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Antoine Equation

 A mathematical expression derived from the Clausius-Clapeyron relation 
 Relation between the vapor pressure and the temperature of pure substances
 First proposed by Ch. Antoine, a French researcher, in 1888

where: P is the absolute vapor pressure of a substance, 
            T is the temperature of the substance
        A, B and C are substance-specific coefficients (i.e., constants or parameters)
           log is typically either log10 or loge

A simpler form of the equation with only two coefficients :
  

Exclusively for Education purpose

Source: https://www.tau.ac.il/~tsirel/dump/Static/knowino.org/wiki/Antoine_equation.html

https://www.tau.ac.il/%7Etsirel/dump/Static/knowino.org/wiki/Antoine_equation.html


Validity ranges

 The Antoine equation cannot be used for the entire vapor pressure range from the triple point to the critical 
point because it is not flexible enough. 

 Therefore two sets of coefficients are commonly used: one set for vapor pressures at temperatures below 
the normal boiling point (NBP) and one set for vapor pressures at temperatures above the normal boiling 
point.

Example sets of coefficients
A B C T

minimum
T

maximum

Water below 
the NBP 8.07131 1730.63 233.426 1 100

Water above 
the NBP 8.14019 1810.94 244.485 99 374

Ethanol below 
the NBP 8.20417 1642.89 230.300 -57 80

Ethanol below 
the NBP 7.68117 1332.04 199.200 77 243

The coefficients in Table 1 are for temperatures in °C and absolute pressures in mmHg when using log10 as 
the logarithmic function.

Source: https://www.tau.ac.il/~tsirel/dump/Static/knowino.org/wiki/Antoine_equation.html

Exclusively for Education purpose

https://www.tau.ac.il/%7Etsirel/dump/Static/knowino.org/wiki/Antoine_equation.html
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JOULE-THOMSON EXPANSION

Lecture No. 32/33



JOULE-THOMSON EXPANSION

2



Throttling valves 
3

❑ Throttling valves are any kind of flow-restricting devices that cause a

significant pressure drop in the fluid.

❑ Some familiar examples are :



Joule Thomson effect
4

❑ Unlike turbines, they produce a pressure drop without involving any work.

❑ The pressure drop in the fluid is often accompanied by a large drop in

temperature, and for that reason throttling devices are commonly used in

refrigeration and air-conditioning applications.

❑ The magnitude of the temperature drop (or, sometimes, the temperature

rise) during a throttling process is governed by a property called the Joule

Thomson coefficient.
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Joule Thomson effect
5

❑ Throttling valves are usually small devices, and the flow through them may

be assumed to be adiabatic (q ≈ 0) since there is neither sufficient time nor

large enough area for any effective heat transfer to take place.

❑ Also, there is no work done (w = 0), and the change in potential energy, if

any, is very small.

❑ Even though the exit velocity is often considerably higher than the inlet

velocity, in many cases, the increase in kinetic energy is insignificant.

❑ Then the conservation of energy equation for this single-stream steady-flow

device reduces to (See Equation 12 of Lecture 9):

hi = hout
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Isenthalpic Process
6

h in = h out

That is, enthalpy values at the inlet and exit of a throttling valve are the same.

For this reason, a throttling valve is sometimes called an isenthalpic device.

The temperature of an ideal gas does not change during a throttling (h = constant) 
process since h = h(T)
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Joule-Thomson coefficient
7

❑ Temperature of the fluid may remain unchanged, or it may even increase or

decrease during a throttling process.

❑ The temperature behavior of a fluid during a throttling (h = constant)

process is described by the Joule-Thomson coefficient, defined as:

𝜇 =
𝜕𝑇

𝜕𝑃
ℎ
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Joule-Thomson coefficient
8

❑ Thus the Joule-Thomson coefficient is a measure of the change in

temperature with pressure during a constant-enthalpy process.

❑ If

<  0  Temperature increases

µJT =  0  Temperature remains constant

>  0  Temperature decreases



Development of an h = constant line on a P-T diagram. 
9



10

❑ A careful look at its defining equation reveals that the Joule-Thomson

coefficient represents the slope of h = constant lines on a T-P diagram.

❑ Such diagrams can be easily constructed from temperature and pressure

measurements alone during throttling processes.

❑ A fluid at a fixed temperature and pressure T1 and P1 (thus fixed enthalpy) is

forced to flow through a porous plug, and its temperature and pressure

downstream (T2 and P2) are measured.

❑ The experiment is repeated for different sizes of porous plugs, each giving a

different set of T2 and P2. Plotting the temperatures against the pressures

gives us an h = constant line on a T-P diagram.

