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Module 3:

Internal incompressible viscous flow:
Introduction;

flow of incompressible fluid in circular pipe;
laminar flow for Newtonian fluid;
Hagen-Poiseuille equation;

flow of Non-Newtonian fluid,

introduction to turbulent flow in a pipe;

energy consideration in pipe flow,

relation between average and maximum velocity,

Bernoulli’s equation—kinetic energy correction factor; head loss; friction factor;
major and minor losses,

Pipe fittings and valves. [8]
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Module 3: Internal incompressible viscous flow: Introduction; flow of incompressible fluid in
circular pipe; laminar flow for Newtonian fluid; Hagen-Poiseuille equation; flow of Non-
Newtonian fluid, introduction to turbulent flow in a pipe; energy consideration in pipe flow,
relation between average and maximum velocity, Bernoulli’s equation—kinetic energy correction
factor; head loss; friction factor; major and minor losses, Pipe fittings and valves. [8]
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Relation between average and maximum velocity,
Lecture VII

Bernoulli’s equation—kinetic energy correction factor;
Lecture VIII

Head loss; friction factor; major and minor losses, Pipe fittings and valves.
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Internal incompressible viscous flow : Introduction
Flows completely bounded by solid surfaces are called internal flows.

Thus internal flows include flows through pipes, ducts, nozzles, diffusers, sudden
contractions and expansions, valves, and fittings.

Internal flows may be laminar or turbulent.

For internal flows, the flow regime (laminar or turbulent) is primarily a function of
the Reynolds number.
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where p = Density of fluid flowing through pipe
V = Average velocity of fluid
L) = Diameter of pipe and
L = Viscosity of fluid.
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Internal incompressible viscous flow : Introduction
Laminar or Turbulent Flow:
The flow of a fluid in a pipe may be laminar flow or it may be turbulent flow.

Osborne Reynolds, a British scientist and mathematician, was the first to distinguish
the difference between these two classifications of flow by using a simple apparatus.

For “small enough flowrates” the dye streak (a streakline) will remain as a well
defined line as it flows along, with only slight blurring due to molecular diffusion of
the dye into the surrounding water.

For a somewhat larger “intermediate flowrate” the dye streak fluctuates in time and
space, and intermittent bursts of irregular behavior appear along the streak.

However, for “large enough flowrates” the dye streak almost immediately becomes
blurred and spreads across the entire pipe in a random fashion. These three
characteristics, denoted as laminar, transitional, and turbulent flow, respectively
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Internal incompressible viscous flow : Introduction
Laminar or Turbulent Flow:

That is, the flow in a pipe is laminar, transitional, or turbulent provided the Reynolds
number is “small enough,” “intermediate,” or “large enough.”

It is not only the fluid velocity that determines the character of the flow—its density,
viscosity, and the pipe size are of equal importance.

These parameters combine to produce the Reynolds number.
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Internal incompressible viscous flow : Introduction
Entrance Region and Fully developed Flow:
Any fluid flowing in a pipe had to enter the pipe at some location.
The region of flow near where the fluid enters the pipe is termed the entrance
region.
As shown, the fluid typically enters the pipe with a nearly uniform velocity profile at
section (1).
As the fluid moves through the pipe, viscous effects cause it to stick to the pipe wall
(the no-slip boundary condition).

This is true whether the fluid is relatively inviscid air or a very viscous oil.
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Internal incompressible viscous flow : Introduction
Entrance Region and Fully developed Flow:

Thus, a boundary layer in which viscous effects are important is produced along the
pipe wall such that the initial velocity profile changes with distance along the pipe,
X, until the fluid reaches the end of the entrance length, section (2), beyond which
the velocity profile does not vary with x.

The boundary layer has grown in thickness to completely fill the pipe.

The shape of the velocity profile in the pipe depends on whether the flow 1s laminar
or turbulent, as does the entrance length, le. Typical entrance lengths are given by
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Internal incompressible viscous flow : Introduction
Entrance Region and Fully developed Flow:

Once the fluid reaches the end of the entrance region, section (2) of Fig, the flow is
simpler to describe because the velocity is a function of only the distance from the
pipe centerline, r, and independent of x.

This is true until the character of the pipe changes in some way, such as a change in
diameter or the fluid flows through a bend, valve, or some other component at
section (3).

The flow between (2) and (3) is termed fully developed flow.

Beyond the interruption of the fully developed flow [at section (4)], the flow
gradually begins its return to its fully developed character [section (5)] and
continues with this profile until the next pipe system component is reached [section

(6)].
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Flow of incompressible fluid in Circular Pipe:
Let us consider the fully developed laminar flow in a horizontal pipe of radius R.
The viscous fluid is flowing from left to right in the pipe as shown in the Fig.

Consider a fluid element of radius r, sliding in a cylindrical fluid element of radius (r
+ dr).

Let the length of the fluid element be Ax.
If “p” the intensity of pressure on the face AB.
The intensity of pressure on face CD will be
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* Flow of incompressible fluid in Circular Pipe:

Let us consider the fully developed laminar flow in a horizontal pipe of radius R.
* Then the forces act on the fluid element are:

The pressure force, p X Tr- on face AB.

d
The pressure force, ( p+ P Ax | nr* on face CD.
o

» As well as, the shear force on the surface of fluid element,
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* Flow of incompressible fluid in Circular Pipe:
* Let us consider the fully developed laminar flow in a horizontal pipe of radius R.

 The summation of all forces in the direction of flow must be zero ie.,
dp
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Flow of incompressible fluid in Circular Pipe:
Let us consider the fully developed laminar flow in a horizontal pipe of radius R.

From the below equation, we will get that the shear stress C across the section varies
with ‘r’ as Op/dx across a section is constant.

dap r
T=———
dx 2
Hence the shear stress distribution across a section is linear as shown in the Fig.
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Flow of incompressible fluid in Circular Pipe:
(1) Velocity Distribution:
To obtain the velocity distribution across a section, the value of shear stress is
substituted in the equation

*[-|.1E
dy

But the ‘y’ is measured from the pipe wall.
Hence

v=R-r and dv=-dr
au du

R TR

Substitute the above value in the equation.

du dp r du 1 dp
W—=-——or = r
dr dx 2 dr 2 dx
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Flow of incompressible fluid in Circular Pipe:
(1) Velocity Distribution:

Integrate the above equation w.r.t ‘r’, we have:

Where C is the constant of integration and its value is obtained from the boundary
condition that at r =R and u = 0.
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Flow of incompressible fluid in Circular Pipe:
(1) Velocity Distribution:
Substitute the value of C in the equation, we get

u_4p.LEir 4 dx
1 dp > >

=— — —|R* =
4pﬂx[ "

In the above equation, value of p, Op/dx and R are constant, which means the
velocity ‘u’ varies with the square of ‘r’.

Thus the above equation is a equation of parabola.

This shows that the velocity distribution across the section of a pipe is parabolic and
the velocity distribution is shown in the Fig.
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Flow of incompressible fluid in Circular Pipe:
(i1) Ratio of Maximum velocity to Average velocity:

The velocity is maximum when r = 0 in the equation.

uz_la_p Fg_ia_.ﬂ' RE
4u dx 4 dx
__LE—'_F[RE_FE]
4 dx
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Flow of incompressible fluid in Circular Pipe:
(i1) Ratio of Maximum velocity to Average velocity:

The average velocity is obtained by dividing the discharge of the fluid across the
section by the area of the pipe.

The discharge ‘Q’ across the section is obtained by considering the flow through a
circular ring element of radius r and thickness dr.

