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Lecture Objectives:
Basic concepts of viscosity are introduced together with their analytical and
experimental manifestations.

Lecture Contents:

1. Introduction and definitions of viscosity
2. Different types of fluid flow

3. Viscosity models to analyze viscosity

Lecture OQutcome:
Upon successful completion of the course the student is able to solve and analyse
problems involving different types of fluid flow.




/ FLOW OF FLUIDS \
v' Different fluids flow differently

Flow of Water Flow of Honey Flow of Toothpaste

v Type of flow depends on the nature of the materials, how the molecules are
interacted, the processing conditions etc.




/
What is “Rheology”...

> Rheology; from the Greek word rheos & logos

= Rheos - stream current (i.e. flowing)
= Logos - the study of...

> The technical definition is:
= (“The science of deformation and flow”

> In practice it is used as a problem solving tool...
: My material..
« will not pﬂur
« is not stable
« will not spray
« is settling
» leaves trail marks
> Can be used to measure internal structure and
properties under processing conditions

> Applicable to a wide range of sample types, especially the bulk
result of colloidal interactions




Using a simple illustrative picture:

,, The Rheology Road*

ideally viscous
liquids

like water, oils

Law of Newton

viscoelastic
liquids

like glues,

shampoos

viscoelastic
solids
like pastes,
gels, rubbers

ideally elastic
(rigid) solids
like stone, steel
Law of Hooke
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Stress components in three dirfiensional flow
There are only 3 independent shear components and 2 normal stress differences.
Thus, in Cartesian coordinates, these are

GAZJ-*(_: Oyx)
Oxz(= On )
51-*3[: Oz, )

and the two normal stress differences defined as
Primary normal stress difference, N| = Oy — Oy
Secondary normal stress difference N, = 62, — 0,
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Rheology Definitions

Are

Height

(d)

force (N)

Shear stress =
surface area (m?)

deformation
height

Shear strain

change in strain
change in time (s)

Shear rate

Deflection

lfu}l

orce
(F)

Units

Pa

None
(or strain units)

1/s or s

/
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Absolute (dynamic) viscosity:

Viscosity=11= F’_= shearstress= dynm2 =dynms

S shear rate sec™!
The fundamental unit of viscosity measurement is the poise. A material requiring a
shear stress of one dyne per square meter to produce a shear rate of one reciprocal
second has a viscosity of one poise, or 100 centipoise.

Fluidity:
It is the reciprocal of viscosity (d = 1/n)

Kinematic Viscosity:

It is the absolute viscosity divided by the density of liquid at a specified temperature.
Kinematic viscosity = n / p; where p is the density of the liquid. The unite is Stock
(S) or centi-Stock (cS)

Relative viscosity:
is the relation of the solution viscosity n with respect to the viscosity of the solvent
“standard” n,

Nret = N/ Ng

Specific Viscosity
r]sp Ti (r]rel_ 1)

| 11




Newtonian Flow of Fluids
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NEWTONIAN FLOW
Newton assumed that all materials have, at a given temperature, a viscosity that
is independent of the shear rate.
F Surface area, A _Op

— — " — —— |V
f-T_'.:v.' = — =1] J’ﬁrr F "

A

[
For Newtonian fluids, all the stress components are related linearly to the rate of

deformation tensor components via the scalar viscosity. For instance the three
stress components acting on the x—face (oriented normal to the x—axis) are as

follows

. Vs For a Newtonian fluid, in simple shearr,
Oxx 21— .
dx Oxx = Oyy = Ozz = 0
V. IV, Because V, only varies in the y—direction.
Oxy = — NI ) -+ ) =) Thus, Newtonian fluid requires it to satisfy the
oy oA complete Navier-Stokes equations rather than
aVv, dV;. simply exhibiting a constant value of shear
Oxz = — 1\ 0= T Dy ) viscosity.
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Non-Newtonian Flow of Fluids




NON-NEWTONIAN FLOW

The simplest possible deviation from the Newtonian fluid behavior occurs when
Time/ Kinematic History Independent

» The simple shear data © — 7 does not pass through the origin
and/ or .
> Result into a non-linear relationship between ¢ and 7.

v' Conversely, the apparent viscosity, defined as ¢ /7. is not constant and is a
function of ¢ or 7.