Development of an h = constant line on a P-T diagram. 
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11

❑ Repeating the experiment for different sets of inlet pressure and
temperature and plotting the results, we can construct a T-P diagram for a
substance with several h = constant lines.

Constant-enthalpy lines of a 
substance

on a T-P diagram



12

❑ Some constant-enthalpy lines on the T-P diagram pass through a point of

zero slope.

❑ The line that passes through these points is called the inversion line, and the

temperature at a point where a constant-enthalpy line intersects the

inversion line is called the inversion temperature.

❑ The temperature at the intersection of the P = 0 line (ordinate) and the

upper part of the inversion line is called the maximum inversion

temperature.

❑ The slopes of the h = constant lines are negative (µJT < 0) at states to the

right of the inversion line and positive (µJT > 0) to the left of the inversion

line.
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13

❑ A throttling process proceeds along a constant-enthalpy line in the direction

of decreasing pressure, that is, from right to left.

❑ Therefore, the temperature of a fluid increases during a throttling process

that takes place on the right-hand side of the inversion line.

❑ However, the fluid temperature decreases during a throttling process that

takes place on the left-hand side of the inversion line.

❑ It is clear from this diagram that a cooling effect cannot be achieved by

throttling unless the fluid is below its maximum inversion temperature.

❑ This presents a problem for substances whose maximum inversion

temperature is well below room temperature.
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14

❑ The decrease in temperature as the pressure drops corresponds to a

decrease in molecular kinetic energy, the molecular potential energy must

be increasing or else energy conservation would be violated. We can say the

molecules are more stable when they are closer together at the higher

pressure and, consequently, that attractive forces are dominant in this

region. The temperature will increase as pressure decreases, indicating that

repulsive forces dominate the behavior in this region.

❑ These two regions are separated by the inversion line, where the slope of T

vs. P is zero and where attractive and repulsive interactions exactly balance.

❑ For a given pressure, the temperature at which these interactions balance is

known as the Boyle temperature.
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15

❑ Joule-Thomson expansion can be used to liquefy gases if it is performed in

the region where µJT > 0 to the left of the inversion line.

❑ Liquefaction is an important process industrially (e.g. liquid nitrogen and

helium).

Liquefaction

mailt
Line
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(a) Basic liquefaction process using Joule–Thomson expansion
(b) Linde process



17

❑ The gas is first compressed from state 1 to 2 to increase its pressure.

However, during compression, the temperature of the gas also rises. It is

then cooled from state 2 to state 3 to lower its temperature.

❑ These two processes are intended to bring it to the left region of inversion

curve and to put it in a state where a throttling process will bring it into the

two phase region.

❑ It now goes through an isenthalpic Joule-Thomson expansion, from state 3

to state 4, where the temperature drops low enough to lead to

condensation.

❑ The vapor and liquid streams at states 5 and 6, respectively, are then

separated.

Liquefaction
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❑ An improvement to the liquefaction process is shown in Figure b. In this

process, an additional heat exchanger is employed to recover the energy

from the non-condensed gas. This gas is then recycled. The process depicted

in Figure b is known as the Linde process.

Liquefaction



19

General Expression for Joule-Thomson Coefficient
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General Expression for Joule-Thomson Coefficient
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General Expression for Joule-Thomson Coefficient
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General Expression for Joule-Thomson Coefficient
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General Expression for Joule-Thomson Coefficient
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APPENDIX G

THERMODYNAMIC PROPERTY DERIVATIVES
AND THE BRIDGMAN TABLE

In Section 2.10 and Table 2.2 we showed the five useful

equations for calculating the changes in common thermo-

dynamic properties with changes in T and P. Those five

satisfy the needs of most undergraduates and most working

engineers. However some uncommon problems require other

mathematical relations among thermodynamic properties;

those can be found using the methods in this appendix.

These relations can all be derived starting with the prop-

erty equation (Eq. 2.32), and the definitions of h, g, a, CP and

CV. The derivations are shown in many thermodynamics

books and form a favorite exercise in differential calculus for

graduate students. All 168 of the possible relations between

the variables u, h, s, g, a, v,P, andT can beworked out quickly

and easily using a Bridgman table, Table G.1 (thus missing

out on all that fun calculus and algebra).

