Process Technology and Economics-1 Module-5

Arnab Karmakar
BIT Mesra, Ranchi

Profitability Measures or Indexes

- Gross profit(GP)=Sales income(S)-Total product cost (TPC)
- Income tax (IT)=Gross profit(GP)× Fractional tax rate (ϕ)
- Net Profit (NP)= Gross profit(GP) - Income tax (IT)=G(1- ϕ)
- Cash flow (A)=Net Profit (NP)+Depreciation=NP+d

1) Rate of return on investment $(R O R)=\frac{\text { Profit (GP or NP) }}{\text { Total captial Investment }} \times 100$
or
$=\frac{\text { Cash flow (A) }}{\text { Total captial Investment }} \times 100$
2) Discounted cash flow rate of return based on full-life performance

- Total present value= \sum Present value of the cash flow
- $\quad=\frac{A_{1}}{(1+i)}+\frac{A_{2}}{(1+i)^{2}}+\frac{A_{3}}{(1+i)^{3}}+\frac{A_{4}}{(1+i)^{4}}+\cdots \ldots .+\frac{A_{n}}{(1+i)^{n}}=\sum_{0}^{n} \frac{A_{n}}{(1+i)^{n}}=0$
- Where $i=i_{\text {DCF }}$, Discounted cash flow rate of return
- Higher is $\mathbf{i}_{\text {DCF }}$ better is the investment for profitability.

At $i=i_{\text {DCF }}$, Total present value $=0$;
This rate of return represents the after-tax interest rate at which the investment is repaid by proceeds from the project. It is also the maximum after-tax interest rate at which funds could be borrowed for the investment and just break even at the end of the service life.

Problem

- Consider the case of a proposed project for which the following data apply:
- Initial fixed-capital investment = \$100,000
- Working-capital investment = \$10,000

Initial investment=(Fixed + Working) Capital investment $=110,000$

- Service life $=5$ years
- Salvage value at end of service life $=\$ 10,000$

Trial 1
Trial 2

Year	Predicted after-tax cash flow to project based on total income minus all costs except depreciation, S Year (expressed as end-of-year situation)	Present value $i=0.15$	Present value $i=0.175$
0	-110,000	-110,000	-110,000
1	30,000	26086.96	25531.91
2	31,000	23440.45	22453.6
3	36,000	23670.58	22191.61
4	40,000	22870.13	20984.98
5	43,000	21378.6	19199.02
Total		117446.7	110361.1
	Ratio=Total present value/Initial investment	$\begin{aligned} & =117446.7 / 110,000 \\ & =1.067 \end{aligned}$	$\begin{aligned} & =110361.1 / 110,00 \\ & =1.003 \end{aligned}$

Trial 1
Trial 2

Year	Predicted after-tax cash flow to project based on total income minus all costs except depreciation, \mathbf{S} Year (expressed as end-of-year situation)	Present value $\mathbf{i}=\mathbf{0 . 1 5}$	Present value $\mathrm{i}=\mathbf{0 . 1 7 5}$
0	$-110,000$	$-110,000$	$-110,000$
1	30,000	26086.96	25531.91
2	31,000	23440.45	22453.6
3	36,000	23670.58	22191.61
4	40,000	22870.13	20984.98
5	43,000	21378.6	19199.02
Total		$\mathbf{1 1 7 4 4 6 . 7}$	$\mathbf{1 1 0 3 6 1 . 1}$
		Ratio=Total present value/Initial investment	$=117446.7 / \mathbf{1 1 0 , 0 0 0}$
$=1.067$	$=110361.1 / \mathbf{1 1 0 , 0 0}$		

This rate of return represents the after-tax interest rate at which the investment is repaid by proceeds from the project. It is also the maximum after-tax interest rate at which funds could be borrowed for the investment and just break even at the end of the service life.

