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• Module 3:
• Internal incompressible viscous flow:
• Introduction;
• flow of incompressible fluid in circular pipe;
• laminar flow for Newtonian fluid;
• Hagen-Poiseuille equation;
• flow of Non-Newtonian fluid,
• introduction to turbulent flow in a pipe;
• energy consideration in pipe flow,
• relation between average and maximum velocity,
• Bernoulli’s equation–kinetic energy correction factor; head loss; friction factor;

major and minor losses,
• Pipe fittings and valves. [8]
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• Internal incompressible viscous flow : Introduction
• Flows completely bounded by solid surfaces are called internal flows.
• Thus internal flows include flows through pipes, ducts, nozzles, diffusers, sudden

contractions and expansions, valves, and fittings.
• Internal flows may be laminar or turbulent.
• For internal flows, the flow regime (laminar or turbulent) is primarily a function of

the Reynolds number.
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• Internal incompressible viscous flow : Introduction
• Laminar or Turbulent Flow:
• The flow of a fluid in a pipe may be laminar flow or it may be turbulent flow.
• Osborne Reynolds, a British scientist and mathematician, was the first to distinguish

the difference between these two classifications of flow by using a simple apparatus.
• For “small enough flowrates” the dye streak (a streakline) will remain as a well

defined line as it flows along, with only slight blurring due to molecular diffusion of
the dye into the surrounding water.

• For a somewhat larger “intermediate flowrate” the dye streak fluctuates in time and
space, and intermittent bursts of irregular behavior appear along the streak.

• However, for “large enough flowrates” the dye streak almost immediately becomes
blurred and spreads across the entire pipe in a random fashion. These three
characteristics, denoted as laminar, transitional, and turbulent flow, respectively
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• Internal incompressible viscous flow : Introduction
• Laminar or Turbulent Flow:
• That is, the flow in a pipe is laminar, transitional, or turbulent provided the Reynolds

number is “small enough,” “intermediate,” or “large enough.”
• It is not only the fluid velocity that determines the character of the flow—its density,

viscosity, and the pipe size are of equal importance.
• These parameters combine to produce the Reynolds number.
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• Internal incompressible viscous flow : Introduction
• Entrance Region and Fully developed Flow:
• Any fluid flowing in a pipe had to enter the pipe at some location.
• The region of flow near where the fluid enters the pipe is termed the entrance

region.
• As shown, the fluid typically enters the pipe with a nearly uniform velocity profile at

section (1).
• As the fluid moves through the pipe, viscous effects cause it to stick to the pipe wall

(the no-slip boundary condition).
• This is true whether the fluid is relatively inviscid air or a very viscous oil.
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• Internal incompressible viscous flow : Introduction
• Entrance Region and Fully developed Flow:
• Thus, a boundary layer in which viscous effects are important is produced along the

pipe wall such that the initial velocity profile changes with distance along the pipe,
x, until the fluid reaches the end of the entrance length, section (2), beyond which
the velocity profile does not vary with x.

• The boundary layer has grown in thickness to completely fill the pipe.
• The shape of the velocity profile in the pipe depends on whether the flow is laminar

or turbulent, as does the entrance length, le. Typical entrance lengths are given by
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• Internal incompressible viscous flow : Introduction
• Entrance Region and Fully developed Flow:
• Once the fluid reaches the end of the entrance region, section (2) of Fig, the flow is

simpler to describe because the velocity is a function of only the distance from the
pipe centerline, r, and independent of x.

• This is true until the character of the pipe changes in some way, such as a change in
diameter or the fluid flows through a bend, valve, or some other component at
section (3).

