
temperature.

\/8.1 2.4 Flash Vaporisation

- The general flash vaporisation problem can be stated as: Given a mixture of known overall composition
z;at temperature T and pressure P, what is the fraction that is vapour (V) and what are the composition
of the liquid and vapour phases in equilibrium? The overall material balance for the system is

F=V+L

(8.86)
where F is the total number of moles of the initial mixture. The component-i balance for the system
is

Fzi = Vyi + Lx; (8.87)
Since y; = K, it can be eliminated from Eq. (8.87) to get the following:
5, = _Fz _F %
"TKV+L VK +(LIV) (8.88)
Since X x; = 1, we have
Z; _ K
z K;+(L/V) F (8.89)

The above equation can be used for the calculation of T, P or fractional vaporisation in an iterative
procedure. Alternatively, x; can be eliminated from Eq. (8.87) which leads to

__Fa _F___ & £.90

NEVEWK)  V 1+ LIVK)] (8.90)
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As ¥ y; =1, we have
s 4 -2 (8.91)
1+ LIVK) F

- - i P or the fraction.of t
Equation (8.91) can also be utilised in an iterative procedure to estimate T, he

initial mixture that is vaporised.

EXAMPLE 8.21 A mixture contains 45% (mol) methanol (A), 30% (mol) ethfiggvl ff)v ;‘ig tpoi T:‘:l
n-propanol (C). Liquid solution may be assumed to be ideal and perfect gas e
vapour phase. Calculate at a total pressure of 101.3 kPa.

(a) The bubble point and the vapour composition
(b) The dew point and the liquid composition.

The vapour pressures of the pure liquids are given below:

Temperature, K 333 343 353 363

Py, kPa 81.97 133.29 186.61 ~ 266.58
Pp, kPa 49.32 73.31 106.63 166.61,
Pc, kPa 39.32 62.65 - 93.30 133.29

Solution The vapour pressures of the components are plotted against temperature so that
interpolation of vapour pressure can be done easily. |
(a) If the vapour phase can be treated as an ideal gas and liquid phase, an ideal solution, the
K-values can be written as K; = y/x; = B-S/P. Equation (8.84) can be written as
PS
2y =XLKx= Zx'_'F
Draw graph for each component individully
Now temperatures are assumed till the above equality is satisfied. It is seen that at 344 K,

1

J 1t
A L
and at 345 K, : : OMD'D 1Y
| x,.BS 60z o' dIS
L-=1015 T'_ BUSXDDY + BUKDDIS Ayt

- ', 0°02 + 0°015)
The bubble-point lies between 344 and 345 K. By interpolation, the bu le?boint is obtained

as 344.6 K. At this temperature the vapour pressures are obtained from the P vs T plots. Py =
137.3 kPa, P; = 76.20 kPa and PZ = 65.40 kPa.

Component Xi P,-S K= pSIP y; = Kix;
Methanol 0.45 137.30 1.355 0.610
Ethanol 0.30 76.20 0.752 0.226
Propanol 0.25 65.40 0.646 0.162

Y Kx; 0.998

The equilibrium vapour contains 61% methanol, 22.6% ethanol and 16.2% propanol.
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(b) Equation (8.85) for the present case becomes

S
! i

ZX,---Z—%:M:LOO

The d_ew-poim lemperature is to be determined by trial such that the above relation is satisfied. By
trial, it can be seen that at 347.5 K, PJ = 15328 kPa, P; = 85.25 kPa and P = 73.31 kPa.

Component ¥; PS K;= p/P x; = yilK;
Methanol 0.45 153.28 1.5131 -0.2974
Ethanol 0.30 - 85.25 0.8416 0.3565
Propanol 0.25 7331 .- -.0.7237 0.3454

Zy/K; 0.9993

The values in the last column are the liquid composition at the dew point. Thus, liquid contains
29.7% methanol, 35.7% ethanol, and 34.5% propanol. :

EXAMPLE 8.22 A hydrocarbon mixture contains 25% (mol) propane, 40% (mol) n-butane and
35% (mol) n-pentane at 1447.14 kPa. Assume ideal solution behaviour and calculate

(a) The bubble-point temperature and composition of the vapour
‘(b') The dew-point temperature and the composition of the liquid

(c) The temperature and the composition of the liquid and vapour in equilibrium when 45%
(mol) of the initial mixture is vaporised. (The values of K; can be obtained from Fig. 13.6
of Chemical Engineer’s Handbook, 5™ ed.)