3) Net present worth

- This index gives the rate of return which includes the profit on the project, payoff of the investment, and normal interest on the investment, substitutes the cost of capital at an interest rate ifor the discounted-cash-flow rate of return
- NPW= \sum Present value of cash flow - TCI
- $N P W=\sum_{0}^{n} \frac{A_{j}}{(1+i)^{j}}-T C I$

4) Annual equivalent amount

- It is a hypothetical annuity with uniform annual payment amount equal to AE whose sum of present value is equal to NPW.

- $A E=N P W\left[\frac{i(1+i)^{n}}{(1+i)^{n}-1}\right]$

4) Payout or payback period (PB)

- $P B=\frac{\text { Depriciable fixed capital investment }(F C I)}{\text { Average cash flow per year }(N P+d)}=$
- = Depriciable FCI+interest rate on toatal capital investment(TCI)

Average cash flow per year ($N P+d$)

- $=\quad F_{x}+d+T C I(1+i)^{n}-T C I$
- $=\overline{\text { Average cash flow per year }(N P+d)}$
- $A_{a v g}=\left[\sum_{1}^{n} \frac{A_{j}}{(1+i)^{j}}\right]\left[\frac{i(1+i)^{n}}{(1+i)^{n}-1}\right]$

5) Capitalized cost K

- $K=K_{F C I}+K_{A O P}$

Capitalized cost of Investment
It is depined as the original cost of the equipment plus the present value of the renewable per petuity. [It refers to the present worth of cosh flow - which go on for indefinite period of Lime.-]
\rightarrow Perpetuity is an annuity in which periodic payments continue indefinitely. Example given: operating cost of an equipment.
$C_{v}=$ current or present value of a piece of equipment.
$C_{S}=$ Salvage value of the equipment at end of service life.
η = service life of the equipment.
$C_{R}=$ Replacement cost
$\Rightarrow C_{R}=c_{V}-c_{S}$:

If a p amount is invested. For n year. The en At the end of A year C_{R}. (Replacement cost) will be paid from the interest. gained.

$$
\therefore P(1+i)^{n}-P=C_{R}
$$

$\Rightarrow P=\frac{C R}{(1+i)^{n}-1}$ [This amount
is presentworth that will be invested]. $K=$ capitalized cost.

$$
\begin{aligned}
& \text { Capitalized cost } K=C_{V}+\frac{C_{R}}{(1+i)^{n}-1} \\
&=\text { original cost }+ \text { Present worth. } \\
& \text { of the property. } \\
&=C_{V}+\frac{C_{V}-C_{S}}{(1+i)^{n}-1}
\end{aligned}
$$

For a installed equipment currentralue $c_{V}=\$ 12,000$.
Salvage value, $C_{S}=\$ 2,000$
or scrap II.
Service life $n=10$ years.
$i=0.06$ (6% compounded yearly).
What is the capitalized cost of the equipment?

$$
\begin{array}{r}
K_{\text {exurpprent }}=12000+\frac{12,000-2000}{(1+0.06)^{10}-1} \\
K=\$ 12,644.63 .
\end{array}
$$

It is noted that equipent haring lower capitalized cost is preferable.

Equipment A
$\eta_{\text {a }}$ (service life)
$c_{V_{A}}$ (current value) n_{B}
$C_{S A}$. (salvage value) $\quad C_{V B}$
iA (interest rate) - $-C_{S B}$
$-\quad O P_{\text {(annual }}$ (o nat

- Opal operating $-O P_{B}$

$$
B
$$

A

Equipment B
\qquad
\qquad
\qquad

$$
\begin{aligned}
\frac{\text { edetor: }}{B!} C_{V}^{B}= & 15,000+4,000\left[\frac{(1.08)^{6}-1}{0.08(1.08)^{6}}\right] \\
& +\frac{3,500}{(1.08)^{3}} \\
C_{V}^{B}= & \$ 36,270 \\
K_{B}= & 36,270+\frac{36,270-0}{(1.08)^{6}-1} \\
= & \$ 98,072
\end{aligned}
$$

$K_{B}<K_{A} \Rightarrow S_{B}$ Readtor B is the suitable choies.