For any of the properties u, h, s, g, and a we can write a

two-term Taylor series expansion of the derivative. For

example, for s as a function of T and P,

ds ¼ @s

@T

� �
P

dT þ @s

@P

� �
T

dP ðG:1Þ

Comparing this to Eq. 2.35

ds ¼ CP

T
dT� dv

dT

� �
P

dP ð2:35Þ

We see that these are the same if

@s

@T

� �
P

¼ CP

T
and

@s

@P

� �
T

¼ � dv

dT

� �
P

ðG:2Þ

The first of these comes from the definition of the entropy; the

second comes from one of the Maxwell relations. Many

thermodynamics texts spend considerable effort showing

how these come about and how to derive any of the other

derivatives of this type we might need. These derivatives are

all of the form @a=@bð Þc where a, b, and c are any of the

following variables, T, P, v, u, h, s, g, and a. Taking 3

variables at a time from a list of 8 allows for 336 combina-

tions, and thus 336 such derivatives, but half of those are the

reciprocals of others so there are only 168 such derivatives

among this list of variables. Of these 168 the most useful 10

are shown in Table 2.2. But some of the others are sometimes

useful; they are easily found from Table G.1

Example G.1 Show the construction of the first six deri-

vatives in Table 2.2 from the Bridgman table.

@u

@T

� �
P

¼ ð@uÞP
@Tð ÞP

¼ ½Eq:BT:4�
½Eq:BT:2�

¼ CP�Pð@v=@TÞP
1

¼ CP�Pð@v=@TÞP

ðG:3Þ

@u

@P

� �
T

¼ ð@uÞT
@Pð ÞT

¼ ½Eq:BT:101�
�½Eq:BT:2� ¼

Tð@v=@TÞP þ Pð@v=@PÞT
�1

¼ �½Tð@v=@TÞP þ Pð@v=@PÞT � ðG:4Þ

@h

@T

� �
P

¼ ð@hÞP
@Tð ÞP

¼ ½Eq:BT:5�
½Eq:BT:2� ¼

CP

1
¼ CP ðG:5Þ

Physical and Chemical Equilibrium for Chemical Engineers, Second Edition. Noel de Nevers.
� 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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@h

@P

� �
T

¼ ð@hÞT
@Pð ÞT

¼ ½Eq:BT:11�
�½Eq:BT:2�

¼ �vþ Tð@v=@TÞP
�1

¼ v�Tð@v=@TÞP ðG:6Þ

@s

@T

� �
P

¼ ð@sÞP
@Tð ÞP

¼ ½Eq:BT:3�
½Eq:BT:2� ¼

CP=T

1
¼ CP=T ðG:7Þ

@s

@P

� �
T

¼ ð@sÞT
@Pð ÞT

¼ ½Eq:BT:9�
�½Eq:BT:2� ¼

ð@v=@TÞP
�1

¼ �ð@v=@TÞP

ðG:8Þ

These were easy, because the denominators were all ¼ � 1.

The following example shows a more complex derivative

taken from a practical problem.

Example G.2 A rigid container is filled completely with

saturated liquid propane at 100 psia. We now transfer heat to

it, allowing time for perfect thermal mixing, and ask how fast

does the pressure rise as we introduce heat. From the first law

we know that for a closed system at constant volume dU¼
mdu¼ dQ, so we are asking for ð@P=@uÞV. This is one of the
168 derivatives derivable fromTableG.1 but not one of the 10

most often used. This example is a very simplified version of

the problem addressed in [1].

From Table G.1

@P

@u

� �
V

¼ ð@PÞV
@uð ÞV

¼ �½Eq:BT:1�
½Eq:BT:15� ¼

�ð@v=@TÞP
CPð@v=@PÞTþTð@v=@TÞ2P

¼ �1

CP

ð@v=@PÞT
ð@v=@TÞP

þ Tð@v=@TÞP
ðG:9Þ

Taking values from [2],

T� 55�F¼ 515�R; CP � 0:6
Btu

lbm�F
;

@v

@P

� �
T

� �10�6 ft
3=lbm

psi

and

@v

@T

� �
P

� 3:9 � 10�5 ft
3=lbm
�F

.

Thus

@P

@u

� �
V

¼

¼ �1

0:6
Btu

lbm�F

�10�6 ft
3=lbm

psi

3:9 � 10�5 ft
3=lbm
�F

þ 515�R 3:9 � 10�5 ft
3=lbm
�F

� �

ðG:AÞ

The first term in the denominator, after simple cancellation of

units becomes

0:6
Btu

lbm psi

�10�6

3:9 � 10�5
¼ �0:01538

Btu

lbm psi
;

while the second becomes

515�R 3:9 � 10�5 ft
3=lbm
�F

� �
� Btu

778 ft lbf

� �
� 144 lbf=ft2

psi

� �

¼ 0:00372
Btu

lbm psi

and

@P

@u

� �
V

¼ �1

ð�0:01538þ 0:00371ÞBtu=lbm
psi

¼ 85:7
psi

Btu=lbm
¼ 253

kPa

kJ=kg
ðG:BÞ

which shows that heating liquids in closed containers leads to

rapid pressure rises. &

PROBLEMS

See theCommonUnits andValues for Problems andExamples.

