Chemical Process Calculations CL204
 Module-1

Arnab Karmakar
Department of Chemical engineering
BIT Mesra, Ranchi

Units \& Dimensions
Dimensions are basic concepts of measurement such as, length, time, mass, temperature, etc.
Units are the means of expressing the dimensions, like length \rightarrow feet, centimeters.
time \rightarrow hour, second, minute, day,
mass \rightarrow kilogram, gram, pound.
Two most common n Temperature \rightarrow centrigrade, kelvin, sustem Rankine.
SI unit \rightarrow Le Systeme Internationale d'units.
/or si system of units

AE unit \rightarrow American Engineering system of units.

Fundamental (or basic) dimensions/ units which are measured ingle pendent $1 y$ and are sufficient to describe essential physical quantity.
length, max, time, Temperature, molar a mount.
Derived dimensions/ unit.
Those are developed in terms of
the fundamental unit.
Energy, force, power, density.

Derived units

Energy (E) Joule
Derived unit $\quad U=$ internal energy.

Force (F) Newton

$$
N=\operatorname{mass}_{k}^{g} \times \frac{f}{m^{2}}
$$

$$
=k g \cdot m \cdot s^{-2} \text { or } T \cdot m^{-1}
$$

Power (P) watt.

$$
W=\mathrm{kg} \cdot \mathrm{~m} \cdot \mathrm{~s}^{-3}=\frac{J}{\mathrm{~S}}=\mathrm{J} \cdot \mathrm{~s}^{-1}
$$

Density (s) kilogram per cubic meter
velocity meter, er second $\mathrm{m} \cdot \mathrm{s}^{-1}$
(v, u)

$$
(v, u)
$$

acceleration meter per second $\mathrm{m} \cdot \mathrm{S}^{-2}$

$$
t \text {, Squared }
$$

Pressure Newton persquare $N \cdot m^{-2}$ or Pa $t(p)$ meter / pascal (cp)
$\mathrm{kg} / \mathrm{m}^{3}$

$$
k g \cdot m^{-3}
$$

Heat capacity Joule per Kilogram $J . \mathrm{kg}^{-1} \cdot \mathrm{~K}^{-1} \rightarrow \mathrm{C}_{p}$

$$
\begin{aligned}
& \text { J. } \text { Newton } \times m=\frac{\text { Newton }}{m^{2}} \times m \times m^{2} \\
&= k g \times \frac{m}{s^{2}} \times m= \\
&= k g \cdot m^{2} \cdot s^{-2}=\text { Pascal } \times m^{3} \\
&=P a \cdot m^{3}
\end{aligned}
$$

$k g \cdot m^{-3}$
other important derived units are
mass velocity or mass flex.
= kilogram per meter square per secon

$$
=k g \cdot m^{-2} \cdot s^{-1}
$$

molar velocity $=\operatorname{mol} \cdot \mathrm{m}^{-2} \cdot \mathrm{~s}^{-1}$

$$
\begin{aligned}
\text { mass velocity } & =v \rho \cdot \\
& =m \cdot s^{-1} \cdot \mathrm{~kg} \cdot \mathrm{~m}^{-3} \\
& =\mathrm{kg} \cdot \mathrm{~m}^{-2} \cdot s^{-1}
\end{aligned}
$$

$$
\begin{aligned}
& \text { mass flow rate }=u \rho A \cdot A=\text { flow area. } \\
&=\frac{m}{s} \cdot \frac{k g}{m^{3}} \cdot m^{2} \\
& \rho=\text { density } \\
& u=\text { velocity }=k g \cdot s^{-1}
\end{aligned}
$$

Thermal conductivity, we $m^{-1} \cdot k^{-1}(k)$. viscosity, $-k g \cdot m^{-1} \cdot s^{-1}(\mu) \rightarrow$ symbol

AE system

Length	foot,	ft
mass	pound	$1 b_{m}$
time	Second	S
Temperature	degree Rankine	
	degree Fahrenheit	

molar amount pound mole 16 mol .
derived unit
Fores (F) pound (Force) 16 F .
Energy (E British thermal unit BTU or $(f t)\left(16_{f}\right)$ Foot pound (Force)
Power horse power hp

density pound per cubic | Foot |
| :---: |
| Po ot |
| Per |
| $\mathrm{ft}^{-3} / 16 / \mathrm{ft}^{3}$ |

Acceleration feet per second $\mathrm{Ft} \cdot \mathrm{S}^{-2}$ squared

Pressure Poundforee per square inch $16 \mathrm{~F} \cdot \mathrm{in}^{-2} /$ psi , psia a for absolute.

$$
\begin{aligned}
& \therefore \\
& \text { Absolute pressure }=\text { gauge pressure }+\begin{array}{c}
\text { Atmospheric } \\
\text { pressure }
\end{array} \\
& \therefore 1 \text { atm }=14.7 \mathrm{psi} \\
& 20 \mathrm{psi}=20+14.7(\text { psia }) \\
&=37.7 \mathrm{Psia}
\end{aligned}
$$

Heat capacity BTU per pound per degree $F . \rightarrow$ BTU $1.16_{m}^{-1} \cdot{ }^{\circ} \mathrm{F}^{-1}$

SI Prefik

conversion of units.
velocity $\mathrm{ft} / \mathrm{s} \rightarrow \mathrm{mi} / \mathrm{min} \rightarrow \mathrm{m} / \mathrm{s}$.

$$
\begin{aligned}
& 100 \mathrm{ft} / \mathrm{s} \rightarrow \mathrm{mi} / \mathrm{hr} .
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{100 \times 60 \times 60}{5280} \mathrm{mi} / \mathrm{hr}=68.182 \mathrm{mi} / \mathrm{hr} \\
& 100 \mathrm{ft} / \mathrm{s}=68.182 \mathrm{mi} / \mathrm{hr} \text {. } \\
& \begin{array}{c|c}
100 \mathrm{ft} & 1 \mathrm{~m} \\
\hline \mathrm{~S} & 3.28 \mathrm{ft}
\end{array}=\frac{100}{328} \mathrm{~m} / \mathrm{s} . \\
& y \mathrm{~m} / \mathrm{s}=30.48 \mathrm{~m} / \mathrm{s} .
\end{aligned}
$$

conversion or cm to in.