Alternative method

Capitalized cost of \rightarrow Annual cash plow
Annual operating cost.
These are equivalent to annuity sum.
$\therefore K_{\text {annuity }}=$ Present value or worth of annuity sum

$$
\begin{aligned}
&=\frac{A}{i}\left[\frac{(1+i)^{n}-1}{(1+i)^{n}}\right] \\
&=\frac{A}{i}\left[1-(1+i)^{-n}\right] \\
& \operatorname{K}_{\substack{\text { annuity } \\
n \rightarrow \alpha}}=\operatorname{Lb}_{n \rightarrow \alpha} \frac{A}{i}\left[1-(1+i)^{-n}\right] \\
&=\frac{A}{i}
\end{aligned}
$$

Problem 3: Capitalized cost estimation for 3 investments

In- vest- ment num- ber	Totainitial fixed-capital investment, \$	Workingcapital investment, \$	Salvage valueatend of service life, \$	Service life, year	Annual cas flow to projectafter taxes, $\dagger \$$	Annuakash expenses \ddagger (constant for each year). $\$$
1	100,000	10,000	10,000	5	See yearly tabulation 8	44,000
2	170,000	10,000	15,000	7	$\begin{aligned} & 52,000 \\ & \text { (constant) } \end{aligned}$	28,000
3	210,000	15,000	20,000	8	$\begin{gathered} 59,000 \\ \text { (constant) } \end{gathered}$	21,000

- Capitalized cost of investment

Table (Peters \& Timmerhaus)

- Capitalized cost $=C_{R} \frac{(1+i)^{n}}{(1+i)^{n}-1}+V_{S}+\frac{\text { Annual cash expenses }}{i}+$ Working capital
- Invest no. 1
- $K=\mathbf{9 0}, \mathbf{0 0 0} \frac{(\mathbf{1}+\mathbf{0 . 1 5})^{5}}{(\mathbf{1}+\mathbf{0 . 1 5})^{n-1}}+\mathbf{1 0 , 0 0 0}+\frac{\mathbf{4 4 , 0 0 0}}{\mathbf{0 . 1 5}}+10,000=4,92,000$
- Invest no. 2
- $K=\mathbf{1 5 5 , 0 0 0} \frac{(\mathbf{1}+\mathbf{0 . 1 5})^{7}}{(\mathbf{1}+\mathbf{0 . 1 5})^{7}-\mathbf{1}}+\mathbf{1 5 , 0 0 0}+\frac{\mathbf{2 8 , 0 0 0}}{\mathbf{0 . 1 5}}+10,000=460,000$
- Invest no. 3
- $K=\mathbf{1 9 0}, 000 \frac{(\mathbf{1}+\mathbf{0 . 1 5})^{\mathbf{8}}}{(\mathbf{1 + 0 . 1 5})^{\mathbf{8}-1}}+\mathbf{2 0 , 0 0 0}+\frac{\mathbf{2 1 , 0 0 0}}{\mathbf{0 . 1 5}}+15,000=457,000$
- Invest no. 3 should be recommended.
- Capitalized cost of a plant $\mathrm{K}=K_{\text {Machine }}+K_{\text {operation }}$
- $K_{\text {Machine }}=C_{V}+\frac{C_{V}-C_{S}}{(1+i)^{n}-1}$
- $K_{\text {operation }}=\mathrm{A}\left[\frac{(\mathbf{1 + i})^{n}-\mathbf{1}}{i(1+i)^{n}}\right] ; \mathrm{A}=$ Annual operating cost

Reference

- Plant Design and Economics for Chemical Engineers, Max S. Peters, K. D. Timmerhaus, $4^{\text {th }}$ Edition, McGraw-Hill Inc.