G.1 Show the derivation of the P and T derivatives of g and

a using Table G.1 and compare them to the values in

Table 2.2.

G.2 Estimate the change in enthalpy, h, of liquid propane at

55�F, as it is isothermally compressed from 100 psia

to 1000 psia, using values from Example G.2. Over

this pressure range for liquid propane, v is practically

constant� 0.0304 ft3/lbm. Compare the result with the

interpolated value of 1.75Btu/lbm from [2].

G.3 Show the forms that the five equations in Table 2.2 take

for an ideal gas.

G.4 To convince yourself of the utility of Table G.1, derive

the formula for @P=@uð ÞV without using Table G.1.
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TABLE G.1 BRIDGMAN TABLE

This version, presented by Hougen et al. [3], is much more

compact than the original by Bridgman [4]. Its use is illus-

trated in Examples G.1 and G.2.

1. Pressure Constant and Pressure Variable

ð@vÞP ¼ �ð@PÞV ¼ ð@v=@TÞP ðBT:lÞ

ð@TÞP ¼ �ð@PÞT ¼ 1 ðBT:2Þ

ð@sÞP ¼ �ð@PÞS ¼ CP=T ðBT:3Þ

ð@uÞP ¼ �ð@PÞU ¼ CP�Pð@v=@TÞP ðBT:4Þ

ð@hÞP ¼ �ð@PÞH ¼ CP ðBT:5Þ

ð@aÞP ¼ �ð@PÞA ¼ �½sþ Pð@v=@TÞP� ðBT:6Þ

ð@gÞP ¼ �ð@PÞG ¼ �s ðBT:7Þ

2. Temperature Constant and Temperature Variable

ð@vÞT ¼ �ð@TÞV ¼ �ð@v=@PÞT ðBT:8Þ

ð@sÞT ¼ �ð@TÞS ¼ ð@v=@TÞP ðBT:9Þ

ð@uÞT ¼ �ð@TÞU ¼ Tð@v=@TÞP þ Pð@v=@PÞT ðBT:10Þ

ð@hÞT ¼ �ð@TÞH ¼ �vþ Tð@v=@TÞP ðBT:11Þ

ð@aÞT ¼ �ð@TÞA ¼ Pð@v=@PÞT ðBT:12Þ

ð@gÞT ¼ �ð@TÞG ¼ �v ðBT:13Þ

3. Volume Constant and Volume Variable

ð@sÞV ¼ �ð@vÞS ¼ ð1=TÞ½CPð@v=@PÞT þ Tð@v=@TÞ2P�
ðBT:14Þ

ð@uÞV ¼ �ð@vÞU ¼ CPð@v=@PÞT þ Tð@v=@TÞ2P
ðBT:15Þ

ð@hÞV ¼ �ð@vÞH ¼ CPð@v=@PÞT þ Tð@v=@TÞ2P
�vð@v=@TÞP

ðBT:16Þ

ð@aÞV ¼ �ð@vÞA ¼ �sð@v=@PÞT ðBT:17Þ

ð@gÞV ¼ �ð@vÞG ¼ �½vð@v=@TÞP þ sð@v=@PÞT � ðBT:18Þ

4. Entropy Constant and Entropy Variable

ð@uÞS ¼ �ð@sÞU ¼ ðP=TÞ½CPð@v=@PÞT þ Tð@v=@TÞ2P�
ðBT:19Þ

ð@hÞS ¼ �ð@sÞH ¼ �ðvCP=TÞ ðBT:20Þ

ð@aÞS ¼ �ð@sÞA ¼ ð1=TÞ½Pð@v=@PÞT þ Tð@v=@TÞ2P�
þsTð@v=@TÞPg ðBT:21Þ

ð@gÞS ¼ �ð@sÞG ¼ �ð1=TÞ½vCP�sTð@v=@TÞP�
ðBT:22Þ

5. Internal Energy Constant and Internal Energy

Variable

ð@hÞU ¼�ð@uÞH ¼ v½CP�Pð@v=@TÞP�
�P½CPð@v=@PÞT þTð@v=@TÞ2P�

ðBT:23Þ

ð@aÞU ¼�ð@uÞA ¼ P½CPð@v=@PÞT þTð@v=@TÞ2P�
þs½Tð@v=@TÞPþPð@v=@PÞT �

ðBT:24Þ

ð@gÞU ¼�ð@uÞG ¼ v½CP�Pð@v=@PÞT �
þs½Tð@v=@TÞPþPð@v=@PÞT �

ðBT:25Þ

6. Enthalpy Constant and Enthalpy Variable

ð@aÞH ¼�ð@hÞA ¼�½sþPð@v=@TÞP� � ½v�Tð@v=@TÞP�
þPCPð@v=@TÞP ðBT:26Þ

ð@gÞH ¼�ð@hÞG ¼�vðCPþ sÞþTsð@v=@TÞP ðBT:27Þ

BRIDGMAN TABLE 349



7. Helmholz Energy Constant and Helmholz Energy
Variable

ð@aÞG ¼ �ð@gÞA ¼ �s½vþ Pð@v=@PÞT ��Pvð@v=@TÞP
ðBT:28Þ

Comments on the Bridgman Table

1. Making up your own Bridgman table is harder than it

looks (and it looks pretty hard!). According to Hougen

et al. [3] Nobel Prize physicist Percy Bridgman, who

invented it, had 2 errors in the first one he published

in [5].

2. The properties v, u, h, s, g, and a are all shown lower

case, indicating that they apply to one lbm or one kg or

one mol or lbmol. One can convert them to properties

for some specified mass or number of mots by multi-

plying them by m or n.