$$
\begin{aligned}
100 \mathrm{~cm} & =100 \mathrm{~cm} / \frac{1 \mathrm{in}}{2.54 \mathrm{cms}} \\
& =39.37 \mathrm{inch} .
\end{aligned}
$$

conversion of $10 \mathrm{in}^{3} / \mathrm{day} \& \mathrm{~cm}^{b} / \mathrm{min}$. volumetric flowrate.

$$
\begin{aligned}
& =0.11379 \mathrm{~cm}^{3} / \mathrm{drr} \quad \mathrm{~cm}^{3} / \mathrm{cm}^{3} / \mathrm{hr} \quad \mathrm{~cm}^{3} / \mathrm{min} \\
& =0.11379 \times\left(10^{-2}\right)^{3} \mathrm{~m}^{3} / \mathrm{hr} \\
& =0.11379 \times 10^{-6} \mathrm{~m}^{3} / \mathrm{hr} \\
& =\frac{0.11379 \times 10^{-6}}{60 \times 60} \mathrm{~m}^{3} / \mathrm{s} .
\end{aligned}
$$

conversion of gravitational accel aration

$$
1 N=1 \mathrm{~kg} \times \frac{m}{s^{2}}=1 \mathrm{~kg} \cdot \mathrm{~m} \cdot \mathrm{~s}^{-2}
$$

If a mass of 116 m is hypothetically accelerated at $8 \mathrm{ft} / \mathrm{s}^{2}$, where

$$
g=32.2 \mathrm{ft} / \mathrm{s}^{2}
$$

SI unit $g=9.8066 \simeq 9.8 \mathrm{~m} / \mathrm{s}^{2}$

$$
\begin{aligned}
& 9.8 \mathrm{~m} / \mathrm{s}^{2} \rightarrow \mathrm{ft} / \mathrm{s}^{2} \\
& 9.8 \frac{\mathrm{mh}}{\mathrm{~s}^{2}} \frac{3.28 \mathrm{Ft}}{1 \mathrm{~m}} \\
& =32.174 \mathrm{ft} / \mathrm{s}^{2} \simeq 32.2 \mathrm{ft} / \mathrm{s}^{2}
\end{aligned}
$$

$\Rightarrow F=116 \mathrm{~F} \rightarrow$ where 116 m is accelerated ingravity.

$$
\begin{aligned}
& 116 \mathrm{~F}=\frac{116 \mathrm{~m}\left|\frac{\mathrm{~g} \mathrm{Ft}}{\mathrm{~s}^{2}}\right| \frac{116 \mathrm{~F}}{32.17}}{} \\
&=116 \mathrm{~m} \times \frac{\mathrm{g}}{\mathrm{gc}} \\
& g_{c}=32.174 \frac{(\mathrm{ft})(16 \mathrm{~m})}{16 \mathrm{f}} \mathrm{~s}^{2}
\end{aligned}
$$

g_{0} is useful in $A E$ system where to convert 16 m to 16 F

Now take

$$
m=1016 \mathrm{~m}, \quad h=10 \mathrm{Ft} .
$$

Potential energy $=m g h$.

$$
\begin{aligned}
& P=1016 \mathrm{~m}\left|\frac{32.2 \mathrm{ft}}{5^{2}}\right| \begin{array}{l|l}
10 \mathrm{ft} & \left(\mathrm{~s}^{2}\right)(16 \mathrm{f}) \\
32.179(\mathrm{Ft})(16 \mathrm{~m})
\end{array} \\
& =100(\overrightarrow{F t})(16 \mathrm{~F}) \text { Fongth } \\
& \text { Sc } m=1016 \mathrm{~m}=10 \times 0.4535 \mathrm{~kg} \\
& P=10 \times 0.4535 \mathrm{~kg} \times 9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times \frac{10 \times}{3.28} \mathrm{~m} \\
& =980 \times 0.4535 \mathrm{~kg} \cdot \mathrm{~m}^{2} \cdot \mathrm{~s}^{-2} \mathrm{C} \\
& =980 \times 0.4535 \mathrm{~J} \\
& \text { kinetic energy }=\frac{1}{2} m v^{2} \mathrm{~J}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Viscosity }(\mu) \cdot \mathrm{kg} \cdot \mathrm{~m}^{-1} \cdot \mathrm{~s}^{-1} \text { or } 16_{\mathrm{p}} \cdot \mathrm{hr} \cdot \mathrm{FE}^{-2} \text { or } 1 \mathrm{bp}_{\mathrm{p}} \cdot \mathrm{ft} \mathrm{c}^{-2} \cdot \mathrm{hr} \\
& \text { convert } 10 \mathrm{~kg} \cdot \mathrm{~m}^{-1} \cdot \mathrm{~s}^{-1} \text { (SI unit) to } \\
& \text { AE. unit } \rightarrow 16 \mathrm{~F} \cdot \mathrm{hr} . \mathrm{Ft}^{-2} \\
& 10 \mathrm{~kg}|1000 \mathrm{gmy}| \frac{0.0022 \mathrm{lbm}}{1 \mathrm{~kg}} \mathrm{~m} . \\
& =\frac{10 \times 1000 \times 0.002216 \mathrm{~m} \cdot \mathrm{~s}^{-1} \cdot \mathrm{Ft}^{-1}}{3.28084} \\
& =6.70559 \quad 16 \mathrm{~m} \cdot \mathrm{Pt}^{-1} \cdot \mathrm{~s}^{-1} \text { (another unit } \\
& \text { of viscosity). } \\
& \therefore \text { Now } \\
& \therefore 116 \mathrm{~m}=\frac{1}{32 \cdot 174} 1 \mathrm{hF}^{2} \cdot \mathrm{AE}^{-1} . \\
& \text { because }\left[1 \mathrm{l} \mathrm{~b}_{\mathrm{f}}=32.1741 \mathrm{bm} \cdot \mathrm{Ft} \cdot \mathrm{~s}^{-2}\right] \\
& 6.7055916 \mathrm{M} \cdot \mathrm{FE}^{-1} \cdot \mathrm{~S}^{-1} \\
& =\frac{6.70559}{32.174} 16 \mathrm{~A}^{2} \cdot \mathrm{ft}^{-1} \cdot \mathrm{ft}^{-1} \cdot \mathrm{~s}^{-1} \\
& =0.208416 \mathrm{p}^{5} . \mathrm{ft}^{-2} \\
& \begin{aligned}
=\frac{0.2084}{3600} \quad 1 b_{f} & =h r \cdot f t^{-2} . \\
& =0.00005789 \mathrm{l} 6_{1} \cdot \mathrm{hr} \cdot \mathrm{ft}
\end{aligned}
\end{aligned}
$$