App.Viscosity(O'/)}) = f(a,7)

Time/ Kinematic History Dependent

» Indeed, under appropriate circumstances, the apparent viscosity of certain
materials is not only a function of flow conditions (geometry, rate of shear, etc.),

consideration.
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NON-NEWTONIAN FLOW

Categories

1) Systems for which the value of 7 at a point within the fluid is determined only by
the current value of O at that point; these substances are variously known as
purely viscous, inelastic, time-independent or generalized Newtonian fluids
(GNF). e.g. shear thinning, shear thickening behaviour, Bingham flow etc.

2) Systems for which the relation betweenc and 7. shows further dependence on
the duration of shearing and kinematic history; these are called time-dependent
fluids. E.g. thixotropy, rheopexy

3) Systems which exhibit a blend of viscous fluid behavior and of elastic solid-like
behaviour. For instance, this class of materials shows partial elastic recovery,
recoil, creep, etc. Accordingly, these are called visco-elastic or elasto-viscous
fluids.




Time Independent Fluid Flow
(Generalized Newtonian Fluids)




TIME-INDEPENDENT FLUID FLOW \
The current value of the rate of shear at a point in the fluid is determined only by the
corresponding current value of the shear stress and vice versa. Conversely, one
can say that such fluids have no memory of their past kinematic history. Thus,

’:;ﬁ-:'r = f { Cﬂ:‘r)
Or, its inverse form, G = 1 () I
=7\l Viscoplastic
Bingham
Depending upon the above equation, Plas,gtic

three possibilities exist:

1) Shear- thinning or pseudoplastic
behavior

2) Visco-plastic behavior with or without
shear-thinning behavior

3) Shear- thickening or dilatant
behavior.

Shear Stress

Pseuduplastic

Newtonian Fluid
Dilatant Fluid

Shear Rate




Shear-Thinning Fluids

The most widely encountered type of time-independent non-Newtonian fluid
behavior in engineering practice. It is characterized by an apparent viscosity which
gradually decreases with increasing shear rate. In polymeric systems (melts and

solutions), at low shear rates, the apparent viscosity approaches a Newtonian
plateau where the viscosity is independent of shear rate (zero shear viscosity, 17,).
Furthermore, only polymer solutions also exhibit a similar plateau at very high shear

rates (infinite shear viscosity, 1]_), i.e.,

Oy,

. X
Iim — =17,
Yie—0 Yx

Iim — =n_
Yix—o Yyx

Apparant Viscosity (Pa.s)

™

Brookfield
| viscometer

|-_E
|

one and plate
viscometer

Shear Rate (')




rest high shear rates

d Structural Reasons of Pseudo-plastic Flow Behaviour

Suspensions:
Orientation of particles
(needle shaped)

rest

Macromolecules are entangled
and have spherical shapes

high viscosity

Dispersions:
Agglomerated particles
EBreak-up of agglomerates

high shear load

Macromolecules are deformed
and disentangled

low viscosity
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Power-law fluid/ Ostwald—de Waele power law (2 Parameters Model)

A Power-law fluid is a type of generalized Newtonian fluid for which the shear
stress, O , is given by .
c=m(y)"

Where n is the flow behavior index or power law index (dimensionless) and m is

the flow consistency index (Sl units Pa.s"),
In terms of the apparent viscosity,
n—1

n=m(y)"
n Type of fluid
=1 | Pseudoplastic

1 Newtonian fluid

=1  Dilatant (less common)

The value of n in the range 0.3-0.7 depending upon the concentration and

molecular weight of the polymer, etc. Smaller is the value of n, more shear-thinning
is the material.

