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MODULE -1



CL349 POLYMER PROCESSING

Module 1:

Rheology of Polymer melts, Viscosity models,

Dependence of viscosity on Temperature, Pressure, molecular
weight.

Viscoelastic models. Extensional viscosity,
Rheometers: Capillary, Rotational, cone & plate.

Die swell.



FLOW OF FLUIDS
v Different fluids flow differently

Flow of Water Flow of Honey Flow of Toothpaste

v Type of flow depends on the nature of the materials, how
the molecules are interacted, the processing conditions
etc.



What is “Rheology”...

> Rheology; from the Greek word rheos & logos

* Rheos - stream current (i.e. flowing)
» Logos - the study of...

> The technical definition Is:
» “The science of deformation and flow”

> In practice it is used as a problem solving tool...

* My material...
« will not puur
* is not stable
« will not spray
* |5 settling
* |eaves trail marks
> Can be used to measure internal structure and
properties under processing conditions




Using a simple illustrative picture:

,, The Rheology Road*

ideally viscous
liquids

like water, oils

Law of Newton

viscoelastic
liquids

like glues,

shampoos

viscoelastic
solids
like pastes,
gels, rubbers

ideally elastic
(rigid) solids
like stone, steel
Law of Hooke




Rheology Definitions
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Viscosity=n= F’_= shear stress = dynm2 =dynm3s
S shear rate sec™

The fundamental unit of viscosity measurement is the poise. A
material requiring a shear stress of one dyne per square meter to
produce a shear rate of one reciprocal second has a viscosity of
one poise, or 100 centipoise.

Fluidity:

It is the reciprocal of viscosity (d = 1/n)

Kinematic Viscosity:

It is the absolute viscosity divided by the density of liquid at a
specified temperature.

Kinematic viscosity = n/ p; where p is the density of the liquid.
The unite is Stock (S) or centi-Stock (cS)

Relative viscosity:
IS the relation of the solution viscosity n with respect to the
viscosity of the solvent “standard” n,

Nrel = N/ Ng



Viscosity:
Thus, the fluid element, when subjected to shear stress, {yx, experiences a rate of
deformation {shear rate) given by du/dy.

The rate of shearing strain is increased in direct proportion—that is,
(i
T X —
u"_’t'

This result indicates that for common fluids, such as water, oil, gasoline, and air, the
shearing stress and rate of shearing strain (velocity gradient) can be related with a
relationship of the form:

o du
d Il:lll:llll

where the constant of proportionality is designated by the Greek symbol p (mu) and

is called the absolute viscosity, dynamic viscosity, or simply the viscosity of the
fluid.



Newtonian Fluid:

Most common fluids such as water, air, and gasoline are Newtonian under normal
conditions.

If the fluid is Newtonian, then

i,

T, o€ —

WL _:-f}:

It states that the shear stress on a fluid element layer is directly proportional to the
rate of shear strain or velocity gradient.

The constant of proportionality is called the co-efficient of viscosity.

el i
T=U0l—".
Md}?



Non-Newtonian Fluid:

Fluids in which shear stress is not directly proportional to deformation rate are non-
Newtonian.

Non-Newtonian fluids commonly are classified as having time-independent or time-
dependent behavior.

Familiar example is toothpaste.

Toothpaste behaves as a "fluid" when squeezed from the tube. However, it does not
run out by itself when the cap is removed.

There is a threshold or yield stress below which toothpaste behaves as a solid.

This may be adequately represented for many engineering applications by the power
law model, which for one-dimensional flow becomes

| du !
']"}.1. = k :f; [211}

where the exponent, #, is called the flow behavior index and the coefficient, k, the consis-
tency index. This equation reduces to Newton's law of viscosity fornm = | with & = p.



VISCOSITY MODELS



Time Independent Fluid Flow
(Generalized Newtonian Fluids)



e Newtonian Fluid:

Bingham
z plastic
_Pseudo plastic
Shear Stress ( ar Dilatant
:\ p ;
tg | .z . r R
| y - ___—" Newtonian
| ; BT e
| ; '_'ﬁ___;.___"_'I —
— .
) dV,
Strain rate, —
dy

. dv, . :
« Newtonian: T = UL d—;: air, water, glycerin

« Bingham Plastic: 1 = T, + 1 d_x - toothpaste
yield stress Y
(Fluid does not move or deform till there is a cntical stress)

i dv\ ™ .
» Dilatant: 1 =K (d—}“) ,n = 1: starch or sand suspension

or shear thickening fluid

(Fluid starts ‘thickening’ with increase in its apparent viscosity)
dvg\™
dy

(Fluid starts ‘thinning' with decrease in its apparent viscosity)

