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Sticky Note
1) Remove the first parameter of LHS equation (here V) in the RHS diagram and write other corner parameters.
2) Put arrow in the middle parameter always. 
3) Interchange clockwise and anticlockwise.
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Exclusively for Education purpose

Antoine Equation

% A mathematical expression derived from the Clausius-Clapeyron relation
* Relation between the vapor pressure and the temperature of pure substances
** First proposed by Ch. Antoine, a French researcher, in 1888

B
T A—-logP ¢
where: P is the absolute vapor pressure of a substance,
T is the temperature of the substance
A, B and C are substance-specific coefficients (i.e., constants or parameters)

log is typically either log,, or log,

A simpler form of the equation with only two coefficients :

B
logP=A— —
og =

Source: https://www.tau.ac.il/~tsirel/dump/Static/knowino.org/wiki/Antoine equation.html



https://www.tau.ac.il/%7Etsirel/dump/Static/knowino.org/wiki/Antoine_equation.html

Exclusively for Education purpose

Validity ranges

0 The Antoine equation cannot be used for the entire vapor pressure range from the triple point to the critical
point because it is not flexible enough.

O Therefore two sets of coefficients are commonly used: one set for vapor pressures at temperatures below
the normal boiling point (NBP) and one set for vapor pressures at temperatures above the normal boiling
point.

Example sets of coefficients

A B C . .T -T
minimum maximum

Water below

e N 8.07131 1730.63 233.426 1 L
Water above

o o 8.14019 1810.94 244.485 99 374
Ethanol below

e Nap 8.20417 1642.89 230.300 -57 A
Ethanol below 7.68117 1332.04 199.200 77 243

the NBP

The coefficients in Table 1 are for temperatures in °C and absolute pressures in mmHg when using log,, as
the logarithmic function.

Source: https://www.tau.ac.il/~tsirel/dump/Static/knowino.org/wiki/Antoine equation.html
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JOULE-THOMSON EXPANSION



Throttling valves
N

O Throttling valves are any kind of flow-restricting devices that cause a
significant pressure drop in the fluid.

d Some familiar examples are :

(a) An adjustable valve

e
(X) 0‘ ¢

\!
\)

9
NN

(b) A porous plug

——————
(c) A capillary tube




Joule Thomson effect

O Unlike turbines, they produce a pressure drop without involving any work.

O The pressure drop in the fluid is often accompanied by a large drop in

temperature, and for that reason throttling devices are commonly used in

refrigeration and air-conditioning applications.

O The magnitude of the temperature drop (or, sometimes, the temperature

rise) during a throttling process is governed by a property called the Joule

Thomson coefficient.



mailt
Line

mailt
Line

HP
Line

HP
Line

HP
Line

HP
Line

HP
Line


Joule Thomson effect

O Throttling valves are usually small devices, and the flow through them may

be assumed to be adiabatic (g = 0) since there is neither sufficient time nor

large enough area for any effective heat transfer to take place.

O Also, there is no work done (w = 0), and the change in potential energy, if

any, is very small.

1 Even though the exit velocity is often considerably higher than the inlet

velocity, in many cases, the increase in kinetic energy is insignificant.

1 Then the conservation of energy equation for this single-stream steady-flow

device reduces to (See Equation 12 of Lecture 9):

hi = hout
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Isenthalpic Process
6

hinzhout

That is, enthalpy values at the inlet and exit of a throttling valve are the same.

For this reason, a throttling valve is sometimes called an isenthalpic device.

Throttling
valve

The temperature of an ideal gas does not change during a throttling (h = constant)
process since h = h(T)
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Joule-Thomson coefficient
I

d Temperature of the fluid may remain unchanged, or it may even increase or

decrease during a throttling process.

O The temperature behavior of a fluid during a throttling (h = constant)

process is described by the Joule-Thomson coefficient, defined as:

(aT)
H=\35
aPh
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Joule-Thomson coefficient
I

O Thus the Joule-Thomson coefficient is a measure of the change in

temperature with pressure during a constant-enthalpy process.

Q If
< 0 Temperature increases

= 0 Temperature remains constant

> 0 Temperature decreases




Development of an h = constant line on a P-T diagram.
SN2

TA

Py, T,  Pr 1
(varied) (fixed)

Exit states




Development of an h = constant line on a P-T diagram.

O A careful look at its defining equation reveals that the Joule-Thomson

coefficient represents the slope of h = constant lines on a T-P diagram.

 Such diagrams can be easily constructed from temperature and pressure
measurements alone during throttling processes.