Drawback | _
It predicts neither the upper nor the lower Newtonian plateaus in the limits of ¥ — U

\_or 77— 1




fl Cross Law (3 Parameters Model)
» New parameter incorporated here is zero shear viscosity
» Another difference is Cross law index (m) is introduced in place of power law
index o o
= 1 + ( }U_-}___)m

zero-shear-rate viscosity

where 1

A = natural time (i.e., inverse of the shear rate
at which the fluid changes from Newtonian to
power-law behavior)

m = Cross-law index (= 1 — n for large shear rates)

log 1
o Applicable at the low-shear-rate behavior of 08 1

the viscosity. "o
o Differs from the Bird-Carreau law primarily in

the curvature of the viscosity curve in the

vicinity of the transition between the plateau

zone and the power law behavior

v'At low shear rate (4 < 1/\ ) cross fluids behave as Newtonian fluids
\‘/At high shear rate ( 4 > 1/A ) as power-law fluids.




Bird-Carreau Law (4 Parameters Model)
» New parameter incorporated here is infinite shear viscosity

n—1

=1 + (0 — 1) (14 A*47) 7

where 7. = 1infinite-shear-rate viscosity
19 = zero-shear-rate viscosity
A = natural time (i.e., inverse of the shear rate
at which the fluid changes from Newtonian to
power-law behavior) log
n = power-law index "o

0 I —

1/ A log ¥

v'At low shear rate (4 < 1/) ) Carreau fluid behaves as a Newtonian fluid
v'At high shear rate (4 > 1/) ) Carreau fluid behaves as a power-law fluid.

It differs from the Cross law primarily in the curvature of the viscosity curve in the
vicinity of the transition between the plateau zone and the power law behavior.

\_

114
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Carreau-Yasuda Law (5 Parameters Model)
New parameter incorporated here is an index a that controls the nature of transition

n—1

1 =T + (M0 — 7ec) [1 + (AY)"]

where 179 zero-shear-rate viscosity

N~ = Infinite-shear-rate viscosity

A

natural time (i.e., inverse of the shear rate
at which the fluid changes from Newtonian to
power-law behavior)

a = 1ndex that controls the transition from the
Newtonian plateau to the power-law region

n = power-law index
logm

o
The Carreau-Yasuda law is a slight variation

on the Bird-Carreau law. The addition of the
exponent ‘a’ allows for control of the 5
transition from the Newtonian plateau to the R N
power-law region.

v low value of parameter a (a < 1) lengthens the transition.
v' high value of parameter a (a > 1) results in an abrupt transition.

| 11
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Shear-thickening (Dilatant Flow )
O Certain suspensions with a high percentage (up to 50%) of deflocculated solids
exhibit an increase in resistance to flow with increasing rate of shear.
0 Systems actually increase in volume when sheared, hence also termed dilatant.
O When stress is removed, a dilatant system returns to its original state of fluidity.
e.g. corn starch in water.

Reasons for Dilatancy
1. At rest particles are closely packed with
minimal inter-particle volume (void), so

- Viscosity Curve the amount of vehicle is enough to fill in
fﬁ@@*’m voids and permits particles to move at
= i low rate of shear.

El 2. Increase shear stress, the bulk of the
B . = system expand (dilate), and the particles

Flow Curve take an open form of packing.
. 3. The vehicle becomes insufficient to fill
e T W™ T o the voids between particles. Accordingly,
particles are no longer completely

wetted (lubricated) by the vehicle.

4. Finally, the suspension will set up as a
firm paste.

5. This process is reversible.

| 11
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Visco-Plastic Fluids

% This type of non-Newtonian fluid behavior is characterized by the existence of a
threshold stress (called yield stress or apparent yield stress, 0o ) which must be
exceeded for the fluid to deform (shear) or flow.