Thank You

Interest and Investment Cost

a)

Interest is the compensation to be paid by the borrower to the lender for using a borrowed capital.
$P=$ Principal at the start of first interest period. or capital sum, $\$$ or RS.
$n=$ Total number of interst period.
$i=$ Rate of interest, interest earned by a unit capital of principal in a unit time.
$F=$ Total accumulated sum at the end of n interest periods.
$I=$ Total interest earned after n interest periods.
b)

Simple interest: It is paid on the original principal, P.
simple inures $I=P$ in; $\Rightarrow F=P+I=P+P i n=P(1+i n)$.
Example: $P=\{1000, n=4$ y oars, simple interest is 16%. $(i=0.16)$ per annum. Cal culated interest rate per annum and accumulated sum. at the end of 4 years.
I/ annam $=1000 \times 0.16 \times 1=\$ 60$ (in one year).
$I=1000 \times 0.16 \times 4=\$ 640$. (in four years)
$F=P+I=640+1000=\$ 1640 \$$. (a cumulated

Compound interest: It is paid based on the accumulated sum.
Same example as earlier $\Rightarrow p=\$ 1000, n=4$, $i=0.16$ per annum.

$$
\begin{aligned}
& F=P+I=P(1+i)^{n} . \\
& =1000 \times(1+0.16)^{4}=\$ 1810.64
\end{aligned}
$$

So $F_{\text {compound }}>F_{\text {simple }}$ or $I_{\text {compound }}>$ I simple. Hence, compound interest is profitable compared to simple interest from lender side.
Problem: How much must be invested at present at 16% compounded interest rate annually such that $\$ 20000$ can be earned apter 3 years.

$$
\begin{aligned}
& \therefore F=P(1+i)^{n} \\
& F=20,000 ; n=3, i=0.16 ; P=? \\
& P=\frac{F}{(1+i)^{n}}=\frac{20,000}{(1+0.16)^{3}}=\$ 12,813.15
\end{aligned}
$$

a)

Annuities
An annuity is series of payments (can be equal or unequal) made at equal tine interval.
In life insurance plan or in a recurring depoist of a bank for paying debt, a lump sum of capital is accumulated over the periods of installments.
$A=$ uniform periodic payment
$\alpha_{n}=$ number of periods in years.
$i=$ interest rate (compounding).
$F=$ Total amount of annuity or a cumulated

$$
F=A(1+Y)^{n-1} \pm A(1+i)^{n-2} \pm \cdots \pm A(1+i) \pm A
$$

Mutipy by (1+i)

$$
\begin{aligned}
& \text { utipypy }(1+i) \\
& F(1+i)=A(1+i)^{n}+A(1+i)^{n-1}+\cdots+A(1+i)^{2}+A(1+i)
\end{aligned}
$$

substructing.

$$
\begin{aligned}
& F i=A(1+i)^{n}-A \\
& F=A\left[\frac{(1+i)^{n}-1}{i}\right]
\end{aligned}
$$

b)

Problem: It is required to a cumulate $\$ 10,000$ by making annuity payments (equal). of 5 years at 12% compounded. interest rate. Find the equal and id annuity payment.

$$
\begin{aligned}
& F=10,000 ; i=0.12, n=5, \quad A=? \\
& F=A\left[(1+i)^{n}-1\right] \frac{1}{i} ; \quad A=\frac{F i}{\left[(1+i)^{n}-1\right]}=\frac{10,000 \times 0.12}{1.12^{5}-1} \$ 1574.1
\end{aligned}
$$

a)

Capital Recovery

- An investor initially deposits an ampo; amount P at an annual compound interest rate i. He The investor can withdraw the principal p ar accumulated sum in a series of equal year-end amount like annuity withdrawls.

$$
\begin{aligned}
\therefore F & =P(1+i)^{n}=A\left[\frac{(1+i)^{n}-1}{i}\right] \\
A & =P i\left[\frac{(1+i)^{n}}{(1+i)^{n}-1}\right]
\end{aligned}
$$

b)