O A fluid at a fixed temperature and pressure T, and P, (thus fixed enthalpy) is
forced to flow through a porous plug, and its temperature and pressure
downstream (T, and P,) are measured.

1 The experiment is repeated for different sizes of porous plugs, each giving a
different set of T, and P,. Plotting the temperatures against the pressures

gives us an h = constant line on a T-P diagram.
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 Repeating the experiment for different sets of inlet pressure and
temperature and plotting the results, we can construct a T-P diagram for a
substance with several h = constant lines.

T A

Maximum inversion
temperature

Constant-enthalpy lines of a
substance
on a T-P diagram

oY



d Some constant-enthalpy lines on the T-P diagram pass through a point of

zero slope.

 The line that passes through these points is called the inversion line, and the

temperature at a point where a constant-enthalpy line intersects the

inversion line is called the inversion temperature.

O The temperature at the intersection of the P = 0 line (ordinate) and the

upper part of the inversion line is called the maximum inversion

temperature.

d The slopes of the h = constant lines are negative (u,; < 0) at states to the

right of the inversion line and positive (u;; > 0) to the left of the inversion

line.
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[ A throttling process proceeds along a constant-enthalpy line in the direction

of decreasing pressure, that is, from right to left.

O Therefore, the temperature of a fluid increases during a throttling process

that takes place on the right-hand side of the inversion line.

 However, the fluid temperature decreases during a throttling process that

takes place on the left-hand side of the inversion line.

O It is clear from this diagram that a cooling effect cannot be achieved by

throttling unless the fluid is below its maximum inversion temperature.

O This presents a problem for substances whose maximum inversion

temperature is well below room temperature.
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O The decrease in temperature as the pressure drops corresponds to a

decrease in molecular kinetic energy, the molecular potential energy must

be increasing or else energy conservation would be violated. We can say the

molecules are more stable when they are closer together at the higher

pressure and, consequently, that attractive forces are dominant in this

region. The temperature will increase as pressure decreases, indicating that

repulsive forces dominate the behavior in this region.

[ These two regions are separated by the inversion line, where the slope of T

vs. P is zero and where attractive and repulsive interactions exactly balance.

 For a given pressure, the temperature at which these interactions balance is

known as the Boyle temperature.
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Liquefaction

1 Joule-Thomson expansion can be used to liquefy gases if it is performed in

the region where p;; > 0 to the left of the inversion line.

 Liquefaction is an important process industrially (e.g. liquid nitrogen and

helium).
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(a) Basic liquefaction process using Joule-Thomson expansion

(b) Linde process
16

2

1 |

Gas—|—.--E i t '
wﬂ'

Compressor

Recycle

Joule-Thomson
expansion

Separator

2

-l
é”?

1 |
Gas I
W, Q

il —

Heat exchanger  Joule-Thomson

(b)

expansion

Tt
Liquid



Liquefaction

O The gas is first compressed from state 1 to 2 to increase its pressure.
However, during compression, the temperature of the gas also rises. It is
then cooled from state 2 to state 3 to lower its temperature.

1 These two processes are intended to bring it to the left region of inversion
curve and to put it in a state where a throttling process will bring it into the
two phase region.

O It now goes through an isenthalpic Joule-Thomson expansion, from state 3
to state 4, where the temperature drops low enough to lead to
condensation.

O The vapor and liquid streams at states 5 and 6, respectively, are then

separated.



Liquefaction
e dq
O An improvement to the liquefaction process is shown in Figure b. In this
process, an additional heat exchanger is employed to recover the energy

from the non-condensed gas. This gas is then recycled. The process depicted

in Figure b is known as the Linde process.
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General Expression for Joule-Thomson Coefficient
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APPENDIX G

THERMODYNAMIC PROPERTY DERIVATIVES
AND THE BRIDGMAN TABLE

In Section 2.10 and Table 2.2 we showed the five useful
equations for calculating the changes in common thermo-
dynamic properties with changes in 7 and P. Those five
satisfy the needs of most undergraduates and most working
engineers. However some uncommon problems require other
mathematical relations among thermodynamic properties;
those can be found using the methods in this appendix.

These relations can all be derived starting with the prop-
erty equation (Eq. 2.32), and the definitions of /, g, @, Cp and
Cy. The derivations are shown in many thermodynamics
books and form a favorite exercise in differential calculus for
graduate students. All 168 of the possible relations between
the variablesu, , s, g, a, v, P, and T can be worked out quickly
and easily using a Bridgman table, Table G.1 (thus missing
out on all that fun calculus and algebra).

