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Module 2:

Fluid flow phenomena:

Fluid as a continuum,

Terminologies of fluid flow, velocity — local, average, maximum,
flow rate — mass, volumetric, velocity field;

dimensionality of flow;

flow visualization — streamline, path line, streak line, stress field;
viscosity;

Newtonian fluid; Non-Newtonian fluid;

Reynolds number & its significance,

laminar, transition and turbulent flows: Prandtl boundary layer,
compressible and incompressible.

Momentum equation for integral control volume,

momentum correction factor. [8]



LECTURE PLAN AND LEARNING OBJECTIVES FOR 40 [ONE‘HOUR} ¥
LECTURES

Module 2: Fluid flow phenomena: Fluid as a continuum, Terminologies of fluid flow, velocity —
local, average, maximum, flow rate — mass, volumetric, velocity field; dimensionality of flow;
flow visualization — streamline, path line, streak line, stress field; viscosity; Newtonian fluid;
Non-Newtonian fluid; Reynolds number its significance, laminar, transition and turbulent flows:
Prandtl boundary layer, compressible and incompressible. Momentum equation for integral
control volume, momentum correction factor. [8]

Lecture 1
Fluid flow phenomena: Fluid as a continuum.
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Fluid as a continuum or continuum based approach:
Fluid is made of molecules.

However, for most of the engineering applications, when we speak of fluid's
properties such as density, or conditions such as pressure and temperature, we do not
imply such properties or conditions of individual molecules, but those of “fluid” as a
whole.

In other words, we refer to the average or macroscopic aggregate effects of the fluid-
molecules, reflected in pressure, temperature, density, etc.

Such an approach to treating a fluid is called continuum based approach. In other
words, fluid is treated as continuum.

However, there is a restriction.

The continuum approach can be applied only when the mean free path of the fluid
(largely, gas) is smaller (actually much smaller!!) than the physical characteristic
length of the system under consideration, say, the diameter of the tube in which the
gas flows, or size of a container in which gas 1s stored.
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* Fluid as a continuum or continuum based approach:

Mathematically, for the continuum approach based model to hold good, where A 1s the mean

free path of the gas molecule and L¢ is the characteristic length of the system. Altematively,
Knudsen #defined as A/Le << 1.
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 In this section we will discuss under what circumstances a fluid can be treated as a
continuum, for which, by definition, properties vary smoothly from point to point.
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Fluid as a continuum or continuum based approach:
The concept of a continuum is the basis of classical fluid mechanics.

The continuum assumption is valid in treating the behavior of fluids under normal
conditions.

As a consequence of the continuum assumption, each fluid property is assumed to
have a definite value at every point in space.

Thus fluid properties such as density, temperature, velocity, and so on, are
considered to be continuous functions of position and time.

To illustrate the concept of a property at a point, consider how we determine the
density at a point.

A region of fluid is shown in Fig.

We are interested in determining the density at the point C, whose coordinates are
x0, y0, and Z0.

Density is defined as mass per unit volume.
Thus the average density in volume V is given by p=m/V.

In general, because the density of the fluid may not be uniform, this will not be
equal to the value of the density at point C.
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Fluid as a continuum or continuum based approach:

To determine the density at point C, we must select a small volume, 0V, surrounding
point C and then determine the ratio dm/oV.

The question is, how small can we make the volume 6V?

We can answer this question by plotting the ratio 6m/dV, and allowing the volume
to shrink continuously in size.
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Fluid as a continuum or continuum based approach:

Assuming that volume 0V is initially relatively large (but still small compared with
the volume, V) a typical plot of dm/6V might appear as in Fig. b.

In other words, 0V must be sufficiently large to yield a meaningful, reproducible
value for the density at a location and yet small enough to be called a point.

The average density tends to approach an asymptotic value as the volume is shrunk
to enclose only homogeneous fluid in the immediate neighborhood of point C.

If 6V becomes so small that it contains only a small number of molecules, it
becomes impossible to fix a definite value for dm/0V; the value will vary erratically
as molecules cross into and out of the volume.

Thus there 1s a lower limiting value of 6V, designated 0V* in Fig. b, allowable for
use in defining fluid density at a point.

The density at a "point" is then defined as
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Fluid as a continuum or continuum based approach:

Since point C was arbitrary, the density at any other point in the fluid could be
determined in the same manner.

[f density was measured simultaneously at an infinite number of points in the fluid,
we would obtain an expression for the density distribution as a function of the space
coordinates, p = p(X, y, z), at the given instant.

The density at a point may also vary with time (as a result of work done on or by the
fluid and/or heat transfer to the fluid).

Thus the complete representation of density (the field representation) is given by

g = plx, v, 2,1

Most engineering problems are concerned with physical dimensions much larger
than this limiting volume, so that density is essentially a point function and fluid
properties can be thought of as varying continually in space, as sketched in Fig.

Such a fluid is called a continuum, which simply means that its variation in
properties 1s so smooth that differential calculus can be used to analyze the
substance.
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Methods of describing Fluid Motion:

The analysis of fluid mechanics problem is approached by two methods: (a)
Lagrangian Method and (b) Eulerian Method.

In the Lagrangian method, an individual fluid particle is followed as they move
about and determining how the fluid properties associated with these particles
change as a function of time.

In the Eulerian method, the fluid particles such as velocity, acceleration, pressure,
density etc., are described at a point in flow field as functions of space and time.

From this method we obtain information about the flow in terms of what happens at
fixed points in space as the fluid flows past those points.

