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State of aggregation of the flowing stream
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Early and late mixing
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Figure 114 Examples of early and of late mixing of fiuid.
Ref:
Chemical Reaction Engineering by Levenspiel
Chapter 11.
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Different type of tracer input
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Figure 11.7 Various ways of studying the flow pattern in vessels.
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Pulse experiment
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Figure 11.8 The useful information obtainable from the pulse
trace experiment.
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Step experiment

A
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Cstep Output
— reading
vm? |
[ Output | New fluid
: y reading |
U MY/s == > 0 1 > ¢
t

Figure 11.11 Information obtainable from a step tracer experiment.




F Curve
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Figure 11.12 Transforming an experimental C . curve to an F curve.
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E vs F curve
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Figure 11.13 Relationship between the E and F
curves.
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Mixed flow Arbitrary flow

Plug flow

0.15
A
0.1
Ql-: Area
= ,
Width 0.05
A
1.5+
A
- 1.0
@) Area =
I
= | Width = 0.5
> 0 0 — 6
1 T 0.5 il 1.5

Figure 11.14 Properties of the E and F curves for various flows. Curves are drawn in terms of
ordinary and dimensionless time units. Relationship between curves is given by Egs. 7 and 8.
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The concentration readings in Table E11.1 represent a continuous response to
a pulse input into a closed vessel which is to be used as a chemical reactor.
Calculate the mean residence time of fluid in the vessel ¢, and tabulate and plot
the exit age distribution E.

Table E11.1

Tracer Output Concentration, C,,,
Time ¢, min gm/liter fluid

0

5
10
15
20
25
30
35

S = NAE UL Wo
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A large tank (860 liters) is used as a gas-liquid contactor. Gas bubbles up through the vessel and out the
top, liquid flows in at one part and out the other at j liters/s. To get an idea of the flow pattern of liquid
in this tank a pulse of tracer (M = 150 gm) is injected at the liquid inlet and measured at the outlet, as
shown in Fig. E11.2a.

(a) Is this a properly done experiment?

(b) If so, find the liquid fraction in the vessel.

(c) Determine the E curve for the liquid.

(d) Qualitatively what do you think is happening in the vessel?

Area, A, = 0.375

0.75—————-
E & A
= 1
Area = —
E] rea 2
S A,
Area = —
[IQ rea 64
.. etc,
< 4 6 8
t, min
> Figure E11.2a
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The Convolution Integral
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Figure 11.15 Sketch showing derivation of the convolution integral.

(trac&r leavin g) _ (all the tracer entering ' seconds earlier than t?)

in rectangle B and staying for time ¢’ in the vessel
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The Convolution Integral
Coult) = || Gyt = 1))

Coult) = || Gyt VE(t = 1')dr

Cout = E * Cin Or Cvout — C’in * E
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Conversion in nonideal flow reactors

concentration of \

intervals

. .. fraction of exit
mean concentration reactant remaining oy
. stream which is
of reactant = > in an element of
: ) of age between ¢
in exit stream all elements age between ¢
of exit stream and r + dt
and ¢t + dt
In symbols this becomes
C w(C
CA() at exit 0 CAQ for an element or little
batch of fluid of age ¢
or in terms of conversions
X AT f 0 (XA)element -E dt (13)
or in a form suitable for numerical integration
C C
CA() all age CA() element
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From Chapter 3 on batch reactors we have

: , C
¢ for first-order reactions (—A) = gk
CA(] element
. C 1
* for second-order reactions (——-——’3‘-) =
CA() element 1+ kCA()lL
i Ca ~11,4]1/1-
* for an nth-order reaction — =[1+ (n — 1)C%tkt] 1
CA() element
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Dispersion model (small deviation from PFR)

The pulse starts spreading and this can be
caused by many things: velocity profile,
turbulent mixing, molecular diffusion, etc.

A pulse of tracer
attimet=90

Symmetrical and gaussian
at any instant

u, m/s < L o
Pulse input Measurement
(8-input) point

Figure 13.1 The spreading of tracer according to the dispersion model.

Diffusion-like process superimposed on plug flow. This 1s known as
dispersion or longitudinal dispersion to distinguish it from molecular
diffusion. The dispersion coefficient D (m2/s) represents this
spreading process. Thus, large D means rapid spreading of the tracer
curve, small D means slow spreading and D = 0 means no spreading,
hence plug flow
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Fluctuations due to different flow
Flat velocity/ velocities and due to moleculey

profile and turbulent diffusion
{ /
> >
o
—
: o
Plug flow Dispersed plug flow

Figure 13.3 Representation of the dispersion (dispersed plug
flow) model.

For molecular diffusion in the x-direction the governing differential
equation 1s given by Fick's law:

oC 0%C

ot 0x 2

oC _
ot 0x 2
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9C _ (D) #C _iC

00 \uL) 0z2 9z

In dimensionless form where z = (ut + x)/L and 6 = t/t = tu/L, the basic
differential equation representing this dispersion model becomes

;% -0 negligible dispersion, hence plug flow
D : . .
= 00 large dispersion, hence mixed flow




Dispersion model for small extents of Dispersion,(D/uL<0.01)
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Figure 13.4 Relationship between D/uL and the dimensionless E, curve for small
extents of dispersion, Eq. 7.
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Dispersion model for small extents of Dispersion,(D/uL<0.01)
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Figure 13.5 Illustration of additivity of means and of variances of the E curves of vessels
a, b,. .., n.