For any of the properties u, &, s, g, and @ we can write a
two-term Taylor series expansion of the derivative. For
example, for s as a function of T and P,

Os Js
ds= (=) dT — | dP G.1
= (om) -+ (%), .
Comparing this to Eq. 2.35

ds = P ar— (ﬂ) dp (2.35)
T dr ),

We see that these are the same if

(BB

The first of these comes from the definition of the entropy; the
second comes from one of the Maxwell relations. Many
thermodynamics texts spend considerable effort showing
how these come about and how to derive any of the other
derivatives of this type we might need. These derivatives are
all of the form (0a/0b), where a, b, and c are any of the
following variables, T, P, v, u, h, s, g, and a. Taking 3
variables at a time from a list of 8 allows for 336 combina-
tions, and thus 336 such derivatives, but half of those are the
reciprocals of others so there are only 168 such derivatives
among this list of variables. Of these 168 the most useful 10
are shown in Table 2.2. But some of the others are sometimes
useful; they are easily found from Table G.1

Example G.1 Show the construction of the first six deri-
vatives in Table 2.2 from the Bridgman table.

ou\ _ (0u), [EqBT.4]
(W)p "~ (8T), [Eq.BT.2] (G3)
= % = Cp—P(0v/0T)p

Ou\ _ (Ow)y _ [EqBT.101] _ T(9v/OT)p + P(Ov/OP);
<_> r (0P), —[Eq.BT.2] 1

= —[T(3v/3T), + P(dv/OP),] (G4)

oh\ _ (h), [EqQBT.5] Cp
(ﬁ) ~(oT), [EqBT2] 1 G (G3)

Physical and Chemical Equilibrium for Chemical Engineers, Second Edition. Noel de Nevers.
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o\ _ (dh), [Eq.BT.11]
<8P)T ~(0P);  —[Eq.BT.2]

_ vt T(0v/OT), _

| v—T(0v/0T),

(G.6)

(ﬁ) _ 09y _[BaBTI_Co/T _ 0 0 ()

~ (0T), [Eq.BT.2] 1

ds\ _ (0s);  [EqBT.9]  (9v/oT),
(_>T - (oP), —[Eq.BT2] -1 —(0v/0T)p

(G.8)

These were easy, because the denominators were all = & 1.
The following example shows a more complex derivative
taken from a practical problem.

Example G.2 A rigid container is filled completely with
saturated liquid propane at 100 psia. We now transfer heat to
it, allowing time for perfect thermal mixing, and ask how fast
does the pressure rise as we introduce heat. From the first law
we know that for a closed system at constant volume dU =
mdu = dQ, so we are asking for (OP/0u),,. This is one of the
168 derivatives derivable from Table G.1 but not one of the 10
most often used. This example is a very simplified version of
the problem addressed in [1].
From Table G.1

(0P), —[BqBT.1] _ —(8v/AT),

(50).

(Ou), — [EQ.BT.15] ~ Cp(0v/0OP),+T(0v/OT)>

-1

= (G.9)
(Ov/OP);
Cp————-+T(0v/OT
ravjar), T 1O
Taking values from [2],
o op. N Btu )
T~55°F=515°R; Cp : 0'6—lbm°F’
ﬂ ~ _10-6 ft* /ll.)m
oP) psi

and

3
MY 391075 /M
ar), °F

Thus

(5). -

-1
106 ft’ /lbm 3
Bt i 3 /1b
0.6-—= P 515°R<3.9. 1051/ m>
Ibm F3 9.10-5 ft’ /Tbm F
. =
(G.A)

The first term in the denominator, after simple cancellation of
units becomes

Btu —107° Btu

. — = —0.01538
Ibmpsi3.9-1073 Ibm psi’

while the second becomes

515k (3.9 103 ft> /Ibm Btu 144 Ibf /ft>
' °F 778 ft Ibf psi

Btu
Ibm psi

= 0.00372

and

(e}~ »
Iy (Z0.01538 +0.00371)

Btu/lbm
psi
psi kPa
=857T——= — G.B

Btu/Ibm kJ/kg (G.B)
which shows that heating liquids in closed containers leads to
rapid pressure rises. [ |
PROBLEMS

See the Common Units and Values for Problems and Examples.

G.1 Show the derivation of the P and T derivatives of g and
a using Table G.1 and compare them to the values in
Table 2.2.