A certain shear stress has to be applied in order to let the sample flow

The applied force has to be higher than the structural force

Examples:
Pastes ( tomato paste, chilli paste, tooth pastes)

“* When the externally applied stress is less than the yield stress gy .the substance
will behave like an elastic solid (or flow like a rigid body)

“* When the external yield stress exceeds the value of 0y , the fluid may exhibit
v Newtonian behaviour (constant value of 17 ); known as Bingham bodies

v' Shear-thinning characteristics, i.e.‘n(}'/)

| 11
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Bingham Bodies
A fluid with a linear flow curve for |G| > ‘crﬂ‘ is called a Bingham plastic fluid,
and is characterized by a constant value of viscosity 1],

In one-dimensional shear, the Bingham model is written as:

160

T v T
& NMeat Extract

B . B 40 o Ca i ]

_ - - rbopol Solution
J‘l.‘;r — {jﬂ —l_ ”B ft-‘.‘( ‘G‘m‘ - {j{} 0 - -
+ - | Bl E .
%-ﬁT — “ ‘G‘u ‘ <~ G{} e’ ]

100 =
80[.(".
o= 68 Pa

60 =

Examples; suspension of ZnO in mineral oil,
certain paints, ointments

Shear Stress, o

40

20

" Il . I '
0 5 10 15

Herschel-Bulkley fluid Shear Rate,§. ()

On the other hand, a visco-plastic material showing shear-thinning behavior at
stress levels exceeding ‘(}'ﬂ‘ is known as a yield-pseudoplastic fluid, and their
behavior is frequently approximated by the so-called Herschel-Bulkley fluid model
written for 1-D shear flow as follows:

H C ey )
ql-‘.‘( - (‘Tﬂ + ”‘?(%-‘.T}” ‘J}:'{‘ = |0

hx =0 o] < |o

| 11
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Time Dependent Fluid Flow




fl THIXOTROPY

** When material is sheared at a constant rate, &
its apparent viscosity decreases with the
duration of shearing.

% As the value of 7 is gradually increased, the &
time needed to reach the equilibrium value is’
seen to drop dramatically. [! Shearing a

% The breakdown of structure may be LTI
reversible, i.e., upon removal of the external |
shear and following a long period of rest, the

Build-up of
structure

60

Viscosity (Pa.s)

Mo shearing

fluid may regain (rebuilding of structure) the  *-—r—r——r—r "
initial value of viscosity. _ _
Duration of Shearing (s)

Hysteresis Loop wl |

“ In a single experiment, when the strain rate is m et
increased at a constant rate from zero to i
some maximum value and then decreased at
the same rate, a hysteresis loop is formed.

% The height, shape and the area of the loop
depend on the rate of increase/decrease of .
shear rate, the maximum value of shear rate, v

\_ and the past kinematic history of the sample.

Thixetropic

f loop area

Shear stress
'}

=




™

Rheopexy

% Fluids which show the negative thixotropy, i.e., their apparent viscosity (or the
corresponding shear stress) increases with time of shearing

% The hysteresis loop is obviously inverted

% As opposed to thixotropic fluids, external shear raises the build up of structure

Example : gypsum pastes, printer inks, coal-water slurries and protein solutions

Thixotropic
Fluid

Shear Stress

Rheopectic
Fluid

Shear Rate
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Conclusions

% The discussion here is restricted primarily to the response of such structured
fluids in unidirectional steady shearing motion which leads to the manifestation
of shear-thinning, shear-thickening, visco-plastic, thixotropic, rheopectic, visco-
elastic characteristics.

% This, in turn, provides some ideas on how to manipulate the microstructure of a
system to realize desirable non-Newtonian features.

% The measurement and monitoring of viscosity, yield stress etc. is frequently
used to control product quality in food and personal care product sectors, for
instance.







Effect of Temperature on Viscosity

Every polymer has a characteristic temperature, the “glass transi-
tion temperature” T,, which determines the first condition. A brief
discussion of the dependence of T, on molecular structure is given
in Appendix D. In the vicinity of the 7, the availability of space,
i.e., free volume Viy is the limiting factor; at higher temperatures,
where there is no lack of free volume, the energy barriers become
significant.