For e.g., In the Eulerian method we compute the pressure field p(x, y, z, t) of the

flow pattern, not the pressure changes p(t) that a particle experiences as it moves
through the field.
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Methods of describing Fluid Motion:

The difference between the two methods of analyzing fluid problems can be seen in
the example of smoke discharging from a chimney, as is shown in Fig.

In the Eulerian method one may attach a temperature-measuring device to the top of
the chimney (point 0) and record the temperature at that point as a function of time.

That 1s, T = T(x0, yO0, zO0, t).

The use of numerous temperature-measuring devices fixed at various locations
would provide the temperature field, T = T(x, y, z, t).

In the Lagrangian method, one would attach the temperature-measuring device to a
particular fluid particle (particle A) and record that particle’s temperature as it
moves about.

Thus, one would obtain that particle’s temperature as a function of time, TA =
TA(t).

The use of many such measuring devices moving with various fluid particles would
provide the temperature of these fluid particles as a function of time.

In fluid mechanics it is usually easier to use the Eulerian method to describe a flow.
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Flow rate — Mass, Volumetric or Discharge:

Flow rate 1s defined as the quantity of a fluid flowing per second through a section
of a pipe or a channel.

For an incompressible fluid, the rate of flow or discharge is expressed as the volume
of fluid flowing across the section per second.

For compressible fluids, the rate of flow is usually expressed as the weight of fluid
flowing across the section.

The relationship between volume flow and mass flow follows directly from the
definition of density, p.

_ mass E
P=olume m?
_ massflow M kg s
volume flow Q@ s m*

M= Qp Kgis

This is the simplest form of Continuity Equation.
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* Flow rate — Mass, Volumetric or Discharge:

« Flow rate is defined as the quantity of a fluid flowing per second through a section
of a pipe or a channel.

* In other ways, a common method of measuring volume flow is to determine the
average velocity of fluid across the section.

« Consider a liquid flowing through a pipe in which
« A = Cross-sectional area of pipe
« V = Average velocity of fluid across the section.

m m

 Then discharge, Q =V x A ? m or s

e Then Continuity Equation becomes:

c M=pxVXxA
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Continuity Equation:
The equation based on the principle of conservation of mass is called continuity
equation.

Thus for a fluid flowing through the pipe at all the cross-section, the quantity of
fluid per second is constant.

Consider two cross-sections of a pipe as shown in the Fig.

Let V, = Average velocity at cross-section 1-1 ® @

p; = Density at section 1-1 Y |[‘”
DIRECTION | :

A, = Area of pipe at section 1-1 OF FLOW
2-2
and V,, p,, A, are corresponding values at section, 2-2, 2) M
Then rate of flow at section 1-1= p AV,

Rate of flow at section 2-2 = p,A,V,

According to law of conservation of mass

Rate of flow at section 1-1 = Rate of flow at section 2-2
or pA,V, = pA,V, -(5.2)
Equation (5.2) is applicable to the compressible as well as incom-

pressible fluids and is called Continuity Equation. If the fluid is in-
compressible, then p, = p, and continuity equation (5.2) reduces to

"d‘lvl = AEFE
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Continuity Equation:

The equation based on the principle of conservation of mass is called continuity
equation.

Problem 5.2 A 30 cm diameter pipe, conveying water, branches into two pipes of diameters
20 cm and 15 cm respectively. If the average velocity in the 30 cm diameter pipe is 2.5 m/s, find the
discharge in this pipe. Also determine the velocity in 15 cm pipe if the average velocity in 20 cm
diameter pipe is 2 m/s.

Solution. Given :

®, ‘,-';-ﬁ"'laan
-___,.-"--F-‘H.Il'l-rdﬁlﬂldﬂ -
- " o fﬁ-—"’f!
V= 2.5m/sec =
D= 30cm —®
— :h-n 3 _::-'-];"---___
@ "‘"-QA:_LL%
Dy =30cm =030 m
A, =2 Dp2=1 x 32= 007068 m?
4 4
Vi=25m/s
D, =20cm =020 m
T : _T 2
A, =— (2 =— x4 =0.0314 m",
2 =7 (.2) 1
Dy=15cm =0.15m

A, = (152 = % 0.225 = 0.01767 m*
T4 4
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e Continuity Equation:
» The equation based on the principle of conservation of mass is called continuity
equation.

Problem 5.2 A 30 cm diameter pipe, conveving water, branches into two pipes of diameters
20 cm and 15 cm respectively. If the average velocity in the 30 cm diameter pipe is 2.5 m/s, find the
discharge in this pipe. Also determine the velocity in 15 cm pipe if the average velocity in 20 cm
diameter pipe is 2 m/s.
Find (i) Discharge in pipe 1 or Q,
(i) Velocity in pipe of dia. 15 cm or V;
Let )y, O, and (4 are discharges in pipe 1, 2 and 3 respectively.
Then according to continuity equation
Q=0+ 0,
(f) The discharge Q, in pipe 1 is given by
Q,=A,V, = 0.07068 x 2.5 m’/s = 0.1767 m’/s. Ans.
(ii) Value of V,
0, = AV, = 0.0314 x 2.0 = 0.0628 m*/s
Substituting the values of ¢, and (), in equation (1)
0.1767 = 0.0628 + O,
o (5= 0.1767 - 0.0628 = 0.1139 m*/s
But (,=A; =V, =0.01767 x V; or 0.1139 = 0.01767 x V,
0.1139