The fluid flowing per second through the elementary ring

d() = velocity at a radius r x area of ring element
=u X 2nrdr

=_ia£[ﬁz—r3|xznrdr
4 dx

(o= (Lo 2 >
Q—L E'Q—J-D _4I-l y (R = r7) = 2mr dr

l [iPJ <21 [ (R2= ) rdr

) ap \ ox 0
1 (-d R

= —[—F) » 2 (R°r — r“'} dr
4u | dx Jo
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Flow of incompressible fluid in Circular Pipe:
(i1) Ratio of Maximum velocity to Average velocity:

The average velocity is obtained by dividing the discharge of the fluid across the
section by the area of the pipe.
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Flow of incompressible fluid in Circular Pipe:
(i1) Ratio of Maximum velocity to Average velocity:

Divide the equation of maximum velocity to average velocity,

1 E*_F R?
UMQI 4” a.]..
= = 2.0
U L (_@JRI
S\ dx

Therefore the ratio of maximum velocity to average velocity for a circular pipe is 2.

Umax = 2 Uavg
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Flow of incompressible fluid in Circular Pipe:
(i11) Pressure drop for a given Length (L) of a pipe:
From the average velocity equation, we have:
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Integrating the above equation w.r.t ‘x’ we get:
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Flow of incompressible fluid in Circular Pipe:
(i11) Pressure drop for a given Length (L) of a pipe:

P

SLLu 8111
H F—L [x; = x,]

- p=pal = [x, —x;]or (p, — ps) = R’

— 3”:" L { Xy —x, = L from Fig
E—
= &IEL__I {'.' K= E}
(D/2)° 2
—Pa) = ?EHHL. where p, — p, 15 the drop of pressure.
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* Flow of incompressible fluid in Circular Pipe:
 (111) Pressure drop for a given Length (L) of a pipe:

Loss of pressure head = 21— F2 _
PE then pressure at A
Py — P SE}JEL =p:~;g;~={hil.
—= = ,F,rf: . m
pg pgD-”
32puul
(py—py)= .’_I; 3
« Substitute D = 2R in the above equation, we get:
 (pl —p2)/L=((8uU)/R2) where pl —p2 =P
 P/L=((8uU)/R2) We know that Q =U A; U =Q/A and A = nR2
« P/L=(8uQ)/nR2.R2) mR* p
8y L

« This equation is known as Hagen Poiseuille formula.
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* Flow of incompressible fluid in Circular Pipe:
* (1i1) Pressure drop for a given Length (L) of a pipe:

Problem 9.1 A crude oil of viscosity 0.97 poise and relative density 0.9 is flowing through a
harizontal circular pipe of diameter 100 mm and of length 10 m. Calculate the difference of pressure
at the two ends of the pipe, if 100 kg of the oil is collected in a tank in 30 seconds.

0.97

Solution. Given : U = 0.97 poise = To - 0.097 Ns/m”
Relative density =0.9
Pp. Or density, = (.9 = 1000 = 900 I::g:"m"L
Dia. of pipe, D=100mm=0.1m
L=10m
Mass of oil collected, M= 100 kg
Time, t = 3() seconds

Calculate difference of pressure or (p, — ps).

The difference of pressure (p, — p,) for viscous or laminar flow is given by

¢

Area

32pul — |
Py— Py = P , Where u = average velocity =
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* Flow of incompressible fluid in Circular Pipe:
* (1i1) Pressure drop for a given Length (L) of a pipe:

Problem 9.1 A crude oil of viscosity 0.97 poise and relative density 0.9 is flowing through a
harizontal circular pipe of diameter 100 mm and of length 10 m. Calculate the difference of pressure
at the two ends of the pipe, if 100 kg of the oil is collected in a tank in 30 seconds.

Now, mass of oil/sec = % kels
=P @=900x(Q (v pg=900)
100
— = 900 =
30 ¢
0= 100 1 0.0037 m¥s
30 900

0  .0037 0037

Area T 5 E{_]}E
4 4

= |
Il

= [].4?] Il'i.l"‘\
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* Flow of incompressible fluid in Circular Pipe:
* (1i1) Pressure drop for a given Length (L) of a pipe:

Problem 9.1 A crude oil of viscosity 0.97 poise and relative density 0.9 is flowing through a
harizontal circular pipe of diameter 100 mm and of length 10 m. Calculate the difference of pressure
at the two ends of the pipe, if 100 kg of the oil is collected in a tank in 30 seconds.

For laminar or viscous flow, the Reynolds number (R)) is less than 2000. Let us calculate the
Reynolds number for this problem.

Reynolds number, R * = pvD
L
where p=py=900,V=u=0471,D=0.1 m, u=0.097
47101

R, =900 x ———" = 436.91
0.097

As Reynolds number is less than 2000, the flow is laminar.

UL _ 32 X 0097 X 4T1X10
D (1)

= 1462.28 N/m” = 1462.28 x 10" * N/em” = 0.1462 N/em®. Ans.

Py=P:=
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* Flow of incompressible fluid in Circular Pipe:
* (1i1) Pressure drop for a given Length (L) of a pipe:
Problem 9.3 A laminar flow is taking place in a pipe of diameter 200 mm. The maximum velocity

is 1.5 m/s. Find the mean velocity and the radius at which this occurs. Also calculate the velocity at
4 cm from the wall of the pipe.

Solution. Given : Dia. of pipe, D = 200 mm = 0.20 m
Upae = 1.3 m/s

Find (i) Mean velocity, u

(fi) Radius at which W OCCurs

(if) Velocity at 4 cm from the wall.

(1) Mean velocity, u

Ratio of UT’“ =20 or E =20 . u-= 1—5 = 0.75 m/s. Ans.
i M 2.0
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* Flow of incompressible fluid in Circular Pipe:
* (1i1) Pressure drop for a given Length (L) of a pipe:

Problem 9.3 A laminar flow is taking place in a pipe of diameter 200 mm. The maximum velocity
is 1.5 m/s. Find the mean velocity and the radius at which this occurs. Also calculate the velocity at

4 cm from the wall of the pipe.

(if) Radius at which u occurs
The velocity, u, at any radius “r’ is given by (9.3)

1 dp - 5 1 dp 1[ rl}
:———R — =——_R 1—_
¢ 4 axl " 44 dx

But from equation (9.4) U/, is given by
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* Flow of incompressible fluid in Circular Pipe:
* (1i1) Pressure drop for a given Length (L) of a pipe:
Problem 9.3 A laminar flow is taking place in a pipe of diameter 200 mm. The maximum velocity

is 1.5 m/s. Find the mean velocity and the radius at which this occurs. Also calculate the velocity at
4 cm from the wall of the pipe.

Now, the radius r at which u = u =075 mis

2
0.75 = 1.5 1—[ d ]
D/2

E _1—[D_1rﬂﬂ =19 {l_[ﬁﬂ

ﬂ_l_*’if
050 Lo
ya
[L] g 1
(0.1 1.50 2 2
LA LN %

r=0.1 x 4.5 =0.1 x.707 = .0707 m
= 70.7T mm. Ans.
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* Flow of incompressible fluid in Circular Pipe:
* (1i1) Pressure drop for a given Length (L) of a pipe:

Problem 9.3 A laminar flow is taking place in a pipe of diameter 200 mm. The maximum velocity
is 1.5 m/s. Find the mean velocity and the radius at which this occurs. Also calculate the velocity at
4 cm from the wall of the pipe.

(r11) Velocity at 4 cm from the wall

r:R—d.{]: [ﬂ_d_{}:ﬁ.ﬂcm=ﬂ.ﬂﬁm

The velocity at a radius = 0.06 m

—

v [1-( Jeasi- ()]~ E

= 1.5[1.0 - .36] = 1.5 x .64 = 0.96 m/s. Ans.  Fig. 9.4

S

or 4 cm from pipe wall is given by equation (1) rt( 1. " G
L
’T
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Laminar Flow of fluid between two parallel plates:
Consider two parallel fixed plated at a distance ‘t’ apart as shown in the Fig.
A viscous fluid is flowing between these two plates from left to right.

Consider a fluid element of length Ax and thickness Ay at a distance ‘y’ from the
lower fixed plate and the width of the element as unity.