Problem:(1)
For a principal or present worth of $\$ 1000$, calculate the annuity with drawls of recovery. of fund. Take $n=10$ years,$i=12 \%$

$$
\begin{aligned}
\therefore A & =1000 \times 0.12\left[\frac{(1+0.12)^{10}}{(1+0.12)^{10}-1}\right] \\
& =\$ 176.98
\end{aligned}
$$

Problem: (2) Calculate the present worth of s equal year-end payments. of $\$ 223$ at 15% annual compound interest rate.

$$
\begin{aligned}
P=\left[\frac{(1+i)^{n}-1}{(1+i)^{n}}\right] \frac{A}{i} & =\frac{(1 \cdot 15)^{8}-1}{(1.15)^{8}} \times \frac{223}{0.15} \\
& =\$ 1000 .
\end{aligned}
$$

a)

Nominal and effective interest rate
$r=$ And Nominal interest rate per year
$i=$ effective/actual interest rate per compounding period.
$m=$ number of compounding periods peryear
$i_{a}=$ effective/actual interest rate yer year.

$$
\begin{aligned}
& F=P\left(1+\frac{r}{m}\right)^{m n}=P(1+i a)^{n} \\
\Rightarrow \quad & \left(1+\frac{r}{m}\right)^{m n}=(1+i a)^{n} \\
\Rightarrow \quad & i_{a}=\left(1+\frac{r}{m}\right)^{m}-1 .
\end{aligned}
$$

b)

Problem (i)
Find out the most profitable one. of 12 two schemes: i) 16% compounded annually.
ii) 15% compounded monthly.
iii) 15% compounded semi-annually.
iv) 15%. compounded quarterly.
d) The effective interest rate per y ear are.
i)

$$
\begin{aligned}
i_{a} & =\left(1+\frac{r}{m}\right)^{m}-1 \Rightarrow r=16 \% ; m=1 . \\
& =\left(1+\frac{0.16}{1}\right)-1=0.16=16 \%
\end{aligned}
$$

ii) $i_{a}=\left(1+\frac{0.15}{12}\right)^{12}-1=0.1608=16.08 \%$
iii) $i_{a}=\left(1+\frac{0.15}{2}\right)^{2}-1=0.1556=15.56 \%$
iv) $i_{a}=\left(1+\frac{0.15}{4}\right)^{4}-1=0.1586=15.86 \%$
ii) Scheme having higher effective interest rate so. it is preferrable.

Problem (2)
Findout a cumulated sum for a principal amount $\$ 1000$ invested for 5 year at a nominal interest rat 18\% compounded semi-annually.

$$
F=1000 \times\left(1+\frac{0.18}{2}\right)^{5 \times 2}
$$

here $r=0.18, m=2, n=5$ year.

$$
\begin{aligned}
& F=12,367.36 \\
& i_{a}=\left(1+\frac{0.18}{2}\right)^{2}-1=0.1881=18.81 \%
\end{aligned}
$$

continuous interest rate
If number of interest periods per year, $m \rightarrow \alpha$, then the scheme is called continuous. interest.
For continuous interest effective interest rate is given by the following:

$$
\begin{aligned}
& i_{a}=\lim _{m \rightarrow \alpha}\left(1+\frac{r}{m}\right)^{m}-1 \\
&= \lim _{m \rightarrow \alpha}\left[\left(1+\frac{r}{m}\right)^{\frac{m}{r}}\right]^{r}-1 \\
&= e^{r}-1 \\
& F(e=2.7181827 \cdots \\
& F=P\left(1+i_{a}\right)^{n} \\
& F=P\left(1+e^{r}-1\right)^{\eta} \\
& F=P e^{r n}
\end{aligned}
$$

a)

Thus continuossinterest gives highest amount of effective interest "hance the continuous interest is most preferable.
b)

Annuity for continuous interest.