Vi= —— = 6.44 m/s. Ans.
- 001767
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e Continuity Equation in Three Dimension:

Consider a fluid element of lengths dx, dy and dz in the direction of x, v and z. Let u, v and w are the

inlet velocity components in x, v and 7 directions respectively. Mass of fluid entering the face ABCD
per second

= p x Velocity in x-direction x Area of ABCD
=p xu ¥ (dy % dz)

Then mass of fluid leaving the face EFGH per second = pu dydz +Hi (pu dydz) dx
X

(3ain of mass in x-direction
= Mass through ABCD — Mass through EFGH per second

d
= pu dvdz — pu dydz — — (pu dydz)dx
X

d
a z
= — —— (pu dydz) dx ‘
X [ dvdz is constant }
d D H
=——I{pu]d.rd}?d: o —
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e Continuity Equation in Three Dimension:

Similarly, the net gain of mass in y-direction

= - i (pv) dxdvdz
dy

and in z-direction = - Eii (pw) dxdydz
4

Net gain of masses = — i[pu] +i{pp]+ 9 (pw) | dxdydz
dx dy dz

Since the mass is neither created nor destroyed in the fluid element, the net increase of mass per unit
time in the fluid element must be equal to the rate of increase of mass of fluid in the element. But mass

of fluid in the element is p. dx. dy. dz and its rate of increase with time isi (p dx. dy. dz) or

ot

dp

— . dx dy dz.
dt '
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e Continuity Equation in Three Dimension:

Equating the two expressions,

or - % [pu}+%{pu}+ % (pw) | dxdydz = % dxdydz
or B_p+ i{;::nur}+ i{pv} ~ iL“.|:.'nr-w]| = 0 [Cancelling dx.dy.dz from both sides] ...(5.34)
dr  dx dy dz

Equation (5.34) is the continuity equation in cartesian co-ordinates in its most general form. This
equation is applicable to :
(i) Steady and unsteady flow,
(71) Uniform and non-uniform flow, and
(iii) Compressible and incompressible fluids.

d
For steady flﬂw.—p = () and hence equation (5.34) becomes as

ot

d d aJ

e (£} — V _— 1| =

- (Pu) *3 (pv) + o (W) =0 (5.3B)

If the fluid is incompressible, then p is constant and the above equation becomes as

du dv dw
_+_+—:ﬂ 54
o % oD

Equation (5.4) is the continuity equation in three-dimensions. For a two-dimensional flow, the com-
ponent w = () and hence continuity equation becomes as
du o

—4 — =1 L0585
dx dy ©-)
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Types of Fluid Flow:
Fluid flow is classified as:
(1) Steady and Unsteady flows;
(i1) Uniform and non-uniform flows;
(i11) Laminar and turbulent flows;
(iv) Compressible and incompressible flows;
(v) Rotational and irrotational flows;

(vi) One, two and three-dimensional flows.

For Educational Purpose only
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Types of Fluid Flow:
(i) Steady and Unsteady flows

It 1s defined as the type of flow in which the fluid characteristics like velocity,
pressure, density, etc., at a point do not change with time.

Thus for steady flow, we have

oV _ a_F]
[af], " 'U"(af

o g v &0 ¥o+Zn

apj
=0,| = =
[Eir -

K s

For Unsteady flow, the fluid characteristics at a point changes with respect to time.
Thus for Unsteady flow, we have

3,0
ot Ky Voo Zgy * 0 at Xos ¥+ Lo # 0 ete
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Types of Fluid Flow:
(ii) Uniform and non-uniform flows

It is defined as the type of flow in which the velocity at any given time does not
change with respect to space (ie., length of direction of the flow).

Thus for uniform flow, we have

[B_VJ -0
Els I'= gomstant

where  dV = Change of velocity
ds = Length of flow in the direction 5.
MNon-uniform flow 1s that type of flow in which the velocity at any given time changes with respect
to space. Thus, mathematically, for non-uniform flow

[a—"’] 20,
al!l = ponstant

xxxxxx

(a) (b) (c)

Figure 2.15: Uniform and non-uniform flows; (a) uniform flow, (b) non-uniform, but “locally uni-
form” fHow. (¢) non-uniform How.
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Types of Fluid Flow:
(iii) Laminar and turbulent flows

Laminar flow is defined as the type of flow in which the fluid particles move along
well-defined paths or stream line and all the stream-lines are straight and parallel.

Thus the particles move in layers or laminas gliding smoothly over the adjacent
layer.

This type of flow is also called stream-line flow or viscous flow.

Turbulent flow is the type of flow in which the fluid particles move in a zig-zag
way.

Due to the movement of fluid particles in a zig-zag way, the eddies formation takes
place which are responsible for high energy loss.

Basically, the type of low i1s determined by a non-dimensional number called the
Reynold number.

If the Reynold number is less than 2000, the flow is called laminar. If the Reynold number is more
than 4000, it is called turbulent flow. If the Reynold number lies between 2000 and 4000, the flow may
be laminar or turbulent.

Between 2000 and 4000, it is a transition region where the flow may be laminar or
turbulent.
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Types of Fluid Flow:
(iii) Laminar and turbulent flows

Most common experience with the distinction between laminar and turbulent flow
comes from observing the flow of water from a faucet as we increase the flow rate
and shown 1n Fig.

Part (a) of the figure displays a laminar (and steady) relatively low-speed flow in
which the trajectories followed by fluid particles are very regular and smooth;
furthermore, there i1s no indication that these trajectories might exhibit drastic
changes in direction.