Both experimentally and theoretically it is found [14] that near T

& L L - E
the dependence of viscosity upon free volume is described by the

Doolittle equation:
Inn =1InA+ B(v - v) /v, (10-11)

[t has been suggested that v, increases approximately linearly
with temperature above T:

vi=v(T,) + a)(T - T,) (10-12)

Here a; is the expansion coefficient of the free volume, approxi-
mately (a, — ag), where e, and a, are the thermal expansion
coefficients above and below T,. Substituting v, from Equation
10-12 into Equation 10-11, we arrive at the well-known WLF
(Williams-Landel-Ferry) equation [14]:

(B/2.3f,)(T - T;)
(fo/ag) + T =T,

log 7(T) = log n(T,) - (10-13)

In the WLF equation, [, is the fractional free volume v/v, at the
T, of the polymer.

The WLF equation describes the temperature dependence of
viscosity well from T, to about T, + 100. Values of the parameters
of the equation, expressed in slightly different form, are tabulated
by Ferry [14, p. 316]. Ferry describes a graphical method for
determining the WLF parameters from experimental data.

[t is most helpful to note that Equation 10-13 can be expressed in
a number of “universal” forms approximately applicable to all



polymers. The most useful, although least accurate, form is Equa-
tion 2-129 with the parameters taken to be universal constants:

17.44(T - T,)
516 +T T,

log n(T) = log n(T,) ~ (10-14)

It is not uncommon to express the viscosity in the familiar
Arrhenius form, even though the activation energy E, is not a
constant in the region of applicability of the WLF Equation,

n = Aexp(E,/RT) (10-15)

The activation energy E_ is then given by

Ti

E (kcal/mol K) = 4.13 (10-16)

2
(516 + T - T,)

From Equation 10-16 we see that E, depends both on the
absolute temperature T and upon the difference T — T,. The
activation energy increases, i.e., the viscosity becomes more temper-
ature dependent, as one approaches T,. This is illustrated in Figure
10-8, in which E, calculated from Equation 10-16 is plotted for an
assumed T, of 373K (100°C).

Equation 10-16 can also be used to estimate the error in the
temperature dependence resulting from the use of the “universal”
form of the WLF Equation 10-14, instead of Equation 10-13, with
experimentally measured parameters. For example, for polystyrene
at 200°C the E, from equation 10-13 is 40 kcal/mol K. From
Equation 10-16 the calculated value is 31 kcal /mol K.

At temperatures appreciably higher than 7, + 100, the tempera-
ture dependence of viscosity is no longer affected as strongly by the
increase of free volume. Instead, the energy barriers to motion
become limiting. In that case the temperature dependence is given
by Equation 10-15, with a constant E_, whose value depends upon
the chemical structure of the polymer.

As was mentioned in Section 10.2, Van Krevelen and Hoftyzer [3]
have proposed a more general viscosity-temperature relation and
have tabulated data for a number of polymers. However, it is worth
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Figure 10-8. Arrhenius activation energy versus temperature for WLF temperature depen-
dence of viscosity, calculated from Equation 10-18 with T, taken to be 100°C (373 K).

noting that the WLF Equation 10-16 can give a reasonable estimate
of E_ at high temperatures. For example, consider polyethylene
terephthalate (PET), with a 7, of 70°C. At 285°C Equation 10-16
gives a value for E, of 18 kcal /mol K. The experimental value is
13.5 [15], and Van Krevelen’s calculated value [3] is 12 kcal /mol K.
Similarly, for acetal copolymer the calculated value from the WLF
Equation (assuming a T, of —60°C) is 9.7, compared to a measured
value of 7.1 kcal /mol K at 190°C. [8]. It appears that WLF overesti-
mates E,, but gives at least a reasonable first approximation.

In order to give a feel for the effect of the magnitude of E, on
the temperature dependence of viscosity, Figure 10-9 is a plot of
the percentage increase of viscosity caused by a 1°C and a 10°C
decrease of temperature at a melt temperature of 200°C.



2.4.4 Effects of Pressure and Dissolved Gas
on Viscosity

Whereas increasing temperature decreases the viscosity of
melts, increasing pressure increases it, because compression
of the melt decreases free volume. Pressure shift factors can
be used to generate master curves just as temperature shift
factors are used in time—temperature superposition. The
Barus equation is often found to describe the pressure
dependence of viscosity. This is shown as Eq. (2.17).