• The flow between (2) and (3) is termed fully developed flow.
• Beyond the interruption of the fully developed flow [at section (4)], the flow

gradually begins its return to its fully developed character [section (5)] and
continues with this profile until the next pipe system component is reached [section
(6)].
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• Flow of incompressible fluid in Circular Pipe:
• Let us consider the fully developed laminar flow in a horizontal pipe of radius R.
• The viscous fluid is flowing from left to right in the pipe as shown in the Fig.
• Consider a fluid element of radius r, sliding in a cylindrical fluid element of radius (r

+ dr).
• Let the length of the fluid element be ∆x.
• If “p” the intensity of pressure on the face AB.
• The intensity of pressure on face CD will be
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• Flow of incompressible fluid in Circular Pipe:
• Let us consider the fully developed laminar flow in a horizontal pipe of radius R.
• Then the forces act on the fluid element are:

• As well as, the shear force on the surface of fluid element,
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• Flow of incompressible fluid in Circular Pipe:
• Let us consider the fully developed laminar flow in a horizontal pipe of radius R.
• The summation of all forces in the direction of flow must be zero ie.,
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• Flow of incompressible fluid in Circular Pipe:
• Let us consider the fully developed laminar flow in a horizontal pipe of radius R.
• From the below equation, we will get that the shear stress ζ across the section varies

with ‘r’ as δp/δx across a section is constant.

• Hence the shear stress distribution across a section is linear as shown in the Fig.
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• Flow of incompressible fluid in Circular Pipe:
• (i) Velocity Distribution:
• To obtain the velocity distribution across a section, the value of shear stress is

substituted in the equation

• But the ‘y’ is measured from the pipe wall.
• Hence

• Substitute the above value in the equation.
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• Flow of incompressible fluid in Circular Pipe:
• (i) Velocity Distribution:
• Integrate the above equation w.r.t ‘r’, we have:

• Where C is the constant of integration and its value is obtained from the boundary
condition that at r = R and u = 0.



For Educational Purpose onlyCL203 FLUID MECHANICS 
• Flow of incompressible fluid in Circular Pipe:
• (i) Velocity Distribution:
• Substitute the value of C in the equation, we get

• In the above equation, value of μ, δp/δx and R are constant, which means the
velocity ‘u’ varies with the square of ‘r’.

• Thus the above equation is a equation of parabola.
• This shows that the velocity distribution across the section of a pipe is parabolic and

the velocity distribution is shown in the Fig.
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• Flow of incompressible fluid in Circular Pipe:
• (ii) Ratio of Maximum velocity to Average velocity:
• The velocity is maximum when r = 0 in the equation.

• Thus the maximum velocity is obtained as:
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• Flow of incompressible fluid in Circular Pipe:
• (ii) Ratio of Maximum velocity to Average velocity:
• The average velocity is obtained by dividing the discharge of the fluid across the

section by the area of the pipe.
• The discharge ‘Q’ across the section is obtained by considering the flow through a

circular ring element of radius r and thickness dr.
• The fluid flowing per second through the elementary ring



For Educational Purpose onlyCL203 FLUID MECHANICS 
• Flow of incompressible fluid in Circular Pipe:
• (ii) Ratio of Maximum velocity to Average velocity:
• The average velocity is obtained by dividing the discharge of the fluid across the

section by the area of the pipe.
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• Flow of incompressible fluid in Circular Pipe:
• (ii) Ratio of Maximum velocity to Average velocity:
• Divide the equation of maximum velocity to average velocity,

• Therefore the ratio of maximum velocity to average velocity for a circular pipe is 2.

• Umax = 2 Uavg
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• Flow of incompressible fluid in Circular Pipe:
• (iii) Pressure drop for a given Length (L) of a pipe:
• From the average velocity equation, we have:

• Integrating the above equation w.r.t ‘x’ we get:
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• Flow of incompressible fluid in Circular Pipe:
• (iii) Pressure drop for a given Length (L) of a pipe:



For Educational Purpose onlyCL203 FLUID MECHANICS 
• Flow of incompressible fluid in Circular Pipe:
• (iii) Pressure drop for a given Length (L) of a pipe:

• Substitute D = 2R in the above equation, we get:
• (p1 – p2)/L = ((8μU)/R2) where p1 – p2 = P
• P/L = ((8μU)/R2) We know that Q = U A; U = Q/A and A = πR2

• P/L = ((8μQ)/ πR2 . R2)