Solution (a) Assume temperature, say 355.4 K, and the K; values are found out from the
nomograph [Fig. 13.6(b) in Chemical Engineer’s Handbook]. The products of K; and x; are calculated
and their sum X x;K; is found out. The results for two temperatures 355.4 K and 366.5 K are shown
below. '

_ T=13554K T =3665 K
‘Component - Xi Ki Kix; K; Kix;
Propane 0.25 2.000 0.500 2.30 0.575
n-Butane 0.40 0.780 0.312 0.90 0.360
n-Pentane 0.35 0.330 0.116 0.40 0.140
Y Kx; 0.928 1.075

The bubble-point temperature lies belw;en 3554 K gnd 366.5 K. By interpolation, the temperature
is found out to be 361 K. The calculations are carried out at this temperature and the results are
as follows:
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Component X, Ki Kix;
Propane - D25 2.12 0.530
n-Butane 0.40 0.85 0.340
n-Pentane 0.35 0.37 0.130

Z K,'x’- 1.000

Since X x;K; is approximately 1.00, the bubble-point temperature is 361 K. The values. in the
last column are the mole fraction of various components in the vapour. At the bubble-point, the
vapour contains 53% propane, 34% butane and 13% pentane.

(b) At the dew-point temperature, X y/K; = 1. At 377.6 K, this value is 1.1598 and at 388.8 K
it 1s 0.9677.

7 T=3776 K T=1388.8K
Component ¥; K yiK; K; yilK;
Propane - 025 2.6 0.0962 2,9 0.0862
n-Butane 0.40 1.1 0.3636 1.3 0.3077
n-Pentane 0.35 0.5 0.7000 0.61 " 0.5738
Zy/kK; - 1.1598 0.9677

By interpolation, the dew-point temperature is found to be 387 K. The ca

By i lculations for this temperature
is given below.

Component . i K; yiK,
Propane 025 2.85 0 0877
n-Butane ©0.40 1.25 0.3200
n-Pentane 0.35 0.59 0.5932

Z yiK; 1.0009

The last column in the above table is the liquid com

ositi Tl g
point contains 8.77% propane, 32.0% butane and 59P sitions. The equilibrium liquid at the dew

:32% pentane,
(c) In the following calculations, temperature s ass ' i ’ .

of 100 mol of the initial mixture, F = 100 mol, V =“4";eg]f)(]) z;s ;()zatlsfy Eq. (8.91). Eor a basllj

becomes nd L = 55 mol. Equation (8.9

Zi
m—(‘TK—S =045
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T =366.5 K T=3776K
Component L 2; K; z/[1 + LI(VK)] K; zi/[1 + LI(VK))]
Propane 0.25 2.30 0.1632 - 2.6 0.1701
n-Butane 0.40 0.90 0.1696 1.1 0.1895
n-Pentane 0.35 0.40 0.0863 0.5 0.1016
Z z/[1 + LI(VK;)] 0.4191 0.4612

From the calcglations given above, we see that the equilibrium temperature is between 366.5 K
and 377.6 K. By interpolation, T = 374.6 K.

_ _ T=374.6 K
Component % K; z/[1 + LI(VK))]
Propane 0.5 2.50 0.1679
n-Butane 0.40 . 1.08 0.1876
n-Pentane 0.35 0.48 0.0987

2 z/[1 + LIVK)] : 0.4542

Comparing Eqgs. (8.90) and (8.91), we can sce that

_ g/l + LIVK,)]
"7 L7/ + LI(VK,)]

These are calculated using the values in the last column. Correspbnding x; values are found out
using the material balance [Eq. (8.87)].

Fz; = Vy; + Lx;

The results of the calculation are given below:

Component Yi x;
Propane 0.3697 0.1521
n-Butane 0.4130 0.3894
n-Pentane 0.2173 0.4586

8.13 CONSISTENCY TESTS FOR VLE DATA

Many practical cases like distillation_calculi}lions are dependent on vapour-liquid equilibrium data
and such data should be reasonably accurate if the results are to be reliable. As the VLE measurements
are prone to inaccuracies, it is essential that we have some means for checking the consistency of
the measured results. Thermodynamics provides tests for consistency of experimental VLE data.
Almost all these tests are based on the Gibbs-Duhem equations written in terms of activity coefficients
[Eq. (7.101)).
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FIG. 13-14 Kvalues (K = y/x) in light-hydrocarbon systems. (a) Low-temperature range. [DePriester, Chem. Eng. Prog.

Symp. Sec. 7,49, 1 (1953).]

Preferred analytical correlations are less empirical in nature and
most often are theoretically based on one of two exact thermodynamic
formulations, as derived in Sec. 4. When a single pressure-volume-
temperature (PVT) equation of state is applicable to both vapor and
liquid phases, the formulation used is

K, = &l/d) (13-3)

where the mixture fugacity coefficients ®F for the liquid and & for
the vapor are derived by classical thermodynamics from the PVT
expression. Consistent equations for enthalpy can similarly be derived.