If ‘p’ 1s the intensity of pressure on the face AB of the fluid element,
Then intensity of pressure on the face CD will be

op
o)

Let ‘t’ be the shear stress acting on the face BC,

then the shear stress on the face AD will be ot A
T+ 4
dy
"‘r’ FPARALLEL PLATE
DlHEGTIO'\J .-"-l’f.l’ul‘ful’.-"-l"."f'ffffl".{.l‘f-"’fffffﬂ'-’:"ffffﬁ;jff!"fff.lf-l‘.l’.l’f.l’-‘".l’!"f
OF FLOW 3c T
—_— {1 +—Ay)Ax x1
J_ r.i"",i" ¢
R o
A pxAyxi hfr D -
y by r?p
;'r’ B .;H_— {p+—_*'-.1:b53. %1
f-"'."' H' LT .-" .-".-" .-" .-"r".-" f.-"..".-"f.."f)'r"i\r"."f I O -
— " PARALLEL PLATE
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 Laminar Flow of fluid between two parallel plates:
* Then the forces acting on the fluid element are:

The pressure force, p x Ay x 1 on face AB.

d
The pressure force, (p + a—pﬁx) Ay x 1 on face CD.

X
The shear force, T X Ax x 1 on face BC.

The shear force, | T+ .;Eﬂy Ax x 1 on face AD.
¥

ky PARALLEL PLATE
DI HECTIG\J Al F A LS LA AL LA LA L LS LA LI AL LA LLTEEELEEL AL L ELLEELE
OF FLOW I T
. fr 455 Ay)ax x1
dy ¢
Ay pxAyxi
; B g C {p+—_*'-.1u:.3.r %1

FTFIIT F."'.-"F.-"F.".'-".".i"??'-;.-'i"?'.-"?T.??T?'.FF.T?'!?I?‘\?:'HTFFFFFFJ'
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Laminar Flow of fluid between two parallel plates:

For steady and uniform flow, there is no acceleration and hence the resultant force in
the direction of flow is zero.

dx y

—a—F&rﬂy+ x AyAx =0
dx X

d
p.f_"ty:-{1—[p+—pﬁr)ﬂy::{1—'m.xb{l+[1+%ﬂy}.f}..r}f:l:{]

dp  dT _ dp o1
8x+8}r-ﬂ o dx  dy

Dividing by AxAy, we get —
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 Laminar Flow of fluid between two parallel plates:
* (1) Velocity Distribution:

To obtain the velocity distribution across a section, the value of shear stress from
Newton’s law of viscosity for laminar flow is substituted.

du
1= Iy a_JE‘I:ﬁ
Y dx oy
Bp_a[ du ) &
dx  dy H dy _ud}-'z
Fu_1dp
dy’ 1 ox

Integrating the above equation w.r.t. y, we get

g—i = &g—i v+ C, { g—i 1S -::unstant}
1 dp y°
Integrating again = — L % +Cyv+ G,
Ll dx
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 Laminar Flow of fluid between two parallel plates:
* (1) Velocity Distribution:
« To obtain the velocity distribution across a section, the value of shear stress from
Newton’s law of viscosity for laminar flow is substituted.

where C,; and C, are constants of integration. Their values are obtained from the two boundary condi-
tions thatis () at y=0,u=0 (i) aty=t, u = (.

1 dp y°

S poox 2
« Now Substitute y = 0 and u = 0 in the above equation, we get

U:{]+ C]}{ﬂ+ CgﬂrCEZ{J

* Again Substitute y =t and u = 0, we get;

2
{}=la—pf—+{?1xr+ﬂ

udx 2

1 dp 1 dp

CI=

-—— =t

Wox 2Xr  2u ox
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Laminar Flow of fluid between two parallel plates:
(1) Velocity Distribution:
Now substitute the value of C1 and C2 in the below equation, we get;

2
H= il:}—Fj}—+ﬂ'1_jp+ C,
i dx 2 :

2u ox
From the above equation, we see ‘u’ varies with the square of ‘y’ and the other

terms are constant.
Hence the above equation is a equation of PARABOLA and the velocity distribution

across a section of a parallel plate is PARABOLIC.

i—fn
Pl P AV S j.-"’.-r il
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 Laminar Flow of fluid between two parallel plates:
« (11) Ratio of maximum velocity to average velocity:

* The velocity is maximum when y = t/2. Substitute this value in the equation, we get;

_ lap 2
u=- zpaxl -y

2
Umﬂx:_La_‘ﬂ rxi_[i] :|
21 dx 2 \2

1 op | ﬁ]_ Lapr®__19p,

2uox|2 4

2u dx 4 3u Bx
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 Laminar Flow of fluid between two parallel plates:

« (11) Ratio of maximum velocity to average velocity:

The average velocity, u, is obtained by dividing the discharge () across the section by the area of
the section (# % 1). And the discharge ( is obtained by considering the rate of flow of fluid through the
strip of thickness dy and integrating it. The rate of flow through strip is

d() = Velocity at a distance y X Area of strip

= L%y Ixdyx 1

21 dx
0= do-= I‘z_a_x[”’ y*] dy
__lop f.v f;_lap__i
T2 ox 3|, 2pox|2 3
__topr__ 1o
© 2u0x 6 12 ox
19 s
0 121 ox 1 dp »
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 Laminar Flow of fluid between two parallel plates:
« (11) Ratio of maximum velocity to average velocity:

« Divide the equation which we got for maximum and average velocity;

L,
U]‘I‘I.:II. gl“l a‘x _E_E
u 1L g, 8 2
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Laminar Flow of fluid between two parallel plates:

(i11) Pressure drop for a given length:
Average velocity

-_ 1 8;}2 o dp _ 12pu
121 E}J: Ox t*
Integrating this equation w.r.t. x, we g::t
J': dp = _Ll - 12:;“ dx
Pi=Pr=- ut_& (X1 = x,] = 12:11;;
b, = 12;& o x - x = L]

If hyis the drop of pressure head, then
Py - Py, _ 121l
pg  pgt’

h}':
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 Laminar Flow of fluid between two parallel plates:

e (1v) Shear Stress distribution:
[t is obtained by substitute the value of u in Newton’s law of viscosity; we get;

aH 1 o
T=l — = — L [y-
du d 1 dp 5 1 dp
— —_— —_— —_— — — — — —2
R ”ay{ Eua.x( }} H{ Zua,r[r ﬂ]
1 dp
= [t=-2
f Za.:r“ )

: 9 o . .
In equation (9.14), &L and r are constant. Hence T varies linearly with y. The shear stress distribution

dx

is shown in Fig. 9.7 (b). Shear stress is maximum, when y = 0 or t at the walls of the plates. Shear stress
is zero, when y = #/2 that is at the centre line between the two plates. Max. shear stress (T,) is given by

- I: —-
B e
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Module 3:

Internal incompressible viscous flow:
Introduction;

flow of incompressible fluid in circular pipe;
laminar flow for Newtonian fluid;
Hagen-Poiseuille equation;

flow of Non-Newtonian fluid,

introduction to turbulent flow in a pipe;

energy consideration in pipe flow,

relation between average and maximum velocity,

Bernoulli’s equation—kinetic energy correction factor; head loss; friction factor;
major and minor losses,

Pipe fittings and valves. [8]



LECTURE PLAN AND LEARNING OBJECTIVES FOR 40 [ONE‘HOUR} ¥
LECTURES

Module 3: Internal incompressible viscous flow: Introduction; flow of incompressible fluid in
circular pipe; laminar flow for Newtonian fluid; Hagen-Poiseuille equation; flow of Non-
Newtonian fluid, introduction to turbulent flow in a pipe; energy consideration in pipe flow,
relation between average and maximum velocity, Bernoulli’s equation—kinetic energy correction
factor; head loss; friction factor; major and minor losses, Pipe fittings and valves. [8]