• This equation is known as Hagen Poiseuille formula.
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• Flow of incompressible fluid in Circular Pipe:
• (iii) Pressure drop for a given Length (L) of a pipe:
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• Flow of incompressible fluid in Circular Pipe:
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• Flow of incompressible fluid in Circular Pipe:
• (iii) Pressure drop for a given Length (L) of a pipe:
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• Laminar Flow of fluid between two parallel plates:
• Consider two parallel fixed plated at a distance ‘t’ apart as shown in the Fig.
• A viscous fluid is flowing between these two plates from left to right.
• Consider a fluid element of length ∆x and thickness ∆y at a distance ‘y’ from the

lower fixed plate and the width of the element as unity.
• If ‘p’ is the intensity of pressure on the face AB of the fluid element,
• Then intensity of pressure on the face CD will be

• Let ‘τ’ be the shear stress acting on the face BC,
• then the shear stress on the face AD will be
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• Laminar Flow of fluid between two parallel plates:
• Then the forces acting on the fluid element are:
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• Laminar Flow of fluid between two parallel plates:
• For steady and uniform flow, there is no acceleration and hence the resultant force in

the direction of flow is zero.
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• Laminar Flow of fluid between two parallel plates:
• (i) Velocity Distribution:
• To obtain the velocity distribution across a section, the value of shear stress from

Newton’s law of viscosity for laminar flow is substituted.
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• Laminar Flow of fluid between two parallel plates:
• (i) Velocity Distribution:
• To obtain the velocity distribution across a section, the value of shear stress from

Newton’s law of viscosity for laminar flow is substituted.

• Now Substitute y = 0 and u = 0 in the above equation, we get

• Again Substitute y = t and u = 0, we get;
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• Laminar Flow of fluid between two parallel plates:
• (i) Velocity Distribution:
• Now substitute the value of C1 and C2 in the below equation, we get;

• From the above equation, we see ‘u’ varies with the square of ‘y’ and the other
terms are constant.

• Hence the above equation is a equation of PARABOLA and the velocity distribution
across a section of a parallel plate is PARABOLIC.
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• Laminar Flow of fluid between two parallel plates:
• (ii) Ratio of maximum velocity to average velocity:
• The velocity is maximum when y = t/2. Substitute this value in the equation, we get;
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• Laminar Flow of fluid between two parallel plates:
• (ii) Ratio of maximum velocity to average velocity:
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• Laminar Flow of fluid between two parallel plates:
• (ii) Ratio of maximum velocity to average velocity:
• Divide the equation which we got for maximum and average velocity;
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• Laminar Flow of fluid between two parallel plates:
• (iii) Pressure drop for a given length:
• Average velocity
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• Laminar Flow of fluid between two parallel plates:
• (iv) Shear Stress distribution:
• It is obtained by substitute the value of u in Newton’s law of viscosity; we get;
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• FLUID STATICS:

• Reference:
• Fluid Mechanics by Fox
• Fluid Mechanics by Bansal
• Fluid Mechanics by Young
• NPTEL
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• flow of Non-Newtonian fluid,
• introduction to turbulent flow in a pipe;
• energy consideration in pipe flow,
• relation between average and maximum velocity,
• Bernoulli’s equation–kinetic energy correction factor; head loss; friction factor;

major and minor losses,
• Pipe fittings and valves. [8]
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• Equation of Motion:
• A dynamic equation describing fluid motion may be obtained by applying Newton’s second law to a

particle.
• To derive the differential form of the momentum equation, we shall apply Newton's second law to an

infinitesimal fluid particle of mass dm.

• This equation states that the time rate of change of momentum of a system equals the net external
force acting on it.

• Linear momentum is a fundamental concept in mechanics that describes the motion of a body.
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• Equation of Motion:
• A dynamic equation describing fluid motion may be obtained by applying Newton’s second law to a

particle.
• To derive the differential form of the momentum equation, we shall apply Newton's second law to an

infinitesimal fluid particle of mass dm.
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• Equation of Motion:
• We can write the Newton’s second law as the vector equation: equation shown is an

expanded form of Newton’s second law in differential form, using the material
derivative.

• This expression represents the force per fluid element due to the acceleration of that
element as it moves through a velocity field that varies in both space and time.

• In general, two types of forces need to be considered: surface forces, which act on the
surface of the differential element, and body forces, which are distributed throughout the
element.
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• Equation of Motion:
• We can write the Newton’s second law as the vector equation: equation shown is an

expanded form of Newton’s second law in differential form, using the material
derivative.