$\left.\begin{array}{rl}\text { Thermal conductivity }(\mathrm{K}) & \mathrm{W} \cdot \mathrm{m}^{-1} \cdot \mathrm{e}^{-1} \\ \rightarrow & \mathrm{~J} \cdot \mathrm{~m}^{-1} \cdot \mathrm{~s}^{-2}\end{array}\right] \rightarrow$ SI

$$
\text { BTU. } \mathrm{hr}^{-1} \cdot+\mathrm{t}^{-1} \cdot \mathrm{of}^{-1} \quad[1 \text { BTU }=1055.056 \mathrm{~J}] \quad \begin{aligned}
& =252.164 \mathrm{edl}]
\end{aligned}
$$

convert $B+U \cdot h r^{-1} \cdot f t^{-1} \cdot \mathrm{~F}^{-1}$. to W.m ${ }^{-1} \cdot \mathrm{~B}^{-1}$.

$$
\begin{aligned}
& 1 \begin{array}{l|c|c|c|c}
\text { BTU } & 1055.056 \mathrm{~T} & 1 \mathrm{hr} & 3.28 \mathrm{EK} & \text { of } \\
\hline \text { hr. BE. } \mathrm{OF} & 1 \mathrm{BTV} & 36005 & 1 \mathrm{~m} & \frac{9}{5}{ }^{\circ} \mathrm{C}
\end{array} \\
& =\frac{1 \times 1055.056 \times 3.28 \times 5}{3600 \times 9} \frac{\mathrm{~J}}{\mathrm{~s}} \cdot \mathrm{~m}^{-1} \cdot{ }^{\circ} \mathrm{e}^{-1} \\
& =0.534 \mathrm{~W} \cdot \mathrm{~m}^{-1} \cdot 0 \mathrm{C}^{-1} . \\
& \therefore \text { Now } 1 \mathrm{w} \cdot \mathrm{~m}^{-1} \cdot e^{-1}=1 \mathrm{w} \cdot \mathrm{~m}^{-1} \cdot \mathrm{k}^{-1} \text {. } \\
& \therefore 1^{4} \mathrm{C}=1+273^{\circ} 15 \mathrm{~K} \\
& \therefore \quad C_{1}{ }^{\circ} \mathrm{C}=K_{1}-273 \cdot 16 \mathrm{~K} \\
& \therefore \quad C_{2}{ }^{\circ} \mathrm{C}=\mathrm{K}_{2}-273.15 \mathrm{~K} \\
& \therefore\left(C_{1}-e_{2}\right) \cdot C=\left(K_{1}-K_{2}\right) K . \\
& \Delta T{ }^{\circ} C=\Delta T K
\end{aligned}
$$

\therefore units in e_{p}, k, h are in the form of $\Delta T: C_{P}\left(1 \mathrm{~J} \cdot \mathrm{~kg}^{-1}: \circ \mathrm{C}^{-1}\right)=C_{P}\left(1 \mathrm{~J} \cdot \mathrm{Kg}^{-1} \cdot \mathrm{~K}^{-1}\right)$

$$
\therefore \text { Total heat }=m C_{p} \Delta T
$$

other units are
$h^{\text {e ct }}$ transfer coefficient h.
$\therefore h$ (watt. $m^{-2} \cdot k^{-1}: /$ watt $\cdot m^{-2} \cdot{ }^{\circ} \mathrm{C}^{-1}$).
h (BTU $\left.\cdot{h r^{-1}}^{2} \cdot \mathrm{At}^{-2} \cdot \mathrm{~F}\right)$.
Problem
velocity of a fluid measured
with a pitt tube is given by,

$$
u=\sqrt{\frac{2 \Delta p}{\rho}}
$$

$\theta=$ velocity.
$\Delta P=$ pressure drop $=15 \mathrm{~mm} \mathrm{Hg}$

$$
\rho=\text { density of plaid }=1.20 \mathrm{gm}^{\mathrm{m}} / \mathrm{cm}^{3}
$$

Find velocity

$$
\left.\frac{2 \times \Delta p}{\rho}=\frac{2 \times 15 \mathrm{~mm} 1+\mathrm{g} \mid}{}\left|\frac{1.01325 \times 10^{6} \mathrm{~Pa}}{760 \mathrm{~mm}}\right| \frac{\mathrm{cm}^{3}}{} \right\rvert\, \frac{(0.00)^{3} \mathrm{~m}^{3}}{1.20 \mathrm{gm}} \mathrm{~cm}^{3}
$$

$$
\left|\frac{1000 \mathrm{gm}}{1 \mathrm{~kg}}\right|
$$

$$
=\frac{2 \times 15 \times 1.01325 \times 10^{5} \times 10^{-6} \times 10^{3}}{760 \times 1.20} \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}}
$$

$$
=3.333 \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}}
$$

Dimensional consistency
Equations must be dimensionally y consistent.