* Pseudo plastic: 1 =K ( ,n <= 1: paint or shear thinning fluid
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Power-law fluid/ Ostwald—de Waele power law (2 Parameters Model)

A Power-law fluid is a type of generalized Newtonian fluid for which the shear

stress, 0 , is given by o\ 77
o =m(Yy)

Where n is the flow behavior index or power law index (dimensionless) and m is

the flow consistency index (Sl units Pa.s"),
In terms of the apparent viscosity,

n=m(y)"""
n Type of fluid
<] Pseudoplastic

1 Newtonian fluid

>1  Dilatant (less common)

The value of n in the range 0.3-0.7 depending upon the concentration and
molecular weight of the polymer, etc. Smaller is the value of n, more shear-thinning
Is the material.

Drawback _
It predicts neither the upper nor the lower Newtonian plateaus in the limits of ¥ — 0

\or Ve i




Cross Law (3 Parameters Model)
» New parameter incorporated here is zero shear viscosity

» Another difference is Cross law index (m) is introduced in place of power law

index Mo
I = NiL
"T1E (W)

where 173 = zero-shear-rate viscosity

A

natural time (1.e., inverse of the shear rate

at which the fluid changes from Newtonian to
power-law behavior)

m = Cross-law index (= 1 — n for large shear rates)

log
o Applicable at the low-shear-rate behavior of 08 1

the viscosity. "o
o Differs from the Bird-Carreau law primarily in

the curvature of the viscosity curve in the

vicinity of the transition between the plateau

zone and the power law behavior

v'At low shear rate (4 < 1/)\ ) cross fluids behave as Newtonian fluids
KJAt high shear rate ( 4 > 1/)\ ) as power-law fluids.

/A log?¥

Il




Bird-Carreau Law (4 Parameters Model)
» New parameter incorporated here is infinite shear viscosity

n—1
)

N =1 + (0 — noe) (14 N*47) 7

imfinite-shear-rate viscosity

where 7

70 = zero-shear-rate viscosity
A = natural time (i.e., inverse of the shear rate
at which the fluid changes from Newtonian to
power-law behavior) log N
n = power-law index o
1/ )\ log ¥

v'At low shear rate (4 < 1/A ) Carreau fluid behaves as a Newtonian fluid
v'At high shear rate ( 4 » 1/)\ ) Carreau fluid behaves as a power-law fluid.

It differs from the Cross law primarily in the curvature of the viscosity curve in the
vicinity of the transition between the plateau zone and the power law behavior.

L g
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Carreau-Yasuda Law (5 Parameters Model)

L

where 1)y

T

A

v

n

n—1
M=o+ (M0 — 1ec) [T+ (AY)]

zero-shear-rate viscosity
mfinite-shear-rate viscosity
natural time (i.e., inverse of the shear rate
at which the fluid changes from Newtonian
power-law behavior)
index that controls the transition from the
Newtonian plateau to the power-law region
power-law index

log M

o

The Carreau-Yasuda law is a slight variation

on the Bird-Carreau law. The addition of the
exponent ‘a’ allows for control of the

transition from the Newtonian plateau to the Mo
power-law region.

New parameter incorporated here is an index a that controls the nature of transition

to

™

v" low value of parameter a (a < 1) lengthens the transition.
v" high value of parameter a (a > 1) results in an abrupt transition.
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Time Dependent Fluid Flow



CL203 FLUID MECHANICS
e Newtonian Fluid:

Shear _

stress Rheopectic
T

Common

fluids
Constant Thixotropic

strain rate
] Time —e

A further complication of nonnewtonian behavior 1s the transient effect shown n
Fig. 1.9b. Some fluids require a gradually increasing shear stress to maintain a
constant strain rate and are called rheopectic. The opposite case of a flmid that thins
out with time and requires decreasing stress is termed thixetropic. We neglect non-



THIXOTROPY

* When material is sheared at a constant rate, 8ot

its apparent viscosity decreases with the

duration of shearing.
% As the value of y is gradually increased, thex

a.s)

time needed to reach the equilibrium value is% |

Viscosity

seen to drop dramatically.

% The breakdown of structure may be
reversible, i.e., upon removal of the external
shear and following a long period of rest, the

fluid may regain (rebuilding of structure) the  ©°

initial value of viscosity.