• In general, two types of forces need to be considered: surface forces, which act on
the surface of the differential element, and body forces, which are distributed
throughout the element.

• Body force, Fb, of interest is the weight of the element, which can be expressed as
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• Equation of Motion:
• Surface forces act on the element as a result of its interaction with its surroundings.
• Normal Stress is
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• Equation of Motion:
• We shall consider the x component of the force acting on a differential element of

mass dm and volume dV = dx dy dz.
• Only those stresses that act in the x direction will give rise to surface forces in the x

direction.
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• Equation of Motion:
• We shall consider the x component of the force acting on a differential element of

mass dm and volume dV = dx dy dz.
• Only those stresses that act in the x direction will give rise to surface forces in the x

direction.
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• Equation of Motion:
• We shall consider the x component of the force acting on a differential element of

mass dm and volume dV = dx dy dz.

• Now substitute the values, We get:

• The above Equations are the general differential equations of motion for a fluid.
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• Equation of Motion:
• Flow fields in which the shearing stresses are assumed to be negligible are said to be

inviscid.
• As discussed in the previous lectures, for fluids in which there are no shearing

stresses, the normal stress at a point is independent of direction—that is,

• In this instance we define the pressure, p, as the negative of the normal stress so that,
as indicated by the figure in the margin,

• The negative sign is used so that a compressive normal stress (which is what we
expect in a fluid) will give a positive value for p.
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• Equation of Motion:
• For an inviscid flow in which all the shearing stresses are zero, and the normal

stresses are replaced by -p, the general equations of motion reduce to:

• Or in vector form

• The above equation are commonly referred to as Euler’s equation of motion.
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• Equation of Motion:
• Remember Continuity Equation

• We can rewrite the continuity equation in vector form as:
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• Equation of Motion:
• For incompressible fluids, density is constant (ρ = Constant)
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• Equation of Motion:
• Acceleration field

• Convective acceleration in vector form:

• Now the acceleration field represented in vector form as:



For Educational Purpose onlyCL203 FLUID MECHANICS 
• Euler’s Equation in Streamline Coordinates:
• Consider a stream-line in which flow is taking place in s- direction as shown in the

Fig.
• Consider a cylindrical element of cross-section dA and length ds.
• The forces acting on the cylindrical element are:

• Let θ is the angle between the direction of flow and the
• Line of action of the weight of element.
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• Euler’s Equation in Streamline Coordinates:
• The resultant force on the fluid element in the direction of s must be equal to the

mass of fluid element x acceleration in the direction of s.
• F = mass x acceleration.

• Where as is the acceleration in the direction of s. (using Chain Rule of
Differentiation)
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• Euler’s Equation in Streamline Coordinates:
• Now substitute the value of as and simplify the equation, we get:

• The above equation is the Euler’s equation of motion in streamline corordinates.
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• Bernoulli’s Equation from Euler’s Equation:
• Now substitute the value of as and simplify the equation, we get:

• The above equation are the Bernoulli’s equation
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• Bernoulli’s Equation from Euler’s Equation:
• Now substitute the value of as and simplify the equation, we get:
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• Navier Stokes Equation:
• For incompressible, Newtonian fluids it is known that the stresses are linearly

related to the rates of deformation and can be expressed in Cartesian coordinates as
(for normal stresses)
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• Navier Stokes Equation:
• For incompressible, Newtonian fluids it is known that the stresses are linearly

related to the rates of deformation and can be expressed in Cartesian coordinates as
(for normal stresses)

• Newton’s law of viscosity (generalized form)
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• Navier Stokes Equation:
• For incompressible, Newtonian fluids it is known that the stresses are linearly

related to the rates of deformation and can be expressed in Cartesian coordinates as
(for normal stresses)
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• Navier Stokes Equation:
• Now the stresses can be substituted in the differential equation of motion and

simplify by using the continuity equation for incompressible flow.
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• Navier Stokes Equation:
• Now the stresses can be substituted in the differential equation of motion and

simplify by using the continuity equation for incompressible flow.