$$
A_{1} \pm A_{2} \pm A_{3}=A_{4}
$$

Then units / dimensions of terms. A_{1}, A_{2}, A_{3}, and A_{4} will be same.
Each term in an equation as the same net dimensions/units as every other term to which it is added, substracted, or equated.

$$
\begin{aligned}
& \Rightarrow 1 \mathrm{~m} \pm 1 \mathrm{gm} \neq \\
& \Rightarrow 1 \mathrm{~kg} / \mathrm{s} \pm 2 \text { watt } \neq \\
& 1 \mathrm{~m}+3 \mathrm{~m}=4 \mathrm{~m} \\
& 2 \mathrm{~J}+5 \mathrm{~J}=7 \mathrm{~J} \\
& \therefore A_{1} \times A_{2} \text { or } A_{1} \div A_{2} .
\end{aligned}
$$

A_{1} and A_{2} units/dimentions must not be saved,
They can be different in multiplication or division.

$$
\begin{aligned}
\text { Mass alex } & =\text { velocity } x \text { density } \\
& =v \rho \\
& =m / s \times k g / m^{3} \\
& \Rightarrow \mathrm{~kg} \cdot \mathrm{~m}^{-2} \cdot \mathrm{~s}^{-1} \\
\text { Power } & =\frac{\text { Energy }}{\text { mime }}=\frac{J}{s}=\text { walt }
\end{aligned}
$$

5 watt +40000 J
5 watt $+\frac{400 \phi \phi}{5 \phi \phi} \frac{\mathrm{~J}}{\mathrm{~s}}$
$5 w+80 w=85 w$
vander walls equation

$$
\begin{aligned}
& \left(P+\frac{a}{v^{2}}\right)(v-b)=R T \\
& P=\text { Pressure } N / m^{2} \\
& v=\mathrm{m}^{3} / \mathrm{mol}
\end{aligned}
$$

$\therefore a, b$ are vander wall constant.
\Rightarrow unit of θ and 6 are same
6 (m^{3} / mol).

$$
\begin{aligned}
\frac{a}{v^{2}} & =p \\
\Rightarrow a & =p \times v^{2} \\
& =\frac{N}{m^{2}} \times\left(\frac{m^{3}}{m o l}\right)^{2} \\
& =N \cdot m^{4} \cdot \text { mol }^{-2} \\
& =\mathrm{J} \cdot \mathrm{~m}^{3} \cdot \mathrm{~mol}^{-2}
\end{aligned}
$$

$$
\begin{aligned}
& \therefore T=F \\
& \therefore R=\frac{P \times v}{T}=\frac{N}{m^{2}} \cdot \frac{m^{h}}{m o l \lambda} K . \\
& =J \cdot m \circ l^{-1} \cdot k^{-1} \\
& R=J \cdot \operatorname{mol}^{-1} \cdot k^{-1} \ldots C=k-273 \\
& =B T V \cdot 16 \mathrm{~mol}^{-1} \cdot O R^{-1 .} \\
& d=16.2-16.2 \times e^{-0.021 t} \quad t<200 \\
& d=\mu m \cdot(\mu) \\
& t=\text { second (S). } \\
& d=\underline{c_{1}-c_{2}} e^{-0.021 t} c_{c_{3}} \\
& C_{1}=\mu \mathrm{m} \quad 0.021 \text { or } C_{3} \mathrm{~s}^{-1} . \\
& C_{2}=\mu \mathrm{m} \\
& e^{a \cdot e^{b}} \rightarrow \text { divensionless } \\
& 10^{a} 10^{b} \\
& \log a \log 6
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d}{d x} \sqrt{1+\left(\frac{x}{a}\right)^{2}}=\frac{2 a x}{\sqrt{1+\left(\frac{x}{a}\right)^{2}}} \\
& x=\text { length }(m) \\
& a=\text { constant } \cdot(m) . \\
& \frac{x}{a}=\text { unitlesss. } \quad \frac{m^{2}}{\text { dimensionless. }}
\end{aligned}
$$

The above equation is wrongly expressed

$$
\begin{aligned}
& \text { LHS units } \neq \text { RHS units } \\
& \qquad m^{-1} \neq m^{2} \\
& \frac{d}{d x} \sqrt{1+\left(\frac{x}{a}\right)^{2}}=\frac{2 a x}{\sqrt{\left(+\left(\frac{x}{d}\right)^{2}\right.}}
\end{aligned}
$$

For correct expression, the units of C will be m^{3}

Dimension less number

Reynolds number, Re or NRe
$R=\frac{i n e r t i a l ~ f o r c e ~}{\text { vireous ford }}$
$R=\frac{D \bar{v} S}{4} \quad \bar{V}=$ overage velocity of pluid (MUS)
for flat plate (flow over a plat plate)

$$
R e_{x}=\frac{x \bar{q}}{\frac{y}{y}}
$$

for circutor fige, eross sectional area $=\frac{9 D^{2}}{2}$

$$
\therefore R e=\frac{\rho \bar{v} \frac{\pi}{4} D^{2}}{4 \frac{n}{4} D}=\frac{4 \dot{m}}{\pi 4 D}
$$

$$
\dot{m}=\text { mux perwirate }(\mathrm{kg} / \mathrm{s})
$$

Prandtl number, $P_{P}=\frac{\text { monentum diffusivity }}{\text { Thermal diff }}$

$$
\begin{aligned}
\therefore \operatorname{Pr}(\text { dimensions }) & \frac{\frac{\text { kg }}{\mathrm{m} \cdot} \left\lvert\, \frac{\mathrm{m}^{3}}{\mathrm{~kg} c \rho}\right.}{\left.\frac{\mathrm{w} \cdot \mathrm{~m}^{-1} \cdot \mathrm{k}^{-1}\left|\mathrm{~m}^{3}\right| \mathrm{kg} \cdot k}{\mathrm{ky}} \right\rvert\, \mathrm{J}} \\
& =\frac{\mathrm{m}^{2} / \mathrm{s}}{\mathrm{~m}^{2} / \mathrm{s}}=\text { unitess }(1) .
\end{aligned}
$$