B0+

Build-up of
structure

No shearing

300 400 500 600

Duration of Shearing (s)




T

Rheopexy
% Fluids which show the negative thixotropy, i.e., their apparent viscosity (or the

corresponding shear stress) increases with time of shearing

“* The hysteresis loop is obviously inverted
 As opposed to thixotropic fluids, external shear raises the build up of structure

Example : gypsum pastes, printer inks, coal-water slurries and protein solutions

Thixotropic
Fluid

Shear Stress

Rheopectic
Fluid

Shear Rate
U W




INTRODUCTION

Effect of Temperature on viscosity

*The procedure is based on the idea that increasing temperature has an equivalent effect
on viscosity as decreasing shear rate.

*This trend can be seen by inspection of Fig., noting that increasing the temperature
moves data to lower curves.

p (Pa s)

10 ] ] 1 | L I L
10 10 102 10°' 1 10 10° 10 10

¥ (87)

Fig. 2.4 Viscosity versus shear rate of a LDPE at several temperatures: from top to bottom:

°C) = 115, 130, 150, 170, 190, 210, and 240. Data of Meissner [2]



INTRODUCTION

Effect of Temperature on viscosity

oIf this effect is quantitatively the same at all shear rates, this implies that a single
horizontal shift factor can be used to shift data on a log—log plot taken at several
temperatures along the shear rate axis to coincide with those measured at a reference
temperature TO.

*This idea is expressed by Eq (1).

n(y, To) = [1/or(T)n(7ar, T)

*For greater precision, a second shift factor, bT(T), normally equal to (T0p0/Tq), should
also be applied to the viscosity, but it is usually close to unity and is often neglected.

*Such a representation is called a master curve and is a plot of reduced viscosity versus
reduced shear rate.



INTRODUCTION

Effect of Temperature on viscosity

*For a polymer well above its glass transition temperature, it is often found that the
zero-shear viscosity obeys the well-known Arrhenius relationship shown by Eq (2).

E. /1] ]
No(T) = 1y(To) exp {E (? — ?{])}

*The constant Ea is called the activation energy for flow.

*But this is the special case of Eq. (1) for shear rates where the viscosity equals n0,
which implies that the shift factor 1s give by Eq. (3).

_on(T) E,.(1 1
ar(T) = fo(7o) — {R (T Tﬂ)}




Since ny(Ty) is a constant for a given master curve, the shift factor is proportional
to 1jy(7T"). Thus, a viscosity master curve can be prepared by plotting #(7T)/ny(T)
versus 71, (7).

» It should be mentioned that time—temperature superposition is of limited utility with
crystallizable polymers, because the range of temperatures over which
measurements can be made is limited to that between the melting point and the
temperature at which the polymer star

* Time—temperature superposition is not useful for long-chain branched systems
although such materials are sometimes characterized in terms of specially-defined
activation energies.ts to decompose.



INTRODUCTION

Effect of Pressure on Viscosity

*Whereas increasing temperature decreases the viscosity of melts, increasing pressure
increases it, because compression of the melt decreases free volume.

*Pressure shift factors can be used to generate master curves just as temperature shift
factors are used in time—temperature superposition.

*The Barus equation is often found to describe the pressure dependence of viscosity.

’fﬂf!”}] ;
In |[— =hHP—-P
[’j’ﬂ (Po) / 0)

*This implies that the pressure shift factor aP is given by:

Injap(P)| = p(P — Py)



INTRODUCTION

Effect of Pressure on Viscosity

 Figure (a) shows the effect of pressure on the viscosity of a high-density
polyethylene at 180 C and Fig. (b) is a maser curve based on the same data.

* The horizontal shift factor is a0 POPP; the prime indicating that the vertical shift
factor was neglected, 1.e., set equal to unity.

(a) Effect of pressure on the viscosity versus shear rate curve of HDPE. From Park and

Dealy.
(b) Shifted viscosity curve taking bP to be unity; reference pressure is 0.1 MPa. From
Park and Dealy
100 T 100
_ . IDPE 150:C HDPE 180°C :23 EE:
Ny . Mo gas 434 MPa
s ¥ - = |8 MP
- '!!E‘f; g o 14 MPa
S 0+ *69MPa "2 I 2 1 * 11 MPa
=) |+ 52 MPa = P s ~0.1 MPa
= 434 MPa R s — Model
L = |8 MPa ! i ¥
L« 11 MPa Tt
= 0.1 MPa I
]E’J,'[ll 0..1 IT I':li 100 0.1 1 10 100

7™ yay, (s



INTRODUCTION

Effect of Pressure on Viscosity

 The Barus Eq. was found to fit the entire viscosity curve very well with bP set at
unity.

* Increasing the pressure from atmospheric 0.1 to 69 MPa (&10,000 psi) increases the
viscosity by a factor of about two.



INTRODUCTION

Effect of Molecular Weight on Viscosity

* Small molecules in the liquid state interact primarily through intermolecular forces
that give rise at the microscopic level to friction and at the macroscopic level to
viscosity.