In [’?uf P)
ol Fo)

} =8(FP—Hh) (2.17)

This implies that the pressure shift factor a p is given by:

In[ap(P)] = B(P — R) (2.18)

Figure 2.6 shows the effect of pressure on the viscosity of a
high-density polyethylene at 180 °C, and Fig. 2.7 is a maser

curve based on the same data [74]. The horizontal shift factor
is an(P), the prime indicating that the vertical shift factor was

neglected, i.e., set equal to unity. The Barus Eq. (2.18) was
found to fit the entire viscosity curve very well with b p set at
unity. Increasing the pressure from atmospheric 0.1 to

69 MPa (=10,000 psi) increases the viscosity by a factor of
about two.

100 §
: . DPE 180°C
® 0 gas
¥ ¥
s & ¥ x
TR
~23 8ty
) L
P | % 69 MPa X B
E 10+t 28
= f + 52 MPa -8 i
= \ ol I
[ 434 MPa ol ; y
L ® |8 MPa l I
L+ 11 MPa .
-
=0.1 MPa
0.01 0.1 1 10 100

. o =]
767)
Fig. 2.6 Effect of pressure on the viscosity versus shear rate curve of HDPE.
From Park and Dealy [14]



2.4.5 Effect of Molecular Weight on the Zero-
Shear Viscosity

Small molecules in the liquid state interact primarily through
intermolecular forces that give rise at the microscopic level to
friction and at the macroscopic level to viscosity. The viscosity
of such a liquid is independent of shear rate. A polymeric
liquid with a low molecular weight behaves in this way, and its
viscosity increases linearly with molecular weight. For
example, for linear polyethylene this behavior obtains up to a
molecular weight around 3,500. But over a fairly narrow range
of molecular weights the viscosity starts to decrease with
shear rate and the increase of n g with molecular weight
becomes much stronger than linear. In the same range of
rates, the viscosity depends increasingly on shear rate.

Plots of log(n o) versus log(M) for several linear,
monodisperse polymers are shown in Fig. 2.10 [16]. At low
molecular weights the viscosity is proportional to molecular
weight and varies little with shear rate over a wide range of
shear rates.

As the molecular weight increase, n g starts to increase much
more rapidly with M, and the viscosity starts to depend
strongly on shear rate. Over a fairly narrow range of M, data
on a log—log plot approach a line with a slope between 3.4
and 3.6. In other words for linear, monodisperse polymers
having sufficiently high molecular weight the relationship
between log(n g) and log(M) is given by Eq. (2.20).

n0 = KM@ (2.20)

where a is usually the range of 3.5+ 0.2
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FIGURE Dependence of polymer (melt) viscosity
on molecular weight (M): a typical plot of log viscosity
against log M.

The value of M where the lines described by Egs. (2.19) and
(2.20) intersect for a given polymer, M ¢, is called the critical

molecular weight for entanglement. Values of M ¢ for a
number of polymers are given in Appendix A. This is not to be

confused with two other rheologically meaningful critical
molecular weights M'c and M g, which will be introduced later.

For polydisperse materials, it is found that Eq. (2.20)
continues to be valid if M is simply replaced by the weight-
average molecular weight, as long as there are very few
unentangled molecules present, i.e. those with M < M ¢.

no = KM (2.21)

This relationship leads directly to a blending law for viscosity.
For example, in a binary blend of two monodisperse samples
of the same polymer having molecular weights M 4 and M 5,

the weight-average molecular weight of the blend is given by:
."lf-_q,-b = w1JI1 -+ wz_\fg (2+22}

where w 1, and w 5, are the weight fractions of the blend
components.



Using Egs. (2.20) and (2.21) to eliminate the molecular
weights, we have:

Mo,e = KM = (wl’?éf? +w; '?::)lﬂ (2.23)

This equation has been tested for blends of monodisperse
[17, 18] and polydisperse [19] materials.

2.4.6 Effect of Molecular Weight Distribution
on Viscosity

The effect of molecular weight distribution, MWD, is
somewhat more subtle but still very important. In general,
commercial polymers have a rather broad molecular weight
distribution, although materials produced using metallocene
catalysts can have polydispersities (M ,, /M ) as low as two.