• These equations are commonly called the famous Navier–Stokes equations
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• Navier Stokes Equation:
• Now we can if for frictionless force (μ = 0). The above equation will be reduced to

Euler’s equation of motion.
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• Bernoulli’s Equation for Real Fluids:
• Bernoulli’s equation was derived on the assumption that fluid is inviscid and

therefore frictionless.
• But all the real fluids are viscous and hence offer resistance to flow.
• Thus there are always some losses in fluid and hence in the application of

Bernoulli’s equation, these losses have to be taken into consideration.
• Thus the Bernoulli’s equation for real fluids between points 1 and 2 is given as:
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• Bernoulli’s Equation for Real Fluids:
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• Bernoulli’s Equation for Real Fluids:



For Educational Purpose only• CL203 FLUID MECHANICS 
• FLUID STATICS:
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• Module 3:
• Internal incompressible viscous flow:
• Introduction;
• flow of incompressible fluid in circular pipe;
• laminar flow for Newtonian fluid;
• Hagen-Poiseuille equation;
• flow of Non-Newtonian fluid,
• introduction to turbulent flow in a pipe;
• energy consideration in pipe flow,
• relation between average and maximum velocity,
• Bernoulli’s equation–kinetic energy correction factor; head loss; friction factor;

major and minor losses,
• Pipe fittings and valves. [8]
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• First Law of Thermodynamics:
• The first law of thermodynamics is a statement of conservation of energy for a

system:

• Q = heat added to the system (positive if added, negative if removed) and W is the
Work done by the system (positive if done by the system, negative if done on the
system) and dE = Change in internal energy of the system

• The equation can be written in rate form as

• where the total energy of the system is given by
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• First Law of Thermodynamics:
• The first law of thermodynamics is a statement of conservation of energy for a

system:

• The equation can be written in rate form as

• where the total energy of the system is given by

• The system energy per unit mass e may be of several types:
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• First Law of Thermodynamics:
• The system energy per unit mass e may be of several types:

• Where u is the specific internal energy, V the speed, and z the height (relative to a
convenient datum) of a particle of substance having mass dm.

• To derive the control volume formulation of the first law of thermodynamics, we set
• N = E and η = e in RTT.
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• First Law of Thermodynamics:
• Since the system and the control volume coincide at t0

• We can write the equation as:

• Where e is:

• The above equation is the control volume formula for the first law of
thermodynamics:
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• First Law of Thermodynamics:
• The term Ŵ in the above equation has a positive numerical value when work is done

by the control volume on the surroundings.
• The rate of work done on the control volume is of opposite sign to the work done by

the control volume.
• The rate of work done by the control volume is conveniently subdivided into four

classifications,

• SHAFT WORK:
• We shall designate shaft work Ŵs and hence the rate of work transferred out through

the control surface by shaft work is designated Ŵs.
• Examples of shaft work are the work produced by the steam turbine (positive shaft

work) of a power plant, and the work input required to run the compressor of a
refrigerator (negative shaft work).
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• First Law of Thermodynamics:
• Work done by normal stresses at the control surface:
• Recall that work requires a force to act through a distance.
• Thus, when a force, F, acts through an infinitesimal displacement, ds, the work done

is given by

• To obtain the rate at which work is done by the force, divide by the time increment,
∆t

• Hence the rate of work done on the area element is Normal Stress = Force/Area
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• First Law of Thermodynamics:
• Work done by normal stresses at the control surface:
• Since the work out across the boundaries of the control volume is the negative of the

work done on the control volume,
• the total rate of work out of the control volume due to normal stresses is

• Work done by Shear stresses at the control surface:
• Just as work is done by the normal stresses at the boundaries of the control volume,

so may work be done by the shear stresses.
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• First Law of Thermodynamics:
• Work done by Shear stresses at the control surface:
• Since the work out across the boundaries of the control volume is the negative of the

work done on the control volume,
• the rate of work out of the control volume; due to shear stresses is given by

• This integral is better expressed as three terms
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• First Law of Thermodynamics:

• Other Work:
• Electrical energy could be added to the control volume. Also electromagnetic

energy] e.g., in radar or laser beams, could be absorbed. In most problems, such
contributions] will be absent, but we should note them in our general formulation.
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• First Law of Thermodynamics:
• Control Volume Equation:
• Substitute the expression of rate of work done in first law, we get:

• Rearrange the terms:
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• First Law of Thermodynamics:
• Control Volume Equation:
• We know that the normal stress is negative of the thermodynamic pressure –p.