* The viscosity of such a liquid is independent of shear rate.

* A polymeric liquid with a low molecular weight behaves in this way, and its
viscosity increases linearly with molecular weight.

* For example, for linear polyethylene this behavior obtains up to a molecular weight
around 3,500.

* But over a fairly narrow range of molecular weights the viscosity starts to decrease
with shear rate and the increase of n0 with molecular weight becomes much stronger
than linear.

* In the same range of rates, the viscosity depends increasingly on shear rate.



INTRODUCTION

Effect of Molecular Weight on Viscosity

* At low molecular weights the viscosity is proportional to molecular weight and
varies little with shear rate over a wide range of shear rates.

* As the molecular weight increase, n0 starts to increase much more rapidly with M,
and the viscosity starts to depend strongly on shear rate.



Effect of Molecular Weight on Viscosity

Fig. 210 Zemo-she
visopsily versus mokcula
weight {(logarithirde scales)
fir several polymers. The
awes have been shified o
avild crowding. The low-MTW
lines correspmd o
unentangled samples and
hawe slopes of wndty, while
the Fgh-MW lines
comespond i entangled
polymers and are fded o
lines having sopes of 3.4,
Froain Berry and Fas [14]
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INTRODUCTION

Effect of Molecular Weight Distribution on Viscosity

The effect of molecular weight distribution, MWD, 1s somewhat more subtle but still

very important. In general, commercial polymers have a rather broad molecular
weight distribution.

Figure is a sketch of viscosity curves for two polymers having the same weight
average molecular weight but different molecular weight distributions.

The upper curve is for a nearly monodisperse sample, while the lower one is for a
sample with a moderately broad MWD.

The broadening of the distribution stretches out the range of shear rates over which
the transition from the zero-shear viscosity to the power law region occurs.

log (viscosity)

log (shear rate)

Fig. 2.11 Shapes of viscosity curves for two samples having the same M, but with narrow
(upper curve) and broad (lower) molecular weight distributions. The narrow MWD sample moves



LONG TERM MECHANICAL PROPERTIES

* VISCOELASTIC MODELS:

* Over the years there have been many attempts to simulate the behaviour of
viscoelastic materials.

* This has been aimed at (1) facilitating analysis of the behaviour of plastic products, (i1)
assisting with extrapolation and interpolation of experimental data and (ii1) reducing the
need for extensive, time-consuming creep tests.

e The most successful of the mathematical models have been based on spring and
dashpot elements to represent, respectively, the elastic and viscous responses of plastic
materials.

* In a perfectly elastic (Hookean) material the stress, a, is directly proportional to be
strain, E, and the relationship may be written, for uniaxial stress and strain, as

F = constant x £

where the constant is referred to as the modulus of the material.

* In a perfectly viscous (Newtonian) fluid the shear stress, ¢ is directly proportional to

the rate of strain .
T = constant x y



LONG TERM MECHANICAL PROPERTIES
* VISCOELASTIC MODELS:
« MAXWELL MODEL.:
* The Maxwell Model consists of a spring and dashpot in series.

*The spring is the elastic component of the response and obeys the relation.
oy = E - Ej {212?:’

where o7 and £; are the stress and strain respectively and £ is a constant.

*The dashpot 1s the viscous component of the response
gy =17 - é'_': [2.23:

where n is a material constant.

Equilibrium Equation
For equilibrium of forces, assuming constant area

Applied Stress, 0 = o) = &2 (2.29)




LONG TERM MECHANICAL PROPERTIES
* VISCOELASTIC MODELS:
* MAXWELL MODEL.:

Geometry of Deformation Equation

The total strain, £ is equal to the sum of the strains in the two elements.
So

E=¢g1 + &2 (2.30)

From equations (2.27), (2.28) and (2.30)

] 1. 1
E:-ﬂ'l'-l'-‘—ﬂ'g
n

§

_ L
E=—--0+%

1
2 2.31)
3 n 7 ‘

*This is the governing equation of the Maxwell Model.




LONG TERM MECHANICAL PROPERTIES

* VISCOELASTIC MODELS:
« KELVIN-VOIGHT MODEL.:
* In this model the spring and dashpot elements are connected in parallel.

Stress—Strain Relations

These are the same as the Maxwell Model and are given by eguations (2.27)
and (2.28).