Figure 2.11 is a sketch of viscosity curves for two polymers
having the same weight average molecular weight but
different molecular weight distributions. The upper curve is for
a nearly monodisperse sample, while the lower one is for a
sample with a moderately broad MWD. The broadening of the
distribution stretches out the range of shear rates over which
the transition from the zero-shear viscosity to the power law
region occurs. Chapter 7 describes methods for using
viscosity data to infer the MWD of a linear polymer, although it
is to be noted that this requires data of high accuracy. In the
plastics industry it is often desired to estimate polydispersity
from easily measured quantities. Shroff and Mavridis [20]
have compared several empirical correlations that have been
proposed to do this.

log (viscosity)

log (shear rate)

Fig. 2.11 Shapes of viscosity curves for two samples having the same M ,,
but with narrow (upper curve) and broad (fower) molecular weight
distributions. The narrow MWD sample moves from a well-defined Newtonian
region to power-law behavior over a narrower range of shear rates



246 ANALYSIS AND TESTING OF POLYMERS
The literature related to the physical testing of polymers is extensive. Several
compilations are useful: the series edited by Schmitz (1965, 1966, 1968) and Brown
(1969) and those volumes of methods of test and recommended practices dealing
with plastics issued by the American Society for Testing and Materials (ASTM).
There are also many pertinent articles in the Encyclopedia of Polymer Science and
Technology (Mark 1964-1970). Beyond this listing, specific references have largely
been omitted from this section.

Mechanical Properties

Stress—Strain Properties in Tension. One of the most informative mechanical
experiments for any material is the determination of its stress—strain curve in tension.
This is usually done by measuring continuously the force developed as the sample
is elongated at constant rate of extension.

The generalized stress—strain curve for plastics shown in Fig. 9-7 serves to define
several useful quantities, including modulus or stiffness (the slope of the curve),
yield stress, and strength and elongation at break. This type of curve is typical,of
a plastic such as polyethylene. Figure 9-8 shows stress—strain curves typical of
some other classes of polymeric materials. The properties of these polymer types
are related to the characteristics of their stress—strain curves in Table 9-2.

Tensile properties are usually measured at rates of strain of 1-100%/min. At .
higher rates of strain—up to 10%%/min—tensile strength and modulus usually
increase severalfold, while elongation decreases. The interpretation of these results
is complicated by large temperature rises in the test specimen.

In addition to tensile measurements, tests may also be performed in shear,
[flexure, compression, or torsion. For materials in film form, flexural tests are often

Elongation at break ————

Elongation
<_at yieldj
§ Utltimate
« strength

Yield
stress
i

Strain-—s

FIG. 9-7. Generalized tensile stress-strain curve for plastics (Winding 1961).
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Soft and weak Hard and brittle Soft and tough
\’/
Hard and strong Hard and tough

FIG. 9-8. Tensile stress—-strain curves for several types of polymeric materials (Winding 1961).

used. These may include (for stiffer materials) measurement of flexural modulus
or (for less stiff materials) flexural or folding endurance tests (see next pargraph).

Fatigue Tests. When subjected to cyclic mechanical stresses, most materials fail
at a stress considerably lower than that required to cause rupture in a single stress
cycle. This phenomenon is called fatigue. Various modes of fatigue testing in
common use include alternating tensile and compressive stress and cyclic flexural
stress. Results are reported as plots of stress versus number of cycles to fail. Many
materials show a fatigue endurance limit, or a maximum stress below which fatigue

failure never takes place.

TABLE 9-2. Characteristic Features of Stress—Strain Curves as Related to Polymer
Properties?

Characteristics of Stress—Strain Curve

Description Ultimate Elongation
of Polymer Modulus Yield Stress Strength at Break
Soft, weak Low Low Low Moderate
Soft, tough Low Low Yield stress High
Hard, brittle High None Moderate Low
Hard, strong High High High Moderate
Hard, tough High High High High

“Winding (1961)
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