(a)

Figure 2.19: Laminar and turbulent flow of water from a faucet; (a) steady laminar, (b) periodie,
wavy laminar, (¢) turbulent.
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Types of Fluid Flow:
(iii) Laminar and turbulent flows

In part (b) of the figure we present a flow that is still laminar, but one that results as
we open the faucet more than in the previous case, permitting a higher flow speed.

In such a case the surface of the stream of water begins to exhibit waves, and these
will change in time (basically in a periodic way).

Thus the flow has become time dependent, but there is still no apparent
intermingling of trajectories.

Finally, in part (¢) of the figure we show a turbulent flow corresponding to much
higher flow speed.

We see that the paths followed by fluid particles are now quite complicated and
entangled indicating a high degree of mixing. Such flows are three dimensional and
time dependent, and very difficult to predict in detail.

(& SUR &)

S LA # LA

(a) (b) &= ©

Figure 2.19: Laminar and turbulent flow of water from a faucet; (a) steady laminar, (b) periodic,
wavy laminar, (¢) turbulent.
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Types of Fluid Flow:
(iv) Compressible and incompressible flows

Compressible flow is the type of flow in which the density of the fluid changes from
point to point or in other words the density is not constant for the fluid.

Thus for compressible flow, we have

p # Constant

Incompressible flow is the type of flow in which the density is constant for the fluid
flow.

Liquids are generally incompressible while gases are compressible.
Thus for incompressible flow, we have.

p = Constant,
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Types of Fluid Flow:
(v) Rotational and irrotational flows

Rotational flow is the type of flow in which the fluid particles while flowing along
steam-lines, also rotate about their own axis.

And if the fluid particles while flowing along stream-lines, do not rotate about their
own axis then the type of flow is called irrotational flow.
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Types of Fluid Flow:
(vi) One, two and three-dimensional flows: Dimensionality of flow

The dimensionality of a flow field corresponds to the number of spatial coordinates
needed to describe all properties of the flow.

One-dimensional flow is the type of flow in which the flow parameter such as
velocity is a function of time and space co-ordinate only say x.

For a steady one-dimensional flow, the velocity is a function of one-space-co-
ordinate only.

The variations of velocities in other two mutually perpendicular directions is
assumed negligible.

Thus for one-dimensional flow, we have

u=fix),v=0and w=1()
where u, v and w are velocity components in x, y and 7 directions respectively.

Fluid flow is three-dimensional in nature.

This means that the flow parameters like velocity, pressure and so on vary in all the
three coordinate directions.

Sometimes simplification is made in the analysis of different fluid flow problems
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Types of Fluid Flow:
(vi) One, two and three-dimensional flows: Dimensionality of flow

Two-dimensional flow is the type of flow in which the velocity is a function of time
and two rectangular space co-ordinates say x and y.

For a steady two-dimensional flow the velocity is a function of two space co-
ordinates only.

The variation of velocity in the third direction is negligible.

Thus for one-dimensional flow, we have

u=filx,v),v=_x, v)and w=0.




CL203 FLUID MECHANICS For Educational Purpose only
Types of Fluid Flow:
(vi) One, two and three-dimensional flows: Dimensionality of flow

Three-dimensional flow 1s the type of flow in which the velocity is a function of
time and three mutually perpendicular direcions.

For a steady three-dimensional flow the velocity is a function of three space co-
ordinates such as x, y and z only.

Thus for one-dimensional flow, we have

w=filx, v, z), v=filx, v, z) and w = f5(x, ¥, z).
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Fluid Mechanics by Fox
Fluid Mechanics by Bansal
Fluid Mechanics by Young
NPTEL
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Module 2:

Fluid flow phenomena:

Fluid as a continuum,

Terminologies of fluid flow, velocity — local, average, maximum,
flow rate — mass, volumetric, velocity field;

dimensionality of flow;

flow visualization — streamline, path line, streak line, stress field;
viscosity;

Newtonian fluid; Non-Newtonian fluid;

Reynolds number & its significance,

laminar, transition and turbulent flows: Prandtl boundary layer,
compressible and incompressible.

Momentum equation for integral control volume,

momentum correction factor. [8]
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Velocity Field:

The representation of fluid parameters as functions of the spatial coordinates is
termed a field representation of the flow. One of the most important fluid variables
1s the velocity field.

In dealing with fluids in motion, we shall be concerned with the description of a
velocity field.

Refer to Fig. Define the fluid velocity at point C as the instantaneous velocity of the
center of the volume, 6V*, instantaneously surrounding point C.

If we define a fluid particle as a small mass of fluid of fixed identity of volume dV*,
then the velocity at point C is defined as the instantaneous velocity of the fluid
particle which, at a given instant, 1s passing though point C.

The velocity at any point in the flow field 1s defined similarly.

At a given instant the velocity field, V, is a function of the space coordinates x, y, z.
The velocity at any point in the flow field might vary from one instant to another.
Thus the complete representation of velocity (the velocity field) is given by

V = Vix, v, 7, 1)
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* Velocity Field:

Let Vis the resultant velocity at any point in a fluid flow. Let u, v and w are its component in x, y and

z directions. The velocity components are functions of space-co-ordinates and time. Mathematically,
the velocity components are given as

u=filx,yz1

v=folx, ¥, 2, 1)

w = fix, v, 2, 1)

and Resultant velocity, V=ui+ v+ wk= ‘quz v+ w’

-

V=uxvyzi +vixvzt) +wxyzik

« By definition, the velocity of a particle is the time rate of change of the position
vector for that particle.