Hence

• Now substitute the value of e in the last term we get the familiar energy equation of
first law for a control volume as:

• Each work term in the above equation represents the rate of work done by the
control volume on the surroundings.

• Note that in thermodynamics, for convenience, the combination u + pv (the fluid
internal energy plus what is often called the "flow work") is usually replaced with
enthalpy, h = u + pv (this is one of the reasons h was invented).
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• Bernoulli’s Equation interpreted as an Energy Equation:
• An equation identical in form to Bernoulli’s equation (although requiring very

different restrictions) may be obtained from the first law of thermodynamics.
• Our objective in this section is to reduce the energy equation to the form of the

Bernoulli equation.
• Consider steady flow in the absence of shear forces. We choose a control volume

bounded by streamlines along its periphery. Such a boundary, shown in Fig. often is
called a stream tube.
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• Bernoulli’s Equation interpreted as an Energy Equation:
• An equation identical in form to Bernoulli’s equation (although requiring very

different restrictions) may be obtained from the first law of thermodynamics.
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• Bernoulli’s Equation interpreted as an Energy Equation:
• The above Equation would reduce to the Bernoulli equation if the term in

parentheses were zero.
• Thus, under the further restriction,

• The above Equation is identical in form to the Bernoulli equation.
• The Bernoulli equation was derived from momentum considerations (Newton's

second law), and is valid for steady, incompressible, frictionless flow along a
streamline.

• The above Equation was obtained by applying the first law of thermodynamics to a
stream tube control volume, subject to restrictions 1 through 7 above.
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• Energy Considerations in Pipe Flow:
• Consider, for example, steady flow through the piping system, including a reducing

elbow, shown in Fig.
• The control volume boundaries are shown as dashed lines.
• They are normal to the flow at sections 1 and 2 and coincide with the inside surface

of the pipe wall elsewhere.



For Educational Purpose onlyCL203 FLUID MECHANICS 
• Energy Considerations in Pipe Flow:
• Consider, for example, steady flow through the piping system, including a reducing

elbow, shown in Fig.
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• Energy Considerations in Pipe Flow:
• Since we know that for viscous flows the velocity at a cross-section cannot be

uniform.
• However, it is convenient to introduce the average velocity into Eq. so that we can

eliminate the integrals.
• To do this, we define a kinetic energy coefficient.

• We can think of α as a correction factor that allows us to use the average velocity ύ
to compute the kinetic energy at a cross section.

• For laminar flow in a pipe, α = 2.0.
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• Energy Considerations in Pipe Flow:
• For Turbulent Flow, the equation is:



For Educational Purpose onlyCL203 FLUID MECHANICS 
• Kinetic Energy Correction Factor, α:
• Kinetic energy correction factor is defined as the ratio of the kinetic energy of the

flow per second based on actual velocity across a section to the kinetic energy oo the
flow per second on average velocity across the same section.

• Hence mathematically,

• Prove α = 2
• Kinetic energy of the fluid flowing through the elementary ring of radius r and of

width dr per sec.
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• Kinetic Energy Correction Factor, α:
• Kinetic energy correction factor is defined as the ratio of the kinetic energy of the

flow per second based on actual velocity across a section to the kinetic energy oo the
flow per second on average velocity across the same section.
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• Kinetic energy correction factor is defined as the ratio of the kinetic energy of the

flow per second based on actual velocity across a section to the kinetic energy oo the
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• Kinetic Energy Correction Factor, α:
• Kinetic energy correction factor is defined as the ratio of the kinetic energy of the

flow per second based on actual velocity across a section to the kinetic energy oo the
flow per second on average velocity across the same section.
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• FLUID STATICS:

• Reference:
• Fluid Mechanics by Fox
• Fluid Mechanics by Bansal
• Fluid Mechanics by Young
• NPTEL
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