Equilibrium Equation
For equilibrium of forces it can be seen that the applied load is supported

jointly by the spring and the dashpot, so Asymplote €= %o %
o =0, +05 236)  foon ] N\ oy
Geometry of Deformation Equation i :
] Iy ta Time

In this case the total strain is equal to the strain in each of the elements, i.e.
£ =& = & (2.37)
From equations (2.27), (2.28) and (2.36)
g =§-& +n&

or using equation (2.37)
o=E-ge+n-£& (2.38)

This is the governing equation for the Kelvin (or Voigt) Model and it is
interesting to consider its predictions for the common time dependent defor-
mations.

{ Stress, O



INTRODUCTION

RHEOMETERS

A rheometer i1s a device wused to measure the way in which a
viscous fluid (a liquid, suspension or slurry) flows in response to applied forces.

*The word rheometer comes from the Greek, and means a device for measuring main
flow.

*Rheometers: Capillary, Rotational, cone & plate.



|

The fundamental methods can be classified under the specific geometry employed:
capillary, Couette (concentric cylinder), and plate-and cone.

1. Capillary Flow:

Capillary viscometers made of glass and operating under gravity are used mainly for
Newtonian liquids. For non-Newtonian fluids, the design must allow operation over
a wide range of flow rates, and the shear stress must be determined for fully
developed flow conditions.

The shear stress and shear rate at the wall can be determined from Equations (1) and
(2), respectively (Brodkey, 1967):

 _Dap

4L _Z Flow direction
E _E 326 + Ow d[EEQEDEJ ] | | |
dr) 4\nD*) 4 drt, e et hwregon " are

region



1. Capillary Flow:

Many foods such as applesauce, baby foods, and tomato puree are suspensions with
relatively large particles.

The flow behavior of a variety of food suspensions have been studied by using tubes
having a diameter of 6—10 mm (Charm, 1960; Saravacos, 1968; Escardino et al.,
1972; Rao et al., 1974; Scheve et al., 1974; Vitali and Rao, 1982).

The pressure drop over a given length, required to compute the shear stress, has
been measured by means of manometers and pressure transducers as well as the load
cell of a universal testing machine (Blake and Moran, 1975).



2. Couette Flow Viscometers:
* A number of Couette (concentric cylinder) viscometers are available commercially.

* Corey and Creswick (1970) presented a design in which the revolutions per minute
(rpm) of the rotating cylinder could be increased or decreased in a continuous
manner.

* Either the outer or the inner cylinder can be rotated. However, when the outer
cylinder is rotated, the transition to turbulent flow occurs at a higher speed than
when the inner cylinder is rotated (Schlichting, 1960). For the case of the outer
cylinder rotating and the inner cylinder being stationary, it can be shown that
(Brodkey, 1967).

dQ . . .
where Q is the angular veloci qud_g_,. ~ i~ Yozylinder (radians/second), ‘ P

-y 1s the shear rate, and the subscripts

1 and o denote the inner and outer cylinders, respectively. o

'
| r bubble




3. Plate and Cone Viscometers:

As the name indicates, a plate-and-cone viscometer consists of a circular flat plate
and a cone.

The cone angle is about 3° or less. When the angle is larger than 3°, edge effects can
distort the flow field.

For the case of a fixed plate and a rotating cone with a small angle, Brodkey (1967)
showed that

where op is the shear stress at the plate,

T 1s the torque per unit area, D is the plate diameter, 3T
: : : O,=—
Q is the angular velocity, -y p is the shear rate at the plate, D
and 0 is the cone angle in radians. N
Jlrp — E

|
_:_‘______;(/* o e /_4.._Testfluid
P B '

- [
’ \J’ _J') \\ Cone




INTRODUCTION

DIE SWELL

Polymer melts can also exhibit elasticity.

During flow they have the ability to store strain energy and when the stresses are
removed, this strain is recoverable.

A good example of elastic recovery is post extrusion swelling.

After extrusion the dimensions of the extrudate are larger than those of the die,
which may present problems if the dimensions of the extrudate are critical.

In these circumstances some knowledge of the amount of swelling likely to occur is
essential for die design.

If the die is of a non-uniform section (tapered, for example) then there will be
recoverable tensile and shear strains.

If the die has a uniform cross-section and is long in relation to its transverse
dimensions then any tensile stresses which were set up at the die entry for example,
normally relax out so that only the shear component contributes to the swelling at
the die exit.



INTRODUCTION

DIE SWELL

* If the die is very short (ideally of zero length) then no shear stresses will be set up
and the swelling at the die exit will be the result of recoverable tensile strains only.

* In order to analyse the phenomenon of post extrusion swelling it is usual to define
the swelling ratio, B, as

dlmensmn of extrudate

d1men31on of dle

ratio SPE T W Short die

dr IH . D _C 3

R p¢ 1
— Al B A B -

/ / Polymer melt Polymer melt

[
Annular element Annular element
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