« The position of particle A relative to the coordinate system is given by its position
vector, ra, which (if the particle is moving) 1s a function of time.

« The time derivative of this position gives the velocity of the particle, dra/dt = Va.
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e Acceleration Field:

» Describing Acceleration field as a function of position and time without actually
following any particular particle.

» describing the flow in terms of the velocity field, V = V(x, y, z, t), rather than the
velocity for particular particles.

« MATERIAL DERIVATIVE:

Consider a fluid particle moving along its pathline as is shown in Fig. 4.4. In general,
the particle’s velocity, denoted V, for particle A, is a function of its location and the
time.

Vi = Valra. 1) = V[ x,(t). walt), za(1). 1]

Particle A at
time ¢

Particle path
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e Acceleration Field:

« MATERIAL DERIVATIVE:

where x, = x,(f), v, = v,(1), and z, = z,(f) define the location of the moving particle. By def-
inition, the acceleration of a particle is the time rate of change of its velocity. Thus, we use the
chain rule of differentiation to obtain the acceleration of particle A, a,, as

B ﬂffﬁ B E‘r'-l,l -E'i-'r_,‘l E]r.-'l'l.l -E'"r_,;, ﬂhr'q_ n Hv.‘l dz-‘l (4.2)

a,(f) = = + +
Al0) dt it ax dt  ay dt 9z dt

Using the fact that the particle velocity components are given by u, = dx J/dt, v, = dv,/dlt,
and w, = dz,/dt, Eq. 4.2 becomes

av, av, av, av,
Ay =—— T u + + W
AT Tar T My Ty T

Because the equation just described is valid for any particle, we can drop the reference to
particle A and obtain the acceleration field from the velocity field as

ayv A V¥ aV
tU—+tUv—+ W
ol dX ay dZ

i4.3)

H=
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 Acceleration Field:

« MATERIAL DERIVATIVE:
This 1s a vector result whose scalar components can be written as

i " ol ¥ ol N il

i, =—=+H—+v— + Ww—

Tt ax Ay i

dv du dv du

a =—+ U— +v— + w—

. ol dX ! oz

and

W dW dW W
a,=—+u—+v—+w—

ot o oy dZ

The result given in Eq. 4.4 is often written in shorthand notation as

DV

T br

where the operator

D[:IEH{]+ua—[—]+ra{]er&[:I (4.5)
Dt ot dx dy az

e 1s termed the material derivative or substantial derivative.

For Educational Purpose only

(4.4)
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Acceleration Field:
MATERIAL DERIVATIVE:

The material derivative concept is very useful in analysis involving various fluid
parameters, not just the acceleration.

The material derivative of any variable is the rate at which that variable changes
with time for a given particle.

For example, consider a temperature field

I'=T(x, v,z t) associated with a given flow, like the flame shown in the figure in the
margin. It may be of interest to determine the time rate of change of temperature of a
fluid particle (particle A) as it moves through this temperature field. If the velocity,
V = ¥(x, v, z. 1), is known, we can apply the chain rule to determine the rate of change of
temperature as

dt at ax i dy dt oz dt

This can be written as

DI _aT | of _ af o
Dt ar Ve T Vay T Wz
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* Acceleration Field:
« MATERIAL DERIVATIVE:

day ay¥ fay Ay AV
a ——F— — —— T '!"._+L'.__""'._
di il 'n X ay 017/

Local Convective

The term a¥V/at 1s called the local acceleration,

* Local acceleration 1s defined as the rate of increase of velocity with respect to time
at a given point in a flow field.

« Convective acceleration is defined as the rate of change of velocity due to the
change of position of fluid particles in a fluid flow.
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* Acceleration Field:

Problem 5.6 The velocity vector in a fluid flow is given
V = 4x’i = 10 yj + 2tk
Find the velocity and acceleration of a fluid particle at (2, 1, 3) at time t = .

Solution. The velocity components u, v and w are u = 4x°, v = — 10x° y, w = 2t
For the point (2, 1, 3), we have x=2,y=1and z = 3 at time 7= 1.
Hence velocity components at (2, 1, 3) are
=4 x {2}3 = 32 units
v = - 10(2)%(1) = - 40 units
w=2x1=2units
Velocity vector Vat (2, 1, 3) = 32i — 407 + 2k

or Resultant velocity = Juz +v? +w?

=\32% +(~40)" +2° = 1024 +1600 + 4 = 51.26 units. Ans.

Acceleration is given by equation (5.6)

du  du du  ou
dy=—t+tV—tW—+—=
dx

! dy dz ot
dv dv dv  dv

a.=u—+V—+w—+——

Yoo ax dy dz ot
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 Acceleration Field:
dw dw dw  dw

a,= H—+V—+Ww—+—
. dx dy dz  of

Now from velocity components, we have

Elu 3 du du du
=12x%, == =0, —=0and — =
ax a} =, % = () an 5 0

dv dv dv dv

— = = 20xy, — = - 10%°, —=0—
ax W5y =10 57 0% =0
dw dw dw dw
o0, 220,22 =0 and = = 2.1
dx 3 E}y =0, dz 0 an dt

Substituting the values, the acceleration components at (2, 1, 3) at time ¢ = 1 are
a, = 4x* (12x%) + (= 10x7y) (0) + 2t x (0) + 0
= 48" = 48 % (2)” = 48 % 32 = 1536 units
a, = 4x* (= 20xy) + (- 10x7y) (- 10x%) + 2¢ (0) + 0
= 3{}.1:4}? + l{]{}f‘y

For Educational Purpose only

=— 80 (2)*(1) + 100 (2)* x 1 = — 1280 + 1600 = 320 units.

a, =47 (0) + (- 10x%y) (0) + (20) (0) + 2.1 = 2.0 units
Acceleration is A=ai+aj+ ak=1536i + 320j + 2Kk. Ans.

r Resultant A =\/’{153l|5':rjl1 +(320)° +(2)° units
=4235‘:}196+ 102400 + 4 = 1568.9 units. Ans.
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Stress Field:
In fluid mechanics, we will need to understand the forces act on fluid particles.