$$
\begin{aligned}
& \text { Nusselt number } \mathrm{Nu}=\frac{\text { Convective he at transpen }}{\text { conduative heat transfer }} \\
& =\frac{h A \Delta T}{K A \frac{\Delta T}{L}} \\
& N u_{L}=\frac{h L}{K} \\
& \therefore L=\text { Length reale (} m^{\prime} \text {). } \\
& h=\text { heat transper ea-efpicient } w /\left(h^{2}-k \text {) or } w \cdot m^{-2} \cdot k^{-1}\right. \\
& k=\text { Thermal conductivity } w \cdot m^{-1} \cdot k^{-1} \text {. } \\
& \therefore N u \text { (dimensions) } \left.\frac{w^{\lambda}\left|m^{h}\right| m \cdot k}{m^{2} \cdot k \mid} \right\rvert\, \frac{w n}{} \\
& =\text { unitless (t). } \\
& \text { froude number, } \mathrm{Fr}_{r}=\frac{\text { inertial forel }}{\text { Eravity For el }} \\
& =\frac{v^{2}}{g^{2} L}=\frac{m^{2}}{s^{2}}\left|\frac{s^{2}}{m}\right| m \\
& =\text { (1).. } \\
& \text { Euler a number, } E U=\frac{\text { Pressure forcl }}{\text { inertial foreds }} \\
& \begin{array}{l}
\begin{array}{l}
\lambda^{\Delta P}=\frac{\Delta P}{\rho v^{2}} \\
\therefore \quad E u \frac{N}{m^{2}}\left|\frac{m^{3}}{\mathrm{~kg}}\right| \int_{\rho}^{S^{2}} \\
m^{2}
\end{array}=\text { (1) divensionless. }
\end{array}
\end{aligned}
$$

Buckinghum Pi Theorem

It states that the funetional relationship awang q quantiमies or variables whose units mav be given in terms of u fundamental units or dimensions, may be written as $(4-u)$ independent divensionless groups, called $\pi^{\prime} s$.
An incompressible pluid is plowing inside a circular tube of diameter D.
The signifieant voriables are pressure drop ΔP, velocity θ, diometer D, tube length L, viseosity μ, and dencitu of fluid ρ.
\therefore Total number of variable) $母=6$
\therefore Fundamental units ardimensions, $u=3$ (mass,

We select a core group of $u=3$. variables. whichwlle appear in each or group and among them contain all the tuxdamental dimensions.

Now we select D, θ and ρ to be core variables common to all three groups.
$\therefore \Pi_{1}=D^{a} u^{b} \rho^{c} \Delta P \quad$ (ii)
$\pi_{2}=D^{d} v^{\rho} \rho^{t} L$ - (iii)
$\therefore T_{3}=D^{8} v^{h} s^{i} 4$.. (iv)
Now, consider eque(ii)
$\therefore r M^{0} L^{0} \cdot t^{0}=1=L^{a}\left(\frac{L}{t}\right)^{b}\left(\frac{M}{L^{3}}\right)^{c} \frac{M}{L t^{2}}$
\therefore component's sum for each pundeavental dimension will be zero. .II

$$
\begin{aligned}
& \text { L: } a+b-3 c-1=0 \\
& M: \quad c+i=0 . \\
& t: \quad-b-2=0 . \\
& \Rightarrow a=0, b=-2, c=-1 . \\
& \text { substituting into eqw. (ii) }
\end{aligned}
$$

$$
\Pi_{1}=\frac{\Delta P}{v^{2} \xi}=N_{\text {Eu }} \text {. }-(v)
$$

Now consider eau: (iii)
$1=L^{d}\left(\frac{L}{t}\right)^{e}\left(\frac{M}{L^{3}}\right)^{f} L$.

$$
\begin{aligned}
& L: d+e+1=0 \\
& M: f=0 . \\
& t:-e=0 . \\
& \therefore \Gamma_{2}=\frac{L}{D}-(v i)
\end{aligned}
$$

Consider equ: (iv)

$$
\begin{aligned}
& \quad 1=L^{g}\left(\frac{L}{L}\right)^{h}\left(\frac{M}{L}\right)^{i} \frac{M}{L \cdot L} \\
& L: g+h-3 i-1=0 \\
& M: i+1=0 . \\
& t:-h-1=0 . \\
& \therefore \quad i=-1, h=-1 \Rightarrow g-1+3-1=0 \\
& \quad \Rightarrow g=-1 . \\
& \therefore \quad \Pi_{3}=\frac{M}{D v \rho}=\frac{1}{N R e} \\
& \left.\therefore \quad \frac{\Delta P}{v^{2} \rho}=F\left(\frac{L}{D}\right) N R C\right)
\end{aligned}
$$

density $\rho=\frac{m}{v} \mathrm{~kg} / \mathrm{m}^{3}$.
Specific volume \hat{v} or $\theta=\frac{v}{m} \cdot \mathrm{~m}^{3} / \mathrm{kg}$
Molar density $=\frac{\rho}{M W} \cdot \mathrm{~mol} / \mathrm{m}^{3}$
Molar volume $=\frac{M W}{\rho} \mathrm{~m}^{3} / \mathrm{mol}$.
Solution: Homogeneous mixture of two or mare
components (solid, liquid or gaseous), is called solution.

$$
V=\sum_{i=1}^{n} v_{i} \quad n=\text { number of components. }
$$

$$
\begin{aligned}
& V=\sum_{i=1} v_{i} n=n u m \rho_{\text {solution }}=\frac{m}{V}=\frac{\sum m_{i}}{\sum v_{i}} \\
& m=\sum_{i=1}^{n} m_{i} \Rightarrow{ }^{2}
\end{aligned}
$$