G.2 Estimate the change in enthalpy, /, of liquid propane at
55°F, as it is isothermally compressed from 100 psia
to 1000 psia, using values from Example G.2. Over
this pressure range for liquid propane, v is practically
constant &~ 0.0304 ft*/Ibm. Compare the result with the
interpolated value of 1.75 Btu/lbm from [2].

G.3 Show the forms that the five equations in Table 2.2 take
for an ideal gas.

G.4 To convince yourself of the utility of Table G.1, derive
the formula for (OP/du),, without using Table G.1I.



TABLE G.1 BRIDGMAN TABLE

This version, presented by Hougen et al. [3], is much more
compact than the original by Bridgman [4]. Its use is illus-
trated in Examples G.1 and G.2.

1. Pressure Constant and Pressure Variable

(), = —(@P), = (v/0T),  (BT])
(0T)p = —(8P), = 1 (BT.2)
(95), = —(9P)s = Cp/T (BT.3)
() = —(0P), = Co—P(Dv/OT), (BT.4)
(0h), = —(0P), = Cr (BT.5)
(9a), = —(0P), = ~[s + P(0v/0T),] (BT.6)
(98)p = —(0P)g = —s (BT.7)

2. Temperature Constant and Temperature Variable
(Ov)y = —(0T), = —(0v/OP); (BT.8)
(Os)7 = —(9T)5 = (9v/OT)p (BT.9)

(Ou); = —(0T), = T(dv/AT), + P(dv/OP); (BT.10)

(Oh)y = —(0T),; = —v + T(dv/dT), (BT.11)
(9a); = —(0T), = P(dv/IP), (BT.12)
(ag)T = —(aT)G =—v (BT.13)

3. Volume Constant and Volume Variable

(95)y = —(@9)g = (1/T)[Cp(Av/OP); + T(dv/OT)}]
(BT.14)

(8u), = — (), = Cp(Av/OP), + T(3v/IT)3
(BT.15)

(8h), = — (), = Cp(3v/OP), + T(dv/IT)7

by (BT.16)

BRIDGMAN TABLE 349

(9a), = —(dv), = —s(dv/OP); (BT.17)

(0g)y = —(0v)g = —[v(0v/OT)p + s(0v/OP);] (BT.18)

4. Entropy Constant and Entropy Variable

(Ou)g = —(s)y = (P/T)[Cp(9v/OP); + T(9v/OT)y]
(BT.19)

(0h)s = —(0s)y = —(vCp/T) (BT.20)
(8a)s = —(9s), = (1/T)[P(v/OP); + T(9v/OT);]
+sT(0v/OT)p} (BT.21)

(08)s = —(0s)g = —(1/T)[vCp—sT(0v/OT),]
(BT.22)

5. Internal Energy Constant and Internal Energy
Variable

(0h)y =—(0u)y = v[Cp—P(Iv/OT),]

—P[Cp(3v/DP), +T(dv/T)3)]
(BT.23)

(8a), = —(u), = P[Cp(3v/OP); +T(9v/T)3]
+s[T(9v/IT)p+ P(Ov/OP),]
(BT.24)

(08)y = —(0u)g = v[Cp—P(Iv/OP)]
+s[T(8v/DT) p + P(0v/OP),]
(BT.25)

6. Enthalpy Constant and Enthalpy Variable

(9a)yy = —(0h), = ~[s+ P(@v/OT), ] [v—T(9v/0T) ]

+ PCp(0v/OT), (BT.26)

(98), = —(0h) g = —v(Cp +5) + Ts(0v/dT), (BT.27)
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7. Helmholz Energy Constant and Helmholz Energy

Variable

(9a)g = —(08), = —s[v + P(Ov/OP);]—Pv(0v/OT)p

(BT.28)

Comments on the Bridgman Table

1.

Making up your own Bridgman table is harder than it
looks (and it looks pretty hard!). According to Hougen
et al. [3] Nobel Prize physicist Percy Bridgman, who
invented it, had 2 errors in the first one he published
in [5].

. The properties v, u, h, s, g, and a are all shown lower

case, indicating that they apply to one Ibm or one kg or
one mol or Ibmol. One can convert them to properties
for some specified mass or number of mots by multi-
plying them by m or n.

. These use only the constant-pressure heat capacity,

the most commonly-used heat capacity, (see Table
A9).