Each fluid particle can experience: surface forces (pressure, friction) that are
generated by contact with other particles or a solid surface; and body forces (such as
gravity and electromagnetic) that are experienced throughout the particle.

The gravitational body force acting on an element of volume, dV, is given by pgdV,
where p is the density (mass per unit volume) and g is the local gravitational
acceleration.

Surface forces on a fluid particle lead to stresses.

The concept of stress 1s useful for describing how forces acting on the boundaries of
a medium (fluid or solid) are transmitted throughout the medium.

For example, when you stand on a diving board, stresses are generated within the
board (deflected).

On the other hand, when a body moves through a fluid, stresses are developed
within the fluid.

The difference between a fluid and a solid is, as we've seen, that stresses in a fluid
are mostly generated by motion rather than by deflection.
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Stress Field:
Imagine the surface of a fluid particle in contact with other fluid particles, and
consider the contact force being generated between the particles.

Consider a portion, oA, of the surface at some point C shown in Fig. 2.4,

The force, 8F, acting on 8A may be resolved into two components, one normal
to and the other tangent to the area. A normal stress o, and a shear stress 7, are then

defined as
oF
= |lim —% 2.6
Tn a«:—:-u HA,, (26)
and
T,= hm ok (2.7)
a4, -0 &4,1

The fluid is actually a continuum, so we could have imagined breaking it up any
number of different ways into fluid particles around point C, and therefore obtained
any number of different stresses at point C.
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Module 2:

Fluid flow phenomena:

Fluid as a continuum,

Terminologies of fluid flow, velocity — local, average, maximum,
flow rate — mass, volumetric, velocity field;

dimensionality of flow;

flow visualization — streamline, path line, streak line, stress field;
viscosity;

Newtonian fluid; Non-Newtonian fluid;

Reynolds number & its significance,

laminar, transition and turbulent flows: Prandtl boundary layer,
compressible and incompressible.

Momentum equation for integral control volume,

momentum correction factor. [8]
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Module 2: Fluid flow phenomena: Fluid as a continuum, Terminologies of fluid flow, velocity —
local, average, maximum, flow rate — mass, volumetric, velocity field; dimensionality of flow;
flow visualization — streamline, path line, streak line, stress field; viscosity; Newtonian fluid;
Non-Newtonian fluid; Reynolds number its significance, laminar, transition and turbulent flows:
Prandtl boundary layer, compressible and incompressible. Momentum equation for integral
control volume, momentum correction factor. [8]

Lecture 1
Fluid flow phenomena: Fluid as a continuum.
Lecture 11

Terminologies of fluid flow, velocity — local, average, maximum, flow rate — mass, volumetric,
velocity field.

Lecture I1I1

Terminologies of fluid flow, dimensionality of flow; flow visualization — streamline, path line,
streak line, stress field.

Lecture IV

Terminologies of fluid flow, viscosity; Newtonian fluid; Non-Newtonian fluid.
Lecture V

Reynolds number and its significance.



LECTURE PLAN AND LEARNING OBJECTIVES FOR 40 [ONE‘-HOUR}] ¥
LECTURES

Module 2: Fluid flow phenomena: Fluid as a continuum, Terminologies of fluid flow, velocity —
local, average, maximum, flow rate — mass, volumetric, velocity field; dimensionality of flow;
flow visualization — streamline, path line, streak line, stress field; viscosity; Newtonian fluid;
Non-Newtonian fluid; Reynolds number its significance, laminar, transition and turbulent flows:
Prandtl boundary layer, compressible and incompressible. Momentum equation for integral
control volume, momentum correction factor. [8]

Lecture VI

Laminar, transition and turbulent flows: Prandtl boundary layer, compressible and
incompressible.

Lecture VII

Laminar, transition and turbulent flows: Prandtl boundary layer, compressible and
incompressible.

Lecture VIII

Momentum equation for integral control volume, momentum correction factor.
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Flow Visualizaion — Stream line, Path line and Streak line:
Sometimes we want a visual representation of a flow.

Such a representation is provided by timelines, pathlines, streaklines, and
streamlines.

Timeline:

If a number of adjacent fluid particles in a flow field are marked at a given instant,
they form a line in the fluid at that instant; this line is called a timeline.

Subsequent observations of the line may provide information about the flow field.

For example, in discussing the behavior of a fluid under the action of a constant
shear force, timelines were introduced to demonstrate the deformation of a fluid at
successive mnstants.

F

L L '.

! !'r T il .-I'Jr

, ‘,' il

1 g ! .

1¢ Iy f2 >3
Ir Iy
i i




CL203 FLUID MECHANICS For Educational Purpose only
Flow Visualizaion — Stream line, Path line and Streak line:
Pathline:
Pathline is the path or trajectory traced out by a moving fluid particle.