Lecture I

Internal incompressible viscous flow: Introduction; flow of incompressible fluid in circular pipe;
Lecture 11

Laminar flow for Newtonian fluid; Hagen-Poiseuille equation;
Lecture 111

Flow of Non-Newtonian fluid,

Lecture IV

Introduction to turbulent flow in a pipe;

Lecture V

Energy consideration in pipe flow,



LECTURE PLAN AND LEARNING OBJECTIVES FOR 40 [ONE‘-HOUR}] ¥
LECTURES

Module 3: Internal incompressible viscous flow: Introduction; flow of incompressible fluid in
circular pipe; laminar flow for Newtonian fluid; Hagen-Poiseuille equation; flow of Non-
Newtonian fluid, introduction to turbulent flow in a pipe; energy consideration in pipe flow,
relation between average and maximum velocity, Bernoulli’s equation—kinetic energy correction
factor; head loss; friction factor; major and minor losses, Pipe fittings and valves. [8]

Lecture VI

Relation between average and maximum velocity,
Lecture VII

Bernoulli’s equation—kinetic energy correction factor;
Lecture VIII

Head loss; friction factor; major and minor losses, Pipe fittings and valves.
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Equation of Motion:

A dynamic equation describing fluid motion may be obtained by applying Newton’s second law to a
particle.

To derive the differential form of the momentum equation, we shall apply Newton's second law to an
infinitesimal fluid particle of mass dm.

Newton's second law for a finite system 1s gi_vcn by

dﬁ F'is the net external force acting on the system,

P is the linear momentum of the system, and

dp

—— is the rate of change of momentum of the system.

syslem dt

F=

This equation states that the time rate of change of momentum of a system equals the net external
force acting on it.

Linear momentum is a fundamental concept in mechanics that describes the motion of a body.

=t

—#

P _E?_ P = linear momentum (vector quantity)
T rm = mass of the body (scalar)

V= velocity of the body (vector)
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 Equation of Motion:

* A dynamic equation describing fluid motion may be obtained by applying Newton’s second law to a
particle.

» To derive the differential form of the momentum equation, we shall apply Newton's second law to an
infinitesimal fluid particle of mass dm.

Newton's second law for a finite system 1s gi_vcn by
F e *’*’*‘1]
dt
syslem

where the linear momentum, 2, of the system 18 given by

P = V chn
system mass (syslem}

Then, for an infinitesimal system of mass dm, Newton's second Jaw can be written

=
dﬁ:dmﬁ

< system
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Equation of Motion:

We can write the Newton’s second law as the vector equation: equation shown is an
expanded form of Newton’s second law in differential form, using the material
derivative.

Dv 1% oV oV v
dF de—dﬂi HE+35+WE—+-§}-

The operator

represents the rate of chanae followina a movina fluid particle.

Local acceleration {ﬂ‘:’;"ﬁt} — unsteady effects

Convective acceleration (-‘ui’]ﬂ';"ﬁw -+ *uﬁﬁ;‘fay + wi’]‘?;’ﬁz) — due to spatial velocity changes.
This expression represents the force per fluid element due to the acceleration of that
element as it moves through a velocity field that varies in both space and time.

In general, two types of forces need to be considered: surface forces, which act on the
surface of the differential element, and body forces, which are distributed throughout the
element.
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Equation of Motion:

We can write the Newton’s second law as the vector equation: equation shown is an
expanded form of Newton’s second law in differential form, using the material
derivative.
- DV oV oV v v
dF =dm—=dm|lu—+0v—+w—+
Dt dx dy dz o

In general, two types of forces need to be considered: surface forces, which act on
the surface of the differential element, and body forces, which are distributed
throughout the element.

Body force, Fb, of interest is the weight of the element, which can be expressed as
oFp = ém g

where g is the vector representation of the acceleration of gravity. In component form

S'F.':l.l: = 'E'I” -.ﬂ.:'
6F,, = émg,
6F,., = bm g,

where g,. g,. and g, are the components of the acceleration of gravity vector in the x. v,
and 7 directions, respectively.
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 Equation of Motion:

Surface forces act on the element as a result of its interaction with its surroundings.
* Normal Stress is 5F

o, = lim
T =D §A

and the shearing stresses are defined as

| ':-”TE i e e | v i
||T'u_ Jx 2 El?.ﬂl_\_-—--- —— ||Tu_|;_ | ‘IE'-..

T+ Ir &) 5r gy =] ¢ = Az
1 oL | .

o "n\
¥ J
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 Equation of Motion:

« We shall consider the x component of the force acting on a differential element of
mass dm and volume dV = dx dy dz.

* Only those stresses that act in the x direction will give rise to surface forces in the x
direction.

To obtain the net surface force in the x direction, dﬂ . we must sum the forces
in the x direction. Thus,

R
+ ir}.x +a;;‘ “;f']dxciz k T 5 aa: ?]dxd?
=+ :"4 E};E g}ird} ] EJ;- T]u';: iy
On simplifying. we obtain
dFy = :a‘;’: + a;;* ¥ a;;‘]{ixd}: dz
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Equation of Motion:

We shall consider the x component of the force acting on a differential element of
mass dm and volume dV = dx dy dz.

Only those stresses that act in the x direction will give rise to surface forces in the x
direction.

When the force of gravity is the only body force acting, then the body force per unit
mass 1s £. The net force in the x direction, dF, is given by

Jo ., " dr . . i '1

dx dvy d 5.23
dx dy 0z rade (5-23a)

¢

We can derive similar expressions for the force components in the v and z directions:

dr,, © d
dF, = dFg +dFs =|pg, + Ty, Py T'T"wdxdy dz  (5.23b)
: v ’ ox dy 0z
dF, = dFy +dF; = (pg. + O + Oy + ™ dx dy dz (5.23¢)
: ‘ LT o dy dz
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 Equation of Motion:

« We shall consider the x component of the force acting on a differential element of
mass dm and volume dV = dx dy dz.

oF = éma,
aF = aF, + aF.. 8F, = éma,
o6F. = ém a.

» Now substitute the values, We get:
am = p dx &y oz,

dor.. T AT (Eln &1 A ﬂu)

ot —t—+—=p|l —tu—tv—+w—
PE= T oy Ty T a2 at M T Ve TV

T.l.'_l-' o V¥ d TQ' ( ) a1 a1 dv )
P_:[{.T‘l' T LE— =P__I1'_+T.?__H’_

dXx dy oz ol dXx dy dZ

ar, 9T, dog (mr aw AW aw)
pg_ + + + =pl—t+u—+v— +w—
Y ) ¢ dv dZ ol dx ay dZ

» The above Equations are the general differential equations of motion for a fluid.
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Equation of Motion:
Flow fields in which the shearing stresses are assumed to be negligible are said to be
inviscid.
As discussed in the previous lectures, for fluids in which there are no shearing
stresses, the normal stress at a point is independent of direction—that is,

T = O = T

In this instance we define the pressure, p, as the negative of the normal stress so that,

as indicated by the figure in the margin,
—P =0, =0, =0,

The negative sign i1s used so that a compressive normal stress (which is what we
expect in a fluid) will give a positive value for p.

I p= I'F::
L

= — (¥ P=— Ty
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 Equation of Motion:

* For an inviscid flow in which all the shearing stresses are zero, and the normal
stresses are replaced by -p, the general equations of motion reduce to:

dp il ol il ol
P~ —— =Pl - T U —T V=T W
ol o X 'y ol

ap v o o av
pg,.——=pl—t+uUu—+v—+w—
: ot dx dy dz

=]

dap aw W W aw
— 4+ H— +v— + W—
dl ox Y o7

e Or in vector form

DV AP
pE=pg—FP pg—Tp=p{m+|j-Tj‘-.]