3. These use only the constant-pressure heat capacity,

the most commonly-used heat capacity, (see Table

A.9).

4. The derivative ð@v=@PÞT can be derived in algebraic

form with either a v-explicit EOS or (as its reciprocal)

from a P- explicit EOS. But ð@v=@TÞP cannot be easily
derived algebraically with a P-explicit EOS. All the

commonly used EOSs (see section 2.11 and Appendix

F) are P-explicit, and cannot be solved to give simple

algebraic expressions for ð@v=@TÞP. For liquids and

solids these two derivatives are equal to the coefficient

of thermal expansion and the isothermal compressibil-

ity, (see Appendix D). Various numerical techniques

approximate ð@v=@TÞP; if all else fails, one can eval-

uate it by

@v

@T

� �
P

¼ �ð@P=@TÞV
ð@P=@vÞT

ðBT:30Þ

which can be computed algebraically from aP- explicit

EOS.

5. The derivatives that incorporate v cannot be easily

programmed using P-explicit equations of state.

6. If you must derive thermodynamic relations without

the Bridgman table, you will use the historically

important Maxwell Relations; ð@T@vÞs ¼ ð@P@sÞv : ð@T@PÞs ¼
�ð@v@SÞP :ð@S@vÞT ¼ ð@P@TÞv and ð@S@PÞT ¼�ð@v@TÞP. If you have
a Bridgman table you need never use these, but as a

student of thermodynamic history you should know

about them.
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Lee–Kesler Method

The Lee–Kesler method allows the estimation of the saturated vapor 
pressure at a given temperature for all components for which the critical 
pressure Pc, the critical temperature Tc, and the acentric factor ω are known.

https://en.wikipedia.org/wiki/Saturated_vapor_pressure
https://en.wikipedia.org/wiki/Saturated_vapor_pressure
https://en.wikipedia.org/wiki/Critical_pressure
https://en.wikipedia.org/wiki/Critical_pressure
https://en.wikipedia.org/wiki/Critical_temperature
https://en.wikipedia.org/wiki/Acentric_factor


Edmister Equation & Edmister 
Charts



Edmister Equation
• Edmister Equation, is a correlation used to 

calculate acentric factor of pure liquids, if critical 
pressure, temp., and boiling point are known.

• ω = 3 [log(Pc / 14.7)] -  1
•    7 [Tc / Tb  -1]
• This equation can be rearranged for calculating 

critical pressure of liquids.
• But it was observed, that Edmister equation was 

more suitable for hydrocabons, as it predicted 
closely for hydrocarbon vapor-liquid mixtures. 



THE EFFECT OF PRESSURE ON HEAT CAPACITY

• For many substances changes in Cp is considered to be 
negligible with pressure changes. For. Eg. water, air 
etc. 

• Usually, the data on heat capacities given in the 
handbooks, are, usually for the ideal gas state, using 
empirical formula:

• C’p = a + bT + cT2 + dT3 where the superscript ( ‘ ) 
refers to the ideal gas state. 

• The ideal gas values can be used for the real gases at 
low pressures only

• At high pressures the effect of pressure on the specific 
heat may be appreciable.

http://en.wikipedia.org/wiki/Ideal_gas
http://en.wikipedia.org/wiki/Gas
http://en.wikipedia.org/wiki/Pressure


Edmister charts
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