Specific gravity: It is dimensionless ratio, Sp. or of $A=\frac{\left(\theta / \mathrm{cm}^{3}\right)_{A}}{\left(g / e m^{3}\right)_{r e f}}=\frac{\left(\mathrm{kg} / \mathrm{m}^{3}\right)_{A}}{\left(\mathrm{~kg} / \mathrm{m}^{3}\right)_{\text {ret }}}=\frac{\left.(16 / \mathrm{ft})^{3}\right)}{\left(16 / \mathrm{Rt}^{3}\right)_{\mathrm{ref}}}$.
\therefore The reference substance is water at $4^{\circ} \mathrm{C}$.
\therefore density of water at $4^{\circ} \mathrm{C}($ ref).

$$
\begin{aligned}
& \text { f water at } 4^{\circ} \mathrm{C} \text { ref. } \\
& =1.000 \mathrm{~g} / \mathrm{cm}^{3}=1000 \mathrm{~kg} / \mathrm{m}^{3}=62.431 \mathrm{~b} / \mathrm{ft}^{3} \\
& \text { sp. gr }=1.57=1.57 \times 1.00 \mathrm{~g} / \mathrm{em}^{3}
\end{aligned}
$$

$$
\begin{aligned}
\therefore \text { Sp. or }=1.57 & =1.57 \times 1.00 \mathrm{~g} / \mathrm{em}^{3} \\
& =1.57 \mathrm{el}^{3} .
\end{aligned}
$$

$$
=1.57 \times 1000 \mathrm{k}-8 / \mathrm{m}^{3}
$$

$$
\begin{aligned}
& =1570 \mathrm{~kg} / \mathrm{m}^{3} \\
& =1.57 \times 62.4316 / \mathrm{kt}^{3}
\end{aligned}
$$

$$
=97.97 \mathrm{lb} / \mathrm{Ht}^{3}
$$

In the pertroleum industry is in O API secale.

$$
\begin{aligned}
\therefore & O A P I=\frac{141.5}{S P \cdot \frac{80 \cdot \frac{80^{\circ} F}{60^{\circ}}}{}-131.5 \cdot(A P 1 \text { gravity }) .} \\
& S P \cdot \text { or } \frac{60^{\circ}}{60^{\circ}}=\frac{141.5}{A A P I+131.5}
\end{aligned}
$$

$\therefore 60^{\circ} \mathrm{F}$ as the standard temperature.
O ther specipic gravity such as
Baume (OB) and Twaddel (Tw $_{w}$) exist.
$\begin{aligned} & \text { Mole fration } \\ & \text { mole fraction of } A=\frac{\text { Moles af } A}{\text { Males of }(A+B+C)} . \\ &=\frac{\text { Moles of } A}{\text { Tolal moles. }} .\end{aligned}$
Mass pradion of $A=\frac{\text { Mass of } A}{\text { Total mass. }}$
$\begin{aligned} \therefore \quad \text { Mole praction }= & \frac{\text { Mass of } \mathrm{A} / \mathrm{M} \cdot W_{A}}{\left(\text { Massop } \mathrm{A} / \mathrm{MW} \mathrm{M}_{\mathrm{A}}\right)+\left(\text { Msssof } B / \mathrm{M} \cdot \mathrm{W}_{B}\right)} \\ & +\left(\text { Moss of } \subset / \mathrm{M} \cdot \mathrm{w}_{C}\right)\end{aligned}$
Concentrations
\Rightarrow It repers to the quantity of some substance per un't volume.
\# Mass per unit volume $\Rightarrow 16$ of solute $/ \mathrm{ft}^{3}$ of Solution. g of solute / L of 11 . kg. "/ m^{3} " "

* Moles per unit volume $\Rightarrow 16$ wol of solute $/ \mathrm{Pt}^{3}$ of soluston 8 mol ar solute / L. ngmol of solute $/ \mathrm{m}^{3}$.
* Parts per million (PPM) ; Pets per billion (PPD).
\Rightarrow Units of concentrations for extremely dilute
Solution
\Rightarrow These are equivalent to mass fraction.
* Molarity (θ mol / L $)$; molality (wal solute/kes solvent) normality (equivalents/ L solution). of solute.
 particulate matter: $150 \mathrm{\mu g} / \mathrm{m}^{3}$

$$
\begin{aligned}
& \text { Co: } 10 \mathrm{mg} / \mathrm{m}^{3} \\
& \text { Ozone: } 0.12 \mathrm{ppm} .
\end{aligned}
$$

Problem: convert 10.0 ppm HeN in air to
man en / kg air
$\therefore 10.0 \mathrm{ppm}=\frac{10.0 \mathrm{gmol} \mathrm{HeN}}{10^{6}(\text { air }+1 \mathrm{HeN}) \mathrm{gmol} \text {. }}$ Here, HeN in air is extremely low.
$\therefore 10^{6}($ air $+H C N)$ a mol $\simeq 10^{6}$ air anal.
$\therefore 10.00 \mathrm{ppm}=\frac{10.0 \mathrm{gmal} \mathrm{HeN}}{10^{6} \mathrm{gmol} \text { air }}$
M.W OF HEN $=27.03$. and all $M \cdot W=29$

$$
=9.32 \mathrm{mg} \mathrm{HeN} / \mathrm{ks} \text { air }
$$

For heavier than water.

$$
\text { O Baume (} \left.{ }^{\circ} \mathrm{BE}\right)=145-\frac{145}{\text { Spigr } \frac{60^{\circ} \mathrm{F}}{60^{\circ} \mathrm{F}}}
$$

For lighter than water

$$
\begin{aligned}
0 B E & =\frac{140}{5 P \cdot g O r \frac{600^{\circ}}{60^{\circ}}}-130 \\
0 B r i x & =\frac{400}{5 P \cdot g r \cdot \frac{60^{\circ} \mathrm{F}}{60^{\circ} \mathrm{F}}}-400
\end{aligned}
$$