The derivative (0v/OP); can be derived in algebraic
form with either a v-explicit EOS or (as its reciprocal)
from a P- explicit EOS. But (9v/9T), cannot be easily
derived algebraically with a P-explicit EOS. All the
commonly used EOSs (see section 2.11 and Appendix
F) are P-explicit, and cannot be solved to give simple
algebraic expressions for (9v/0T),. For liquids and
solids these two derivatives are equal to the coefficient
of thermal expansion and the isothermal compressibil-
ity, (see Appendix D). Various numerical techniques

approximate (0v/0T)p; if all else fails, one can eval-
uate it by

v\ _ (0P/T)
<W>P =~ @Pjov), (BT.30)

which can be computed algebraically from a P- explicit
EOS.

5. The derivatives that incorporate v cannot be easily
programmed using P-explicit equations of state.

6. If you must derive thermodynamic relations without
the Bridgman table, you will use the historically

important Maxwell Relations; (L), = (%), : (25), =

_(%)P :(%)T = (3—5% and (%)T :_(%)P' If you have
a Bridgman table you need never use these, but as a
student of thermodynamic history you should know
about them.
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Lee-Kesler Method

The Lee—Kesler method allows the estimation of the saturated vapor
pressure at a given temperature for all components for which the critical
pressure Pc, the critical temperature Tc, and the acentric factor w are known.

InP = fO 4. )
6.09648

15.6875

r

9 =5.92714 — — 1.28862 - In T, + 0.169347 - T®

M = 15.2518 — —13.4721 - In T, + 0.43577 - T
with

P T
P, = 3 (reduced pressure) and T, = T (reduced temperature).
C L


https://en.wikipedia.org/wiki/Saturated_vapor_pressure
https://en.wikipedia.org/wiki/Saturated_vapor_pressure
https://en.wikipedia.org/wiki/Critical_pressure
https://en.wikipedia.org/wiki/Critical_pressure
https://en.wikipedia.org/wiki/Critical_temperature
https://en.wikipedia.org/wiki/Acentric_factor

Edmister Equation & Edmister
Charts



Edmister Equation

Edmister Equation, is a correlation used to
calculate acentric factor of pure liquids, if critical
pressure, temp., and boiling point are known.

w =3 [log(P_/14.7)] - 1
7T,/ T, -1]

This equation can be rearranged for calculating
critical pressure of liquids.

But it was observed, that Edmister equation was
more suitable for hydrocabons, as it predicted
closely for hydrocarbon vapor-liquid mixtures.




THE EFFECT OF PRESSURE ON HEAT CAPACITY

For many substances changes in CE is considered to be
negligible with pressure changes. For. Eg. water, air
etc.

Usually, the data on heat capacities given in the
handbooks, are, usually for the ideal gas state, using
empirical formula:

C’',=a+bT+cT?+dT* where the superscript ( )
refers to the ideal gas state.

The ideal gas values can be used for the real gases at
low pressures only

At high pressures the effect of pressure on the specific
heat may be appreciable.



http://en.wikipedia.org/wiki/Ideal_gas
http://en.wikipedia.org/wiki/Gas
http://en.wikipedia.org/wiki/Pressure
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6.4.13 Gibbs—Helmholtz Equation

The Gibbs—Helmholtz equation provides the effect of temperature on Gibbs free energy. Consider Eq
(6.18).

dG=-S8dT+VdP (6.18)
At constant pressure, the above equation reduces to
(r?G) ==35 (6.72)
LT Jp

Even though this equation gives the effect of temperature on G it will be convenient for practical
calculations to replace S in terms of measurable quantities. This can be done as follows.

Noting that d(u/v) = (v du — u dv)/vz, the derivative of G/T can be written as
(JGIT))  T(JGIIT)p — G

Ja |, T*

Use Eq. (6.72) to eliminate (¢#G/dT)p from the above equation.

l(a‘(cf’r)‘\ _~I8'~ G
L T i T2

Since by definition, G = H — TS, the above equation can be simplified as

|r’ A(GIT) H

=i 6.73
LT ) 7 i

Equation (6.73) is known as Gibbs—Helmholtz equation and it finds wide application in the
analysis of chemical reaction equilibria. Integration of Eq. (6.73) yields

G H
_=-j_dr+c' (6.74)
T 2

where G is a constant of integration. The enthalpy of a substance can be written as
H= j Gy dT A H

where HL is a constant of integration whose value is known by the choice of reference state at which
enthalpy is arbitrarily set equal to zero. Expressing Cp as a power function of 7 as

Cp=a+bT+ cT2, H=HUO +aT+ (1/2) bT? + (1/3) T, Substituting these in Eq. (6.74), we get
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