To make a pathline visible, we might identify a fluid particle at a given instant, e.g.,
by the use of dye or smoke, and then take a long exposure photograph of its
subsequent motion.

The line traced out by the particle is a pathline.

This approach might be used to study, for example, the trajectory of a contaminant
leaving a smokestack.

_ Particle A at
Particle path _- time { + &1

Farticle A at
time i

|
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Flow Visualizaion — Stream line, Path line and Streak line:
Streakline:

On the other hand, we might choose to focus our attention on a fixed location in
space and identify, again by the use of dye or smoke, all fluid particles passing
through this point.

After a short period of time we would have a number of 1dentifiable fluid particles in
the flow, all of which had, at some time, passed through one fixed location in space.

The line joining these fluid particles is defined as a streakline.

S\
V4. 10 Streaklines
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Flow Visualizaion — Stream line, Path line and Streak line:
Streamline:

Streamlines are lines drawn in the flow field so that at a given instant they are
tangent to the direction of flow at every point in the flow field.

Since the streamlines are tangent to the velocity vector at every point in the flow
field, there can be no flow across a streamline.

Streamlines are the most commonly used visualization technique.
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Flow Visualizaion — Stream line, Path line and Streak line:

In steady flow, the velocity at each point in the flow field remains constant with time
and, consequently, the streamline shapes do not vary from one instant to the next.

This implies that a particle located on a given streamline will always move along the
same streamline.

Furthermore, consecutive particles passing through a fixed point in space will be on
the same streamline and, subsequently, will remain on this streamline.

Thus in a steady flow, pathlines, streaklines, and streamlines are identical lines in
the flow field.

The shapes of the streamlines may vary from instant to instant if the flow is
unsteady.

In the case of unsteady flow, pathlines, streaklines, and streamlines do not coincide.
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Viscosity:
For a solid, stresses develop when the material is elastically deformed or strained;
for a fluid, shear stresses arise due to viscous flow.
Hence we say solids are elastic, and fluids are viscous.

As two fluids (such as water and oil) can have approximately the same value of
density but behave quite differently when flowing.

There is apparently some additional property that 1s needed to describe the “fluidity”
of the fluid (i.e., how easily it flows).

The most important of these is viscosity, which relates the local stresses in a moving
fluid to the strain rate of the fluid element.

Viscosity is a quantitative measure of a fluid’s resistance to flow.

More specifically, it determines the fluid strain rate that is generated by a given
applied shear stress.

We can easily move through air, which has very low viscosity.
Movement is more difficult in water, which has 50 times higher viscosity.

Still more resistance is found in SAE 30 oil, which is 300 times more viscous than
water.

Fluids may have a vast range of viscosities.
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Viscosity:

To determine this additional property, consider a hypothetical experiment in which a
material is placed between two very wide parallel plates as shown in Fig.

The bottom plate is rigidly fixed, but the upper plate is free to move.

When the constant force oF 1s applied to the upper plate, it will move continuously
with a constant velocity oU.

This behavior is consistent with the definition of a fluid—that is, if a shearing stress
is applied to a fluid it will deform continuously.

A closer inspection of the fluid motion between the two plates would reveal that the
fluid in contact with the upper plate moves with the plate velocity, 60U, and the fluid
in contact with the bottom fixed plate has a zero velocity.

The experimental observation that the fluid “sticks™ to the solid boundaries is a very
important one in fluid mechanics and is usually referred to as the no-slip condition.

All fluids, both liquids and gases, satisfy this condition.

L

L. T B e g Force, &8F
Velocity, du

M
T

|
[
!

I

I

Sa

Fluid element
at time, 1

Fluid element
at time, 1 + 8¢

__ax —._=

Fig. 2.7 Dsformation of a fluid element.
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* Viscosity:

The shear stress, &x , applied to the fluid element 1s given by

of, _ 4t
B, =0 0A,  dA,

I_}'.[ ~

where 0Ay is the area of contact of a fluid element with the plate, and 6Fx is the
force exerted by the plate on that element.

During time interval o6t, the fluid element is deformed from position MNOP to
position M'NOP’.

The rate of deformation or rate of shear strain of the fluid is given by:

i
: . . Oy dﬂ' MM poE . 5F
deformation rate = lim = — e T etenty, &
&—0 & di N o
Fluid element ' Fluid element
¥ at time, r ' at time, | + &
]
i

R L e —

Fig. 2.7 Deformation of a fluid element.
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Viscosity:

The distance, o1, between the points M and M' is given by

ol = bu b

For small angles;

tan oo = 0l / Oy
ol = by da
Now, ou ot = dy oa,
Rearrange the terms E = E
ot By
Taking the limits of both sides of the equality, we obtain
da _ du .,
-8k, L L orce, 4F,
Ilill!| d}' I 2 'H':ncit:gu

A Fluid element
¥ at time, r

at time, 1 + &1

Fig. 2.7 Deformation of a fluid element.
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Viscosity:
Thus, the fluid element, when subjected to shear stress, {yx, experiences a rate of
deformation {shear rate) given by du/dy.

The rate of shearing strain is increased in direct proportion—that is,
(i
- -..x- ——
u"_’t'

This result indicates that for common fluids, such as water, oil, gasoline, and air, the
shearing stress and rate of shearing strain (velocity gradient) can be related with a
relationship of the form:

o du
d Il:lll:llll

where the constant of proportionality is designated by the Greek symbol p (mu) and

is called the absolute viscosity, dynamic viscosity, or simply the viscosity of the
fluid.
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Viscosity:

Kinematic viscosity is defined as the ratio between dynamic viscosity and density of
fluid.