Stoichiometry
Storehioveitry provides a quantitive means of relating the amount of products produced $b y$ chemical reaction to the amount of reactants.

$$
c C+d D \nRightarrow a A+b B
$$

a, b, e, d are the stoichiometric coepricients for the species A, B, C, and D, respectively.

$$
\begin{aligned}
& \Rightarrow v_{A} A+v_{B} B+v_{C} C+v_{D} D=0=50_{i} S_{i} \\
& v_{C}=-c: \quad v_{A}=a \\
& v_{D}=-d ; \quad v_{B}=b
\end{aligned}
$$

reactants to products to have
have negative positive values: values.
Say $\mathrm{O}_{2}+2 \mathrm{CO} \rightarrow 2 \mathrm{CO}_{2}$

$$
\theta_{\mathrm{O}_{2}}=-1 ; \quad v_{\mathrm{CO}}=-2 ; \quad v_{\mathrm{CO}_{2}}=2 ; \quad v_{\mathrm{N}_{2}}=0 \text {. }
$$

Balancing chemical reaction

$$
\begin{aligned}
& \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+\mathrm{aO}_{2} \rightarrow b \mathrm{CO}_{2}+\mathrm{CH}_{2} \mathrm{O} \text {. } \\
& \text { balancing } c \text { : } 6=b ; \Rightarrow 6=6 \text {; } \\
& \text { \# } \quad \mathrm{H}: 112=2 C ; \Rightarrow C=6 \text {; } \\
& \text { 11 } 0: 6+2 a=2 b+c \text {. } \\
& \Rightarrow a=6 \text {; } \\
& \therefore \quad C_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2} \rightarrow 6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

Extent of reoction $f=\frac{n_{i}-n_{i o}}{v_{i}}$
$n_{i}=$ males of species i present in the syitem
after the reaction oocurs.
$n_{i o}=$ moles of species i present in the system whan
the reaction starts.
$U_{i}=$ Ceeffieient por speeies i in the chemied - 1 reaction
$\theta=$ extent of reaction (moles reatings).
4 denoter how much reagtion ocaurs.
20 moles $\mathrm{CO}+10 \mathrm{wni} \mathrm{O}_{2} \rightarrow 15$ moles of eO_{2}. $2 \mathrm{OO}_{\mathrm{O}}+\mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}$

$$
n_{\mathrm{Co}_{2,0}}=0 \quad \text { II }
$$

$\frac{\sum \text { with respet to } \mathrm{CO}_{2}}{0}=\frac{n_{\mathrm{CO}_{2}}-\Theta_{\mathrm{CO}_{2} \mathrm{O}}}{\theta_{\mathrm{Cd}}}=\frac{15-0}{2}$ $=7.5$
$\therefore 15$ moles CO reacted with $\frac{15}{2}$ moles O_{2} to produce 15 wales CO_{2}.
$\therefore \quad n_{\text {eo }}=$ initial co - reated 00 .
$=2 \theta-15=5$ mous
$n e 0,0=20$.
$\therefore \underline{\xi \text { with respeet to co }}=\frac{5-20}{V_{c o}}=\frac{-15}{-2}=7.5$
. ${ }_{\mathrm{O}_{2}}=$ initial O_{2}-reacted CO_{2}.
${ }^{n_{O_{2}}}=10-7.5=2.5$

Limiting o Excess reaction
The limiting reactant is the species in a chemical reaction that woluld the oretically run out. First- (would be completely consumed) if the reaction were to proceed to completion. All other reactants are called excess reactants. \% excess reactant
amount of the,
amount of the excess reselant required to react with the limiting reactant.

Say,

$$
\mathrm{e}_{7} \mathrm{H}_{16}+11 \mathrm{O}_{2} \rightarrow 7 \mathrm{eO}_{2}+8 \mathrm{H}_{2} \mathrm{O}
$$

$1 \mathrm{amol} \mathrm{G}_{7} \mathrm{H}_{16}$ and $12 \mathrm{gmol}_{\mathrm{gm}} \mathrm{O}_{2}$ are mixed.
\therefore Excess reactant: O_{2}.
Limiting reactant: $C_{7} H_{16}$
if $2 \mathrm{gmol} \mathrm{C}_{7} \mathrm{H}_{16}$ and 12 gmol of O_{2} are mixed
\therefore Excess reactant: $\mathrm{C}_{7} \mathrm{H}_{16}$
Hinting reactant: O_{2}
\therefore A mount of product produced iss is controlled by limiting reactant.

$$
\begin{aligned}
\therefore y . \text { excess in is case } & =100 \times \frac{12-11}{11} \% \\
& =\frac{100}{11} \%
\end{aligned}
$$

Conversion
Conversion is the fraction of the peed or some key materials in the peed. That is converted into products.
$\%$ conversion $=100 \frac{\text { moles of peed that react }}{\text { moles of peed introduced }}$

$$
\mathrm{C}_{7} \mathrm{H}_{16}+\mathrm{HO}_{2} \rightarrow 7 \mathrm{CO}_{2}+8 \mathrm{H}_{2} \mathrm{O}
$$

1 mol $C_{7} \mathrm{H}_{16} \& 12$ mol of O_{2} reacted Lo produce 3.5 moles $\mathrm{CO}_{2} \& 4$ moles $\mathrm{H}_{2} \mathrm{O}$.

$$
\begin{aligned}
\therefore \text { y. conversion of } C_{7} H_{16} & =\frac{n_{e_{7} H_{16}, i}-n_{c_{7} H_{16}}}{n_{e_{7} H_{16}}, 0} \times 100 \% \\
& =\frac{1-0.5}{1} \times 100 \% \\
& =501 \%
\end{aligned}
$$

$$
\therefore \text { y. conversion of species } i=\frac{n_{i 0}-n_{i}}{n_{i 0}} \times 100 \%
$$