« The above equation are commonly referred to as Euler’s equation of motion.
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 Equation of Motion:
« Remember Continuity Equation

E}pu Elpn pr dp _
6’}' dz T ot =0

Since the vector operator, V, in rectangular coordinates, is given by

d ~d ~d
V=i—tj—4k—
X Ja}r 0z

dpu apt—‘ dpw
— 4+ +
dx dz

=V pV

« We can rewrite the continuity equation in vector form as:

-~ dp

V-pV+—=1
P ot
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 Equation of Motion:
» For incompressible fluids, density 1s constant (p = Constant)

die du  dw . SR
E-"a}’ 9z =V V=0 V{"I: Y. 4 ”l

For steady flow, all ﬂuid.prﬂpl?l‘ﬂﬂb are, by_ definition, independent of time. Thus
dp/dt = 0 and at most p = p(x, y, z). For steady flow, the continuity equation can be
written as

e — = ——— = — - —

dpu &ﬂﬂ dpw -
=V. — 5.1d
ax 3y | oz il G140
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Equation of Motion:
Acceleration field

A L L
Ea, = u—+v—+w—

+ —
Dt P dx dy dz ot

Convective acceleration in vector form:

u%§+ng—:+w%£:[f’-?}ﬁ

Now the acceleration field represented in vector form as:

L O I
1]
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Euler’s Equation in Streamline Coordinates:
Consider a stream-line in which flow is taking place in s- direction as shown in the
Fig.
Consider a cylindrical element of cross-section dA and length ds.
The forces acting on the cylindrical element are:

Pressure force pdA in the direction of flow.

d
Pressure force [ p+ @* dﬁj dA opposite to the direction of flow.

ds
Weight of element pgdAds. 3 /45
Let 0 1s the angle between the direction of flow and the } .gf //‘/
Line of action of the weight of element. f o
i
S
¢/ fjﬁf
i y
(£ o ] z‘l
J‘i ’{?G f’f 5‘5'"';“
?{_ D, flr’ dz
/| L]
g /
=
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Euler’s Equation in Streamline Coordinates:

The resultant force on the fluid element in the direction of s must be equal to the
mass of fluid element x acceleration in the direction of's.

F = mass x acceleration.
dp
pdA — | p+ a—ds dA — pgdAdscos 8 = pdﬂdx X d,
5 E

Where as is the acceleration in the direction of s. (using Chain Rule of

Differentiation) , .,
d < f
a; = —v, where v is a function of s and r. ) 2 //
' cdt -%L,._r_gﬂ 7
_dvds N dv  vdv N dv { ds —v} f//
ds dt ot 9s ot | i ;ﬁcj’g
. iy

ef /W

I (W i-'
BV j* /—-:’ﬂI J.r'JI i f'lU
If the flow is steady, — =0 i \b/ LI -

ot — /
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* Euler’s Equation in Streamline Coordinates:
« Now substitute the value of as and simplify the equation, we get:

ap dv
dsdA — pg dAds cos 8 = pdAds X —

s ds
vav
Dividing by pdsdA, — 22 — g cos 0 = 2V
pds s
d dv
or “F +gcosB+v—=0
pas ds
g 2
ld_p+gd P E+gdz+pdv=ﬂ we have cos § = —-
p ds ds  ds p
E+gd‘z+1m:i1|:='[:'
P

« The above equation is the Euler’s equation of motion in streamline corordinates.
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 Bernoulli’s Equation from Euler’s Equation:
« Now substitute the value of as and simplify the equation, we get:

Bernoulli’s equation is obtained by integrating the Euler’s equation of motion (

I%} + Jgdz + _[ vdy = constant

If flow is incompressible, p 1s constant and

5

p p
—+ g7+ = constant
p
_D V
or — 4+ 7 + — = constant
pg 2g
p v
or — 4+ — 4+ 7 = constant
pg 2g

« The above equation are the Bernoulli’s equation
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 Bernoulli’s Equation from Euler’s Equation:
« Now substitute the value of as and simplify the equation, we get:

p Vv
+ + 7 = constant
pg 28
£ - pressure energy per unit weight of fluid or pressure head.
P8

vzﬂg = kinetic energy per unit weight or kinetic head.
z = potential energy per unit weight or potential head.

The following are the assumptions made in the derivation of Bernoulli’s equation :
(i) The fluid is ideal, i.e., viscosity is zero (if) The flow is steady
(iii) The flow is incompressible (iv) The flow is irrotational.
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Navier Stokes Equation:
For incompressible, Newtonian fluids it is known that the stresses are linearly
related to the rates of deformation and can be expressed in Cartesian coordinates as

(for normal stresses)

i
Ty = — P+ EJ_.L'— (for shearing stresses)
oX . .
(rm N d?.f)
il LY T , — -]'1___ — —_— —_—
- o'l B TR dy  dx
I:'_l':-|-|_- — _F T ..-'_j.ll- - 30 T
dj T'l-':_ = T = J'II"( - - - )
; Lo d: l!'.ll:'lll
4 M - )
= _— oW ol
Tz P op TH=T.L':=“(]1' +J_)
L LI
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Navier Stokes Equation:

For incompressible, Newtonian fluids it is known that the stresses are linearly
related to the rates of deformation and can be expressed in Cartesian coordinates as
(for normal stresses)

In any continuum (solid or fluid), the stress tensor o represents internal forces per unit area.

For a fluid, stress arises from two sources:

1. Isotropic pressure (acts equally in all directions)

2. Viscous stresses (caused by velocity gradients — internal friction between adjacent fluid layers)

So, we can always decompose:

o—-—-pl+T

where

e p = thermodynamic pressure
» I = identity tensor

* T = deviatoric (viscous) stress tensor, caused by deformation (velocity gradients)
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* Navier Stokes Equation:

« For incompressible, Newtonian fluids it is known that the stresses are linearly
related to the rates of deformation and can be expressed in Cartesian coordinates as

(for normal stresses)
« Newton’s law of viscosity (generalized form)

Newton postulated that the viscous stresses are linearly proportional to the rates of deformation (strain

rates) in the fluid.

For a Newtonian fluid:

Tt'j — ?;.1 EE'J' + .:\ (v‘\f} éfj

where

* u = dynamic viscosity (resistance to shear)

* A =second coefficient of viscosity (bulk viscosity)

_ 1By | By _ _of-ctrai
. € 5 (EJL Fj'::_.) = rate-of-strain tensor

thi fh dh . .
[ ] . — == _— = = =
Vv Tz e Dy 9 volumetric strain rate
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Navier Stokes Equation:

For incompressible, Newtonian fluids it is known that the stresses are linearly
related to the rates of deformation and can be expressed in Cartesian coordinates as
(for normal stresses)

Fort = 3, say xx-component:

Tez = 2€22 + AV V)0

Du

Since 8, = L and e, = 7,

Tor = 27~ + A(V-v)
ox
Thus, total normal stress on an @-plane:
ar
Orr = —P+ Texz = —P+ Zﬂ'—u + A(?v)
or
dv
Ty = P+ 2pgm + A(V-v)
4y
Juw

0., = —p+ ?;LE + A(V-v)
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* Navier Stokes Equation:

« For incompressible, Newtonian fluids it is known that the stresses are linearly
related to the rates of deformation and can be expressed in Cartesian coordinates as
(for normal stresses)

For incompressible fluids,
V-v =0,

so the A-term drops out, giving:

du v dw
Tpr = —P + zp‘as ﬂ_mlr — —p —+ ?Jlr.i-%, Tzz = —P -+ ?}[LE,
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Navier Stokes Equation:

For incompressible, Newtonian fluids it is known that the stresses are linearly
related to the rates of deformation and can be expressed in Cartesian coordinates as
(for normal stresses)

For a Newtonian fluid the deviatoric (viscous) stress is proporticnal to the rate-of-strain:

) dv;  Ov;
Tz'j = gpﬁij + )\(TV:} aij, 'E'ij = % (ﬂ:r,i- T HJ_‘,J) .
7 1

For off-diagonal components ¢ # j the Kronecker delta d;; = 0, so the bulk-viscosity term drops out and

t'?u; HUJ
TJ'J: = 2,& Efj = K ﬁ:.i:.'J + HL[T?; .