Thus, we have:

v = Viscosity U
Density p
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* Viscosity:
Problem 1.18 Two large plane surfaces are 2.4 cm apart. The space between the surfaces is filled
with glycerine. What force is required to drag a very thin plate of surface area .5 square metre
between the two large plane surfaces at a speed of 0.6 m/s, if :
(i) the thin plate is in the middle of the two plane surfaces, and
(ii) the thin plate is at a distance of 0.8 cm from one of the plane surfaces ? Take the dynamic
viscosity of glycerine = 8.10 x 107" N s/m”.

Solution. Given :
Distance between two large surfaces = 2.4 cm .+
Area of thin plate, A=05m’ 12¢cm

Velocity of thin plate, u=0.6m/s 24 e _*___ .
n=810x 107" N s/m’

Viscosity of glycerine,

1.2cm
Case I. When the thin plate is in the middle of the two plane |
surfaces [Refer to Fig. 1.7 (a)] T
Let F, = Shear force on the upper side of the thin plate Fig. 1.7 (a)

F, = Shear force on the lower side of the thin plate
F = Total force required to drag the plate
Then F=F+F,
The shear stress (T,) on the upper side of the thin plate is given by equation,
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el 1
“=ay
|

where du = Relative velocity between thin plate and upper large plane surface
= (.6 m/sec
dy = Distance between thin plate and upper large plane surface
= 1.2 cm = 0.012 m (plate is a thin one and hence thickness of plate is neglected)

7, =8.10%x 10" x U6 1 _ 40.5 N/im?
012

* Viscosity:

Now shear force, F, = Shear stress x Area
=T, %xA=405x05=20.25N
Similarly shear stress (T,) on the lower side of the thin plate 1s given by

d ;
T,=H [d—“] = 8.10 % 107" x [%} = 40.5 N/m*
J"I 7 .

Shear force, Fo=1,xA=405x05=2025N
Total force, F=F +F,=20.25+ 20.25=40.5 N. Ans.



CL203 FLUID MECHANICS For Educational Purpose only
* Viscosity:

Case I1. When the thin plate is at a distance of (.8 cm from one of

the plane surfaces [Refer to Fig. 1.7 (b)]. L
Let the thin plate is at a distance (.8 cm from the lower plane T
surface, 1.6 cm
Then distance of the plate from the upper plane surface 24 cm l
=24-08=16cm=.016m - F
(Neglecting thickness of the plate) m—— Da*cm
The shear force on the upper side of the thin plate, .
F| = Shear stress X Area =T, X A Fig. 1.7 (b)

d .
2 o A=810x10" x |28 | x05=15.18N
dy) 0.016

The shear force on the lower side of the thin plate,

=8.10x 107" x 06 x0.5=3036N
0.8/100

Total force required = F, + F, = 15.18 + 30.36 = 45.54 N. Ans.
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Newtonian Fluid:

Most common fluids such as water, air, and gasoline are Newtonian under normal
conditions.

If the fluid is Newtonian, then

i,

T, o€ —

WL _:-f}:

It states that the shear stress on a fluid element layer is directly proportional to the
rate of shear strain or velocity gradient.

The constant of proportionality 1s called the co-efficient of viscosity.

el i
T=U0l—".
Md}?
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Non-Newtonian Fluid:

Fluids in which shear stress 1s not directly proportional to deformation rate are non-
Newtonian.

Non-Newtonian fluids commonly are classified as having time-independent or time-
dependent behavior.

Familiar example is toothpaste.

Toothpaste behaves as a "fluid" when squeezed from the tube. However, it does not
run out by itself when the cap is removed.

There is a threshold or yield stress below which toothpaste behaves as a solid.

Strictly speaking, our definition of a fluid is valid only for materials that have zero
yield stress.

This may be adequately represented for many engineering applications by the power
law model, which for one-dimensional flow becomes

[ du !
T_H. = k :]’? {211}

where the exponent, », is called the Aow behavior index and the coefficient, &, the consis-
tency index. This equation reduces to Newton's law of viscosity fornm = | with & = .
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* Newtonian Fluid:

Bingham
L plastic
_Pseudo plastic
Shear Stress |' g > Dilatant
13|
| / -~ ___—" Newtonian
| i - e I
| 4 '#____:.___"_". "
o >
dV,

Strain rate, —
dy

. dv, . :
« Newtonian: T = UL d—;: air, water, glycerin

V.
« Bingham Plastic: 1 = T, + 1 d_x - toothpaste
yield stress Y
(Fluid does not move or deform till there is a cntical stress)

i dv\ ™ .
» Dilatant: 1 =K (d—}“J ,n = 1: starch or sand suspension

or shear thickening fluid

(Fluid starts ‘thickening’ with increase in its apparent viscosity)
dv,
dy
(Fluid starts ‘thinning' with decrease in its apparent viscosity)

n
* Pseudo plastic: 1 =K ( ) ,n <= 1: paint or shear thinning fluid
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 Newtonian Fluid:

Shear _

stress Rheopectic
T

Common

fluids
Constant Thixotropic

strain rate
0 Time =—=

A further complication of nonnewtonian behavior 1s the transient effect shown n
Fig. 1.9b. Some fluids require a gradually increasing shear stress to maintain a
constant strain rate and are called rheopectic. The opposite case of a flmid that thins
out with time and requires decreasing stress is termed thixetropic. We neglect non-
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