$$
F=\bar{A}\left[\frac{e^{r n}-1}{r}\right]
$$

$\bar{A}=$ annuity payments per year.
$n=$ number of years.
notum nominal interest rate per year.
Example: $\$ 8000$ is required annually for 28 year. compare the present wort for i) 6% annual interest rate
ii) 6% continuous interest rate.
i) $P=R \frac{(1+i)^{n}-1}{i(1+i)^{n}}=8000 \times \frac{1.06^{25}-1}{0.06 \times 1.065}=102,264$
ii) $P=R\left[\frac{e^{r n}-1}{r^{r}}\right] \frac{1}{e^{r n}}=8000 \times \frac{e^{0.06 \times 15}-1}{0.06}=\$ 108,163$

Reference

- Plant Design and Economics for Chemical Engineers, Max S. Peters, K. D. Timmerhaus, $4^{\text {th }}$ Edition, McGraw-Hill Inc.

Thank You

Depreciation

DEPRECIATION

Depreciation is the reduction in value of a physical asset with time due to the following reasons: Physical deterioration, technical advances, economic changes. These factors cause end of the service life of a physical assets like, machinary, equipment, plant ete.
It can be catagorized into three types
physical \rightarrow wear, tear, corrosion, age, ete.
Functional \rightarrow obsolescen $\boldsymbol{\text { e } , \text { decreasein de mand, }}$ inadequate capacity, closing of enterprise. Accidents \rightarrow Accident of plant and its equipment during runtime.
The well-designed and well maintained chemical process industries are rarely weared out or declined,
 until advancement of
technology suggests replacement of components with modern-designed counter part.
Total eost due to depreciation $=\left\{\begin{array}{l}\text { Original value } \\ \text { of property }\end{array}\right.$

Solvage value

It is the net amount of money obtainable from the sale of used property over and above any charges involved in removal and sale.
It implies that the asset can give sonce tupe
of further service and is worth more than
merely its serap value or junk value.
\rightarrow If the property can not be disposed of as a usepul unit, it can opten be dismantled and sold as junk to be used again as a manufacturing raw material. The proit obtainable from this tepe of disposal known as the serap or junk.
Salvage value, serapvalue, and service lips
Salvage valu, seraly on the basis of conditions are usually estimated on put in use. at the time the property is put in use.

Present value

Present value of an asset may be depined as the value of the arset in its condition at the time of valuation.
present value are of dipperent tapes.
a) Book value: The dipfer ence between the charges mad to date.
b) Market value: The price which could be obtained for an asset if it were placed on sale in the open market.
c) Replacement value: The cost necessary to replace an existing property with ore at heast equally capable

of rendering the same service

Method for Determining Depreciation.
In general it is determined by two types of method.

1) Arbitrary methods giving no consideration to
interest costs. like followings:
d) Straight-line method.
b) Declining-balance method.
c) Sum-of-Hhe-years-digits method.
2) Methds taking into a coount interest on the investment,
d) Sinking fund method.
b) Present-worth method
3) a) Straight-line method: value of property decreases linearly with time. Equal amounts are charged por depreciation each year throughout the entire service life of the propent
$d=$ annual depriciation, $\$ /$ year
$V=$ Original value of the property at start of service ufe per the property atend of
$v_{s}=\frac{\text { salvase value }}{\text { service life, }} \$$.
service life, year.
$n=\frac{v-V_{s}}{n} \Rightarrow V_{d}=v-d a$
where, $v_{a}=$ book value, $a=$ number of vears in actualuse.
\Rightarrow Book value $=V-\left(\frac{V-V s}{n}\right) a$

4) b) Declining-Balance Method (Fiked Pereentase Method)

In this methd annual depreciation charge (cost) is taken to be a fiked percentags, f of the property value
at the beginning of the particular year.