Writing these with usual velocity notation (u, v, w) = (vy, v9, v3):

o
oy = Ty = B \dy Oz )’
(o B
Tﬂ.ﬁ T:ﬂ !J‘ l\az E__}I 7
B _ (v Ow
TT: T.:y Ju' l\{?z 5y "
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Navier Stokes Equation:

Now the stresses can be substituted in the differential equation of motion and
simplify by using the continuity equation for incompressible flow.

pe. +—— + - —tu—+rv—+w—

do,. 9T dr, (Em i 1T, au
dX d¥v o7 — P\ as dx day oz

EIT.'I.'_I-' 'EI"T_'.'_'.' &T.__'I-' (E'T.:' a'y i &E)
pp. +—+ +—=p|l—+Hu—+v—+w—
: dX dv dZ dt ox dy dZ

-+—+—=p|l—t+Hu—+v—+w—
dXx dy dz di dx dy dZ

dr,, 97, do aw AW AW AW
PE; T P
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e Navier Stokes Equation:

« Now the stresses can be substituted in the differential equation of motion and
simplify by using the continuity equation for incompressible flow.

(x direction)

(Eln' A A EIH) ap (n'ﬁu a‘u H:u>
p\ - T - TV - +tW_—|=——_tpi:t+ T T T 3

ot dx dy d d dax- dy" oI
(v direction)
('3_1_”3_1_'_13_1_“&)__@_ + (511:+E|21r_ﬂ:1:j
F df dx dy dZ dy Pey T ax’ H}': az

(z direction)

P\ at ax 6'_1' oz az PR T R G2 av’ A

» These equations are commonly called the famous Navier—Stokes equations
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Navier Stokes Equation:

Now we can if for frictionless force (u = 0). The above equation will be reduced to
Euler’s equation of motion.

PE: —

PEy —

PE;

ap (&u aul A Elu)
—=pl—t+u—+v— +w—

dx dt X dy dZ
ap (&E v v 45'1:)
—=p|l—tu—+v—+w-
dy ot ox dy oz

— tu—+tv—+w—
|::_|'_

Cap [aw A aw &H)
—F ol oxX dy aZ
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Bernoulli’s Equation for Real Fluids:

Bernoulli’s equation was derived on the assumption that fluid is inviscid and
therefore frictionless.

But all the real fluids are viscous and hence offer resistance to flow.

Thus there are always some losses in fluid and hence in the application of
Bernoulli’s equation, these losses have to be taken into consideration.

Thus the Bernoulli’s equation for real fluids between points 1 and 2 is given as:

I': A 1"I
Pl v =222 s,
pg 2g pg 2g

where h; is loss of energy between points 1 and 2.

L
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* Bernoulli’s Equation for Real Fluids:

Problem 6.7 A pipe of diameter 400 mm carries water at a velocity of 25 m/s. The pressures at the
points A and B are given as 29.43 N/cm?® and 22.563 N/em® respectively while the datum head at A and

B are 28 m and 30 m. Find the loss of head between A and B.

Solution. Given : )
Dia. of pipe, D = 400 mm = 0.4 m o0 e
Velocity, V=25 m/s 0% ,ﬁ,:‘.:';

~ a0
At point 4, Pa = 2943 N/iem® = 29.43 x 10* N/m’ © 9027

7y =28 m

vy=v=25ms

Total enerey at A E,=—+—"+7
gy : A A * DATUMLINE

20.43 % 10* 25°
= + + 28
1000 x9.81 2x%9.81

=30+ 31.85+ 28 =89.85m
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* Bernoulli’s Equation for Real Fluids:

Problem 6.7 A pipe of diameter 400 mm carries water at a velocity of 25 m/s. The pressures at the
points A and B are given as 29.43 N/em® and 22.563 N/em® respectively while the datum head at A and
B are 28 m and 30 m. Find the loss of head between A and B.

At point B, pp = 22.563 N/em? = 22.563 x 10* N/m?
vp=v=v, =25 m/s

2
Total energy at B, Ey=12 428

pg 2g

+EB

4 2
_22563x10° 257 a0 53431854 30 = 84.85 m
1000 X 9.81 & 2x 98]

Loss of energy =E, - Ep=89.85 - 84.85 = 5.0 m. Ans.
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Module 3:

Internal incompressible viscous flow:
Introduction;

flow of incompressible fluid in circular pipe;
laminar flow for Newtonian fluid;
Hagen-Poiseuille equation;

flow of Non-Newtonian fluid,

introduction to turbulent flow in a pipe;

energy consideration in pipe flow,

relation between average and maximum velocity,

Bernoulli’s equation—kinetic energy correction factor; head loss; friction factor;
major and minor losses,

Pipe fittings and valves. [8]



LECTURE PLAN AND LEARNING OBJECTIVES FOR 40 [ONE‘HOUR} ¥
LECTURES

Module 3: Internal incompressible viscous flow: Introduction; flow of incompressible fluid in
circular pipe; laminar flow for Newtonian fluid; Hagen-Poiseuille equation; flow of Non-
Newtonian fluid, introduction to turbulent flow in a pipe; energy consideration in pipe flow,
relation between average and maximum velocity, Bernoulli’s equation—kinetic energy correction
factor; head loss; friction factor; major and minor losses, Pipe fittings and valves. [8]

Lecture I

Internal incompressible viscous flow: Introduction; flow of incompressible fluid in circular pipe;
Lecture 11

Laminar flow for Newtonian fluid; Hagen-Poiseuille equation;
Lecture 111

Flow of Non-Newtonian fluid,

Lecture IV

Introduction to turbulent flow in a pipe;

Lecture V

Energy consideration in pipe flow,



LECTURE PLAN AND LEARNING OBJECTIVES FOR 40 [ONE‘-HOUR}] ¥
LECTURES

Module 3: Internal incompressible viscous flow: Introduction; flow of incompressible fluid in
circular pipe; laminar flow for Newtonian fluid; Hagen-Poiseuille equation; flow of Non-
Newtonian fluid, introduction to turbulent flow in a pipe; energy consideration in pipe flow,
relation between average and maximum velocity, Bernoulli’s equation—kinetic energy correction
factor; head loss; friction factor; major and minor losses, Pipe fittings and valves. [8]

Lecture VI

Relation between average and maximum velocity,
Lecture VII

Bernoulli’s equation—kinetic energy correction factor;
Lecture VIII

Head loss; friction factor; major and minor losses, Pipe fittings and valves.
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First Law of Thermodynamics:

The first law of thermodynamics is a statement of conservation of energy for a
system:

50 — W = dE

Q = heat added to the system (positive if added, negative if removed) and W is the
Work done by the system (positive if done by the system, negative if done on the
system) and dE = Change 1n internal energy of the system

The equation can be written in rate form as

o-w =)
df Syslem

where the total energy of the system is given by

E.. =I f:dm=J‘ e pd¥
sysiem M sys1em) ¥(sysiem) P
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First Law of Thermodynamics:

The first law of thermodynamics is a statement of conservation of energy for a
system:

50 — 6W = dE

The equation can be written in rate form as

0-w=2%)
d'r fysiem

where the total energy of the system is given by

E. = I edm = J‘ e pd¥
sysiem M sysiem) ¥(system) P

The system energy per unit mass € may be of several types:

€ = Cinernal + € kinetic + E-"‘pnh*r:ti:jl + € other
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e First Law of Thermodynamics:
* The system energy per unit mass € may be of several types:

€ = Cinternal + € kinetic + E?|;1|c3|1-:nti:il + €other

where €, could encompass chemical reactions, nuclear reactions, and electrostatic
or magnetic field effects. We neglect e here and consider only the first three terms

e =ii +3V* + gz

« Where u is the specific internal energy, V the speed, and z the height (relative to a
convenient datum) of a particle of substance having mass dm.