$\therefore n_{i o}=$ moles of feed introduced/or species introduced
$n_{i}=$ moles of species presesent after rea@tion,

$$
\therefore \quad n_{i 0}-n_{i}=\text { moles of species reacted }
$$

Selectivity
selectivity is thiratio of moles of a particular (desired) product produced fo moles of another (undesired or be-product). product produced.

$$
\begin{aligned}
& 2 \mathrm{CH}_{3} \mathrm{OH} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}+2 \mathrm{H}_{2} \mathrm{O} \\
& 2 \mathrm{CH}_{3} \mathrm{OH} \rightarrow \mathrm{C}_{3} \mathrm{H}_{6}+3 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

\therefore At 80% conversion of $\mathrm{eH}_{3} \mathrm{OH}$.
$\therefore \mathrm{C}_{2} \mathrm{H}_{4}$ produced is $19 \mathrm{~mol} y$. $C_{3} H_{6} \quad 11$ II 8 mol γ.

$$
\therefore \text { Secehinity }=\frac{19}{8}=2.4 \mathrm{~mol} \mathrm{c}_{2} \mathrm{H}_{4} / \mathrm{mol} \mathrm{c}_{3} \mathrm{H}_{6}
$$

yield
yield bared on peed: The moles of desired product obtained divided by the molest of the key or limiting reactant peed.
yield based on reactant consumed: The moles/mass of desired product -obtained divided by moles/mass of-limiting reactant consumed.

Exampll

$$
\mathrm{C}_{7} \mathrm{H}_{16}+11 \mathrm{O}_{2} \rightarrow 7 e 0_{2}+8 \mathrm{H}_{2} \mathrm{O}
$$

1 mol of $\mathrm{C}_{7} \mathrm{H}_{16}$ \& 12 moles O_{2} reacted to producl 3.5 moles of CO_{2} \& 4 woles of $\mathrm{H}_{2} \mathrm{O}$.

$$
\begin{aligned}
& \text { ․ Yiuld of } \mathrm{CO}_{2}=\frac{\text { mass of } \mathrm{CO}_{2} \text { produced }}{\text { Mass of } \mathrm{C}_{7} \mathrm{H}_{6} \text { consumed }} \times 100 \\
& =\frac{3.5 \times 44}{0.5 \times 100.21} \times 100 \frac{\mathrm{gm} \mathrm{evz}_{2}}{\mathrm{gm} \mathrm{~g}_{\mathrm{g}} \mathrm{H} 16} . \\
& =307.35 \% \\
& \% \text { yilld of } \mathrm{CO}_{2}=\frac{\text { moss of } \mathrm{CO}_{2} \text { produced }}{\text { Mass of } \mathrm{O}_{2} \text { consumed }} \times 100 \\
& =\frac{3.5 \times 44}{5.5 \times 32} \times 100 \\
& =87.5 \% \quad \frac{\mathrm{gm} \mathrm{OO}_{2}}{\mathrm{gm} \mathrm{O}} \\
& A+B \rightarrow C \quad C \text { is divired reation } \\
& A+B \rightarrow D \therefore \text { virld of } C=\frac{\text { mass/woles of } C \text { predidd }}{\text { mass } / \text { moles of }} \\
& \text { Aor B consumed. }
\end{aligned}
$$

Moles, density, Concentration
Moles:- The amount of substance that contains as many elementary entities $\left(6.022 \times 10^{23}\right)$ as there are atoms. in 0.012 kg of carbon 12 .
$\rightarrow \mathrm{Sl}$ system
$A E$

$$
\begin{aligned}
& \Rightarrow 6.022 \times 10^{23} \times 453.6 \text { molecules. } \\
& \therefore \text { Molecular weight }=\frac{\text { mass }}{\text { mol }} \\
& \quad(M W) \rightarrow(M) \\
& g-\mathrm{mol}=\frac{\text { Massing }}{\text { Molecular wt. }} \\
& 16 \text {-mol }=\frac{\text { mass in } 16}{\text { molecular weight. }}
\end{aligned}
$$

If a bucket of NaOH holds 2.0016 of Naold.

$$
\begin{aligned}
216 \text { NaOH } & =\frac{2}{40} 16 \text { - mal Naolt } \\
& =0.0511
\end{aligned}
$$

$$
\begin{array}{l|l|l}
216 \mathrm{NaOlt} & 116 \mathrm{~mol} \mathrm{NaOH} & 454 \mathrm{gmmal} .
\end{array} \begin{aligned}
& 22.7 \\
& \hline 4016 \mathrm{NaOH} \\
& \\
& \hline
\end{aligned} 16 \mathrm{~mol} \text { gmiool. }
$$

$$
116 \mathrm{~mol}=454 \mathrm{gm}-\mathrm{mol}
$$

$$
\begin{aligned}
& 100 . \mathrm{gm} \mathrm{H}_{2} \mathrm{O} \left\lvert\, \frac{1 \mathrm{gmal} \mathrm{H}_{2} \mathrm{O}}{18 \mathrm{gm} \mathrm{H} \mathrm{H} O}=5.56 \mathrm{gm}\right. \text {-nod. } \\
& 616 \operatorname{mol} O_{2} \left\lvert\, \begin{array}{ll}
32.016 O_{2} \\
\hline 16 \mathrm{~mol} O_{2}
\end{array}=192160_{2}\right. \\
& 116 \mathrm{~mol}=3216 \mathrm{O}_{2} . \\
& 1 \mathrm{gmmol}=32 \mathrm{gm} \mathrm{O} \\
& 1 \mathrm{~kg}-\text { wol }=32 \mathrm{~kg} \mathrm{O} 2 .
\end{aligned}
$$

References

- Himmelblau, D.M., Riggs, J.B., Basic Principles and Calculation in chemical engineering, Prentice Hall.
- Bhatt, B.I., Thakore, S.B., Stoichiometry, Tata McGraw Hill Publishing Co. Ltd., New Delhi.