$$
f=\text { fined percentage factor }
$$

$d a=$ Deprieciation charge during yeard.
$v_{a}=$ Book value at end of year $a=v(1-\rho)^{a}$
at the end of n years, Book value $=$ salvage value

during early years, ie., it reduces the income tax
load for new business.
Problem 2: For problem 1, calculate depreciation charges and book values at the end of 4 and 5 years.
From problem 1, $V=\$ 5000, v_{S}=\$ 1000, n=5$

$$
\begin{aligned}
f=1-\left(\frac{V_{s}}{v}\right)^{1 / h} & =1-\left(\frac{1000}{5000}\right)^{1 / 5} \\
f & =0.2752
\end{aligned}
$$

$$
d_{4}=f(1-f)^{3} V=0.2752(0.7248)^{3} 5000
$$

$$
d_{4}=\$ 523.88
$$

$$
d_{5}=0.2752(0.7248)^{4} \times 5000
$$

$$
\begin{aligned}
& \$ 379.71 \\
& V_{4}=V(1-F)^{4}=5000 \times(0.7248)^{4}
\end{aligned}
$$

$$
d_{5}=\$ 379.71
$$

$$
V_{4}=V\left(V_{4}=\$ 1,379.88\right.
$$

$$
v_{5}=v(1-F)^{5}=\$ 1,000.14
$$

i) c) Sum of Years Digits Method

In this method depreciation charge da during year
a is given by,

$$
\begin{aligned}
& d a=\frac{n-a+1}{\sum_{i=1}^{n} i}\left(v-v_{s}\right) \\
& d a=\frac{2(n-a H)}{n(n+1)}\left(v-v_{s}\right)
\end{aligned}
$$

Hence, book value of property at end of year a, V_{a} is given by,

2) a) Sinking Fund Method

It accounts the effect of those properties that The method is applicable porvice demands during its did not undergo heavy service chance of losing its early life and having less chance of losing its value.

A hypothetical annuity fund is set up into which a constant amount of money is set aside each year. At the end of service life, total money with its interest in the fund. should be equal to the total amount of depriciation ($v-v_{s}$)

- $d=$ depreciation per year equivalent to \rightarrow To annuity fund.

$$
\begin{aligned}
& \Rightarrow\left[\frac{(1+i)^{n}-1}{i}\right] d=v-v_{s} \\
& \Rightarrow d=\left(v-v_{s}\right)\left[\frac{i}{(1+i)^{n}-1}\right]
\end{aligned}
$$

apter a year, total amount of depreciation $\left(V-V_{a}\right)$ is realated to d by,
$d=\left(v-v_{a}\right)\left[\frac{i}{(1+i)^{2}-1}\right]$.
Equating from above (2) equations)

$$
V_{a}=V-\left(V-V_{s}\right)\left[\frac{(1+i)^{a}-1}{(1+i)^{n}-1}\right]
$$

Problem 4: For problem 1, calculate de preciation charge and book values at the end of 4 and 5 years. $V=\$ 5000, V_{s}=\$ 1000, n=5$., Assume interest.

$$
d=\left(v-v_{s}\right)\left[\frac{i}{(1+i)^{n-1}}\right]
$$

$$
d=(5000-1000) \frac{0.1}{(1+0.1)^{5}-1}=\$ 655 .
$$

Book values $V_{4}=5000-(5000-1000)\left[\frac{(1 \cdot 1)^{4}-1}{(1.1)^{5}-1}\right]$

$$
\begin{gathered}
V_{4}=\$ 1959 \\
V_{5}=5000-(5000-1000)\left[\frac{(1.1)^{5}-1}{(1.1)^{5}-1}\right] \\
V_{5}=\$ 1000
\end{gathered}
$$

Depreciation and cosh Flow
Faderal income tax is charged on gross earning.
$\delta=$ Total in come or revenue.
$C=$ Total annual costs not including depreciation.
$d=$ Annual depreciation charge (cost).
$\phi=$ Fractional annual tax rate.
\therefore Net cash plow to company after tax

$$
\begin{aligned}
& =(s-c-d)(1-\phi)+d \\
& =(s-c)(1-\phi)+\phi d
\end{aligned}
$$

$\therefore \phi d$ is the tax credit due to depreciation.

Reference

- Plant Design and Economics for Chemical Engineers, Max S. Peters, K. D. Timmerhaus, $4^{\text {th }}$ Edition, McGraw-Hill Inc.

Thank You