Until recently, equations of state that have been successfully
applied to Eq. (13-3) have been restricted to mixtures of nonpolar
compounds, namely, hydrocarbons and light gases. These equations
include those of Benedict-Webb-Rubin (BWR), Soave (SRK) [Chem.
Eng. Sci., 27, 1197 (1972)], who extended the remarkable Redlich-
Kwong equation, and Peng-Robinson (PR) [Ind. Eng. Chem. Fun-
dam., 15,59 (1976)]. The SRK and PR equations belong to a family of
so-called cubic equations of state. The Starling extension of the BWR
equation (Fluid Thermodynamic Properties for Light Petroleum Sys-
tems, Gulf, Houston, 1973) predicts K values and enthalpies of the
normal paraffins up through n-octane, as well as isobutane, isopen-
tane, ethylene, propylene, nitrogen, carbon dioxide, and hydrogen sul-

fide, including the cryogenic region. Computer programs for K values
derived from the SRK, PR and other equations of state are widely
available in all computer-aided process design and simulation pro-
grams. The ability of the SRK correlation to predict K values even
when the pressure approaches the convergence pressure is shown for
a multicomponent system in Fig. 13-18. Similar results are achieved
with the PR correlation. The \Vong—SandIer mixing rules for cubic
equations of state now permit such equations to be extended to mix-
tures of organic chemicals, as shown in a reformulated version by
Orbey and Sandler [. AIChE] 41, 683 (1995)].

An alternative K-value formulation that has received wide applica-
tion to mixtures containing polar and/or nonpolar compounds is

K = y-ol/dY (13-4)

where different equations of state may be used to predict the pure-
component liquid fugacity coefficient ®% and the vapor-mixture
fugacity coefficient, and any one of a number of mixture free -energy
models may be used to obtain the liquid activity coefficient y/. At low
to moderate pressures, accurate prediction of the latter is crucial to
the application of Eq. (13-4).

When either Eq. (13-3) or Eq. (13-4) can be applied, the former is
generally preferred because it involves only a single equation of state
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FIG. 13-14 (Continued) K values (K =
Chem. Eng. Prog. Symp. Sec. 7, 49, 1 (1953).]

applicable to both phases and thus would seem to offer greater con-
sistency. In addition, the quantity @} in Eq. (13-4) is hypothetical for

any components that are supercritical. In that case, a modification of

Eq. (13-4) that uses Henry’s law is sometimes applied.

For mixtures of hydrocarbons and light gases, Chao and Seader
(CS) [AIChE, 7,598 (1961)] applied Eq. (13-4) by using an empirical
expression for @ based on the generalized u)rrespondlng states PVT
correlation of Pitzer et al., the Redlich-Kwong equation of state for
QJ, , and the regular §01ut10n theory of Scatchard and Hildebrand for
y£. The predictive ability of the last-named theory is exhibited in Fig.
13-19 for the heptane-toluene system at 101. 3 kPa (1 atm). Five
pure-component constants for each species (T,, P,, w, 8, and v") are
required to use the CS method, which when applied within the
restrictions discussed by Lenoir and Koppany [Hydrocarbon
Process., 46(11), 249 (1967)] gives good results. Revised coefficients
of (,rayson and Streed (GS) (Pap. 20-P07, Sixth World Pet. Conf.,
Frankfurt, June, 1963) for the ®} expression permit application of

(b)

y/x) in light-hydrocarbon
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systems. (b) High-temperature range. [DePriester,

the CS correlation to higher temperatures and pressures and give
unproved predictions for hydrogen. Jin, Greenkorn, and C hao
[AIChE |, 41,1602 (1995)] present a revised correlation for the stan-
dard-state hqlud fugacity of hydrogen, applicable from 200 to 730 K.
For mixtures containing polar substances, more complex predic-
tive equations for y;* that involve binary-interaction parameters for
each pair of components in the mixture are required for use in Eq.
(13-4), as discussed in Sec. 4. Six popular expressions are the Mar-
gules, van Laar, Wilson, NRTL, UNIFAC, and UNIQUAC equa-
tions. Extensive listings of binary-interaction parameters for use in all
but the UNIFAC equation are given by Gmehling and Onken (op.
cit.). They obtained the parameters for blIldl'V systems at 101.3 kPa (1
atm) from best fits of the experimental T-y-x equilibrium data by set-
ting @ and @/ to their ideal-gas, ideal-solution limits of 1.0 and
P*/P respectively, with the vapor pressure P** given by a three-
constant Antoine equation, whose values they tabulate. Table 13-2
lists their parameters for some of the bm(uy systems included in
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