* To derive the control volume formulation of the first law of thermodynamics, we set

 N=Eandn=einRTT.

aw 3 -
AR = — d¥ + V - da
dt me ardev TP _L:SHP &

DB.,. aB. _. )
dr szsttm At JCV CS
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First Law of Thermodynamics:
Since the system and the control volume coincide at to

[Q - H"']wﬂtm B [Q ; w]cunnmj volume

We can write the equation as:
. .3

0-W==
At Jov

ﬁ,{?ﬂi#ﬂ‘J‘rquU'iﬂ’t

Where € is:

E=.£?-I-—H”3—I—;;3

The above equation is the control volume formula for the first law of
thermodynamics:
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First Law of Thermodynamics:

The term W in the above equation has a positive numerical value when work is done
by the control volume on the surroundings.

The rate of work done on the control volume is of opposite sign to the work done by
the control volume.

The rate of work done by the control volume is conveniently subdivided into four
classifications,

W = wj- T I'r!"’rnr'u'nm.l T w;.hm: T W-:}mfr

SHAFT WORK:

We shall designate shaft work Ws and hence the rate of work transferred out through
the control surface by shaft work is designated Ws.

Examples of shaft work are the work produced by the steam turbine (positive shaft
work) of a power plant, and the work input required to run the compressor of a
refrigerator (negative shaft work).
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First Law of Thermodynamics:
Work done by normal stresses at the control surface:
Recall that work requires a force to act through a distance.

Thus, when a force, F, acts through an infinitesimal displacement, ds, the work done
is given by

oW = F-ds

To obtain the rate at which work 1s done by the force, divide by the time increment,

At
. & . F.d3 ;v =
W= lim — = lim or W=F-V
Ar—=0 Ay Ar—0 At
Hence the rate of work done on the area element is Normal Stress = Force/Area

dﬁ}:::mul ' F = Tpp d"d-' | 1’;
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First Law of Thermodynamics:
Work done by normal stresses at the control surface:

Since the work out across the boundaries of the control volume is the negative of the
work done on the control volume,

the total rate of work out of the control volume due to normal stresses 1s

e b

“"Ilmnnﬂ = _-[[”':: Frn dd -V = _j{:*; i'J'.-;g.-'.-“."lr - dA

I

Work done by Shear stresses at the control surface:

Just as work is done by the normal stresses at the boundaries of the control volume,
so may work be done by the shear stresses.

dFy,... = TdA

&
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First Law of Thermodynamics:
Work done by Shear stresses at the control surface:

Since the work out across the boundaries of the control volume is the negative of the
work done on the control volume,

the rate of work out of the control volume; due to shear stresses is given by

W, =_.[C5,=a1-“’.4.q,

This integral is better expressed as three terms

W =_J 7 VdA
shear s

—j 7 VdA - —?-wq-j
Alshalts) Alsolid surface) A{ poris)

We have already accounted for the first term, since we included W, previously. At
solid surfaces, V = 0, so the second term is zero (for a fixed control volume). Thus,

Vi —-J' 7.V dA
shear A{mnsJT
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* First Law of Thermodynamics:
* Work done by Shear stresses at the control surface:

This last term can be made zero by proper choice of control surfaces. If we choose a
control surface that cuts across each port perpendicular to the ﬁmf, then d A 1s parallel
to V. Since 7 i1s in the plane of 4A, 71s perpendicular to V. Thus, for a con-

trol surface perpendicular to V,

; ' r"r =10 and ILj"‘!l'-.hl:zu =0

* Choose control surfaces along streamlines of the fluid: No tangential velocity
relative to the surface — shear stress does no work.

* Avoid including solid walls in control surfaces:

* Choose boundaries where the fluid moves parallel to the wall at zero relative
-

velocity: Shear stress T acts tangentially but vrelatz’ve =0 -7tV

= 0.
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First Law of Thermodynamics:

Other Work:

Electrical energy could be added to the control volume. Also electromagnetic
energy| e.g., in radar or laser beams, could be absorbed. In most problems, such
contributions] will be absent, but we should note them 1n our general formulation.

With all of the terms in W evaluated, we obtain

“ - I"'I":. - _|.-5:,*"r-'l-': W "'5!":[ t r:'-r:r.." N |‘I:".'|II|N



CL203 FLUID MECHANICS For Educational Purpose only
e First Law of Thermodynamics:
e Control Volume Equation:
» Substitute the expression of rate of work done in first law, we get:

: : s i . . o o
- 1';".:. +J:,“.5H-nn V-dA - H'I.:E.I'Ifm' - wnl:hur = ELWE’#:IF +‘|;:pr1’?"':"]'

* Rearrange the terms:

L] - ¥ ] a‘ - = — —
W -V - == epav+| epV-di-| o0,V da
O 5 shear other a1 Jov P ce P g ™
Since p = 1/v, where v is specific volume, then
. o V-dA = cﬂﬂ'ﬂﬂﬂp‘?-ﬂ
) = W, = Wi = Woer = = y V. dA
Q- W — Wonear — Wotner = E EHE'F' d¥ +| (e—o,,v)pV-
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First Law of Thermodynamics:
Control Volume Equation:

We know that the normal stress is negative of the thermodynamic pressure —p.
Hence g = — p
A '

- - ) ] o} ~ )
{:—] - “'IFE - Ll"lr‘.:ihl:al.r o \'IE.:-I:IJ:I = EJ.WEPJF +_[:5{:'E + P'-'."J'}ﬂl"' - dA

Now substitute the value of e in the last term we get the familiar energy equation of
first law for a control volume as:

s \

ol

™

. : ; : ol £
) -W - W -W.. == .-aps.He'+J‘ U+ pr+~— | oz pV .- dA
s, 5 shear othe P J-::'-,.' .:5[ r [ .IF"

Each work term in the above equation represents the rate of work done by the
control volume on the surroundings.

Note that in thermodynamics, for convenience, the combination u + pv (the fluid
internal energy plus what is often called the "flow work") is usually replaced with
enthalpy, h =u + pv (this is one of the reasons h was invented).
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* Bernoulli’s Equation interpreted as an Energy Equation:

 An equation identical in form to Bernoulli’s equation (although requiring very
different restrictions) may be obtained from the first law of thermodynamics.

* Our objective in this section is to reduce the energy equation to the form of the
Bernoulli equation.

* Consider steady flow in the absence of shear forces. We choose a control volume
bounded by streamlines along its periphery. Such a boundary, shown in Fig. often is
called a stream tube.

Basic equation:

=0(1) = 02) = 0(3) = 0(4)

Q_%_/“{m_%ngf dF+f (e + pv) pV - dA
5

ep
cv

1"".:
£ = Uu-+ + gz

Restrictions: (1) '-F;'; = (.
(2) Wipop = 0.
(3) Wy = 0.
(4} Steady flow.

(5) Uniform flow and properties at each section.
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* Bernoulli’s Equation interpreted as an Energy Equation:

 An equation identical in form to Bernoulli’s equation (although requiring very
different restrictions) may be obtained from the first law of thermodynamics.

2 Y i ] !
iF I‘r _
(“] + o+ _Fi‘l' + 8I J(‘Pﬂ"r’"ﬂ + [ﬂz + oy + f + 82 Jiﬂzvzﬂz] - =0

,

But from continuity under these restrictions,

= 0(4) (=mViA) + (pVaAy) = 0
a-li'll I- e i

: d ¥+ V-dA =0

rd.FJ('t“‘-"ﬂI Jlmp

m = VA, = pVoA,

dt dm dt dm

Restrictions: (1) P;{, =0
(2) Wipop = 0.
(3) Woger = 0.
(4} Steady flow.

(5) Uniform flow and properties at each section.
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* Bernoulli’s Equation interpreted as an Energy Equation:

 An equation identical in form to Bernoulli’s equation (although requiring very
different restrictions) may be obtained from the first law of thermodynamics.

Thus, from the energy equation,

/ . / 2 1
W3 . a@y .
PaUs + ; + 332] P+ —1‘;' + Hil]]m + [“2 -y - —Jm =0
i

L LS

e e 'y
Ayl ;! | 831 = 2Ty +*11 +£f-1+|"'z—ul
L

s

Restrictions: (1) P;{, =0
(2) Wipop = 0.
(3) Woger = 0.
(4} Steady flow.

(5) Uniform flow and properties at each section.
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* Bernoulli’s Equation interpreted as an Energy Equation:

 An equation identical in form to Bernoulli’s equation (although requiring very
different restrictions) may be obtained from the first law of thermodynamics.

Under the additional assumption (6) of incompressible flow, v, = v, = 1/p and
hence

V3 [ 50
2 &%2 “ ' dm

V2
F'+"+gz.=i”1
p 2 o

Restrictions: (1) P;{, =0
(2) Wipop = 0.
(3) Woger = 0.
(4} Steady flow.

(5) Uniform flow and properties at each section.
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Bernoulli’s Equation interpreted as an Energy Equation:

The above Equation would reduce to the Bernoulli equation if the term in
parentheses were zero.

Thus, under the further restriction, (7)) (s — uy — 5Qf£l'm] =)

‘he energy equation reduces to

2 2
ﬂ+ﬂ.+gzl =ﬂ+ﬁ+332
p
p. .V e *
—_— ? + l!‘l;'.-' — mnh[ﬂ.lll i.{- v + 7 = constant
E pg 2g

The above Equation is 1dentical in form to the Bernoulli equation.

The Bernoulli equation was derived from momentum considerations (Newton's
second law), and is valid for steady, incompressible, frictionless flow along a
streamline.

The above Equation was obtained by applying the first law of thermodynamics to a
stream tube control volume, subject to restrictions 1 through 7 above.
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* Energy Considerations in Pipe Flow:

* Consider, for example, steady flow through the piping system, including a reducing
elbow, shown in Fig.

 The control volume boundaries are shown as dashed lines.

* They are normal to the flow at sections 1 and 2 and coincide with the inside surface
of the pipe wall elsewhere.
Basic equation:

= 0(1) = 0(2) = 0(1) = 0(3)

an wn B T suaal Y RO
Q- W/ - 'Hr;-fm — ¥, = —i,j[ epdvV + J (e + pu) pV - dA
s ¢ 7 " few s

=0
C"lll_'—-. i
Ve
é=u+— +gz : '
2 ® _
Flow —I-.,-.; ‘y}

Assumptions: (1) W, =0, Wy, =0
(2) Winear = 0 (although shear stresses are present at the walls of the
elbow, the velocities are zero there).
(3) Steady flow. ‘
{4) Incompressible flow,
(5) Internal energy and pressure uniform across sections @ and @
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Energy Considerations in Pipe Flow:

Consider, for example, steady flow through the piping system, including a reducing
elbow, shown in Fig.

Under these assumptions the energy equation reduces o
g ,

{j=:ﬁ{u2—ul]-r-.rﬁ P -Fll-b mg(z; — )
. i
Vs Vi
+-Lt:- 2 P - Lh 3 P
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* Energy Considerations in Pipe Flow:

« Since we know that for viscous flows the velocity at a cross-section cannot be
uniform.

« However, it is convenient to introduce the average velocity into Eq. so that we can
eliminate the integrals.

« To do this, we define a kinetic energy coefficient.

The kinetic energy coefficient, e, 15 defined such that

3 = =2
e 'Llfl:r i
j V—pV{i-dI:ﬂ'J- —;}V{Lﬂl:ﬂrﬁv—
A 2 A 2 2
i
V- dA

mP?

L¥

« We can think of a as a correction factor that allows us to use the average velocity 0
to compute the kinetic energy at a cross section.

* For laminar flow in a pipe, a = 2.0.
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 Energy Considerations in Pipe Flow:

* For Turbulent Flow, the equation is:

b

E_*’U]q’ 2n B
- L‘? (3 + n)(3 + 2n)

The value of V/U/ is given by Eq. 8.24. Forn = 6, a = 1.08 and forn = 10, a = 1.03,
Since the exponent, n, in the power-law profile is a function of Reynolds number, o
also vanes with Reynolds number. Because o 18 reasonably close to umty for high
Reynolds numbers, and because the change in kinetic energy 1s usually small compared

with the dominant terms in the energy equation, we shall almaost always use the approx-
imation a = | in our pipe flow calculations.
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Kinetic Energy Correction Factor, a:

Kinetic energy correction factor is defined as the ratio of the kinetic energy of the
flow per second based on actual velocity across a section to the kinetic energy oo the
flow per second on average velocity across the same section.

Hence mathematically,

K.E./sec based on actual velocity

{f =
K.E./sec based on average velocity

Prove o =2

Kinetic energy of the fluid flowing through the elementary ring of radius r and of
width dr per sec.

1 1
=Exmasaxu2=5xpdﬂxu1

2

=%pr{ub{2xrdﬂ3{u =%px2nru3dr=npm3dr

m g s

dJA = E.'ﬂ:.i"' idr Rate of fluid flowing through the ring
= d() = velocity x area of ring element
=u x 2mr dr
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Kinetic Energy Correction Factor, a

Kinetic energy correction factor is defined as the ratio of the kinetic energy of the
flow per second based on actual velocity across a section to the kinetic energy oo the
flow per second on average velocity across the same section.

. ‘u=i( a”’jm—r}

dp '\ dx
Total actual kinetic energy of flow per second

Rk R ] d ’
=L Ir;:.'mw?'r:.!'r=J‘ﬂl Tpr LH[ ai]( —rzjl} dr

—npx[4”[ Hfrﬂur] rdr

[ ] _[ (R® = r® — 3R* + 3R*Mr dr

’ "
J' (RS — " = 3R + 3RS dr



CL203 FLUID MECHANICS

Kinetic Energy Correction Factor, a

For Educational Purpose only

Kinetic energy correction factor is defined as the ratio of the kinetic energy of the
flow per second based on actual velocity across a section to the kinetic energy oo the
flow per second on average velocity across the same section.

__TP

64u

(=N
=

'-:'L.-'
-

aﬁ’%ﬂ

=
R~

dp ]3
dx

R 3R 3R f
> 8 4 6

I.':

)
3
sk

'Z'_.'
e
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Kinetic Energy Correction Factor, a:

Kinetic energy correction factor is defined as the ratio of the kinetic energy of the
flow per second based on actual velocity across a section to the kinetic energy oo the
flow per second on average velocity across the same section.

Kinetic energy of the flow based on average velocity
1 -2 1 - =2 1 -
= — Xmass X u =— X pﬂn}-:uz =— X |:u‘.u3
2 2 2

nRk?

- 1 _Elp 3
id u_gu[ a.r)R

Substituting the value of A
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Kinetic Energy Correction Factor, a:

Kinetic energy correction factor is defined as the ratio of the kinetic energy of the
flow per second based on actual velocity across a section to the kinetic energy oo the
flow per second on average velocity across the same section.

Kinetic energy of the flow/sec

il
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>
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<
%H
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|
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Kinetic Energy Correction Factor, a:

Kinetic energy correction factor is defined as the ratio of the kinetic energy of the
flow per second based on actual velocity across a section to the kinetic energy oo the
flow per second on average velocity across the same section.

K. E./sec based on actual velocity

~ K.E./sec based on average velocity

TP [_ Elp]} y R®
6dp” | dx 8 128 x8

o [_a_p]-‘xﬁg 64 x 8
128 x 8’ | ax

= 2.0. Ans.
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FLUID STATICS:

Reference:

Fluid Mechanics by Fox
Fluid Mechanics by Bansal
Fluid Mechanics by Young
NPTEL
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