‘For a series of vessels the f and o2 of the individual vessels are additive, thus,
referring to Fig. 13.5 we have

Eoverall=2a+ib+°°'=&+£+'"=(£) +(£) 4. .. 9)
v v Uujs, Uj/p
and
DL DL
O%veraﬂ:O'g'i‘O%‘}" . ’=2(;‘;)a+2(7)b+' .. (10)




Dispersion model for small extents of Dispersion,(D/uL<0.01)

measuring leads, etc.

the E curve of the vessel.
Ao?= by~ %

A\ Any input

F\ Ccurve

R,

Vessel > - Same
eS¢ 2 vessel

* The additivity of times 1s expected, but the additivity of variance 1s not
generally expected. This is a useful property since it allows us to subtract
for the distortion of the measured curve caused by input lines, long

* This additivity property of variances also allows us to treat any one-shot
tracer input, no matter what its shape, and to extract from it the variance of

(11)

Figure 13.6 Increase in variance is the same in both cases, or o2
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Dispersion model for small extents of Dispersion,(D/uL<0.01)

Aris (1959) has shown, for small extents of dispersion, that

2 el
O out Oin Ao?

D
= - _- = 2 -0 —/—
(tnut o in)2 (‘ﬁr)2 AG-B Z(H'L)

Thus, no matter what the shape of the input curve, the D/ul value for
the vessel can be found.
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Dispersion model for large deviation from PFR flow,(D/uL>0.01)

Closed vessel Open vessel

Plug flow, Same D
/ D=0 \ /Y everywhere\

/_____,J_/)ﬁ’\_j‘___,.\ ~ F Iy ,-\,17‘\,_1
| A Y 3 ~Z Ly T
I AN = LN INT R
Change in flow pattern Undisturbed flow at
at boundaries boundaries

Figure 13.7 Various boundary conditions used with the dispersion model.




Dispersion model for large deviation from PFR flow,(D/uL>0.01)
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Figure 13.8 Tracer response curves for closed vessels and large deviations

from plug flow.
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Dispersion model for large deviation from PFR flow,(D/uL>0.01)

2 H T H N \ 1 H {
D .'.
= =0.01¢: “ !
L N ' H
. : For smaller D/uL than
this use the "small N
deviation from plug
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1.5 and eq. 1.
- 0.02 .k §
Eg o0 i :: "._Eq. 14 1
1 o oy

from plug flow.

Figure 13.10 Tracer response curves for “open’ vessels having large deviations
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Dispersion model for small deviation from PFR flow,(D/uL<0.01)
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Figure 13.11 Step response curves for small deviations from plug flow.



Dispersion model for small deviation from PFR flow,(D/uL<0.01)
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Figure 13.12 Probability plot of a step response signal. From this we
find D/ulL directly.




Dispersion model for large deviation from PFR flow,(D/ulL>0.01)

1 i

0.5

Figure 13.13 Step response curves for large deviations from plug flow in
closed vessels.




CHEMICAL REACTION AND DISPERSION

A

\4

Our discussion has led to the measure of dispersion by a dimensionless group
D/ul. Let us now see how this affects conversion 1n reactors.

Consider a steady-flow chemical reactor of length L through which fluid is
flowing at a constant velocity u, and in which material is mixing axially with a
dispersion coefficient D. Let an nth-order reaction be occurring.

A — products, —r, = kC%

By referring to an elementary section of reactor as shown in Fig. 13.18, the
basic material balance for any reaction component

input = output + disappearance by reaction + accumulation (4.1)
becomes for component A, at steady state,

disappearance

. + accumulation = 0
by reaction

17)

(Out—in)pyy o + (OUL—IN) 40 gispersion T

The individual terms (in moles A/time) are as follows:



CHEMICAL REACTION AND DISPERSION

entering by bulk flow = (w)( ﬂmﬁ:’ )(cmss-ﬁectmnm)
volume / \ velocity area

= CpuS, [mol/s]
leaving by bulk flow = C ji4uS

A
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dN dc,
entering by axial dispersion = —— = — | DS
&0y P dt dl ) in
Cho Ca,1 Ca1+a1 Chas
i |
E=| 0 —>| Al ‘<— / =| L
A entering by A leaving by
bulk flow bulk flow
A entering A leaving by
- - - —
by dispersion dispersion

/

Cross-sectional —/
area=S

\— Accumulation of A

Disappearance (= 0, for steady state)
of A

Figure 13.18 Variables for a closed vessel in
which reaction and dispersion are occurring.



CHEMICAL REACTION AND DISPERSION
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dC
leaving by axial dispersion = ANy _ _ DS —*"‘)
dt dl /s

disappearance by reaction = (—r,) V = (—r4)S Al, [mol/s]

Note that the difference between this material balance and that for the ideal
plug flow reactors of Chapter 5 is the inclusion of the two dispersion terms,
because material enters and leaves the differential section not only by bulk flow
but by dispersion as well. Entering all these terms into Eq. 17 and dividing by
S Al gives

(7). (@),
(Casrar — Cag) dl [ isa dl ]
! Al D Al

+(=ry) =0

Now the basic limiting process of calculus states that for any quantity Q which
is a smooth continuous function of 1

. Qz_Ql_- ﬁQ_,dQ
R v o VT




CHEMICAL REACTION AND DISPERSION
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So taking limits as Al — 0 we obtain

iC, . dC,
u=a ~ P

+kCh =0 (18a)

In dimensionless form where z = I/L and =t = L/u = V/uv, this expression be-
comes

D d’C, dC,
ul dz? dz

—ktCL =10 (18b)

or in terms of fractional conversion

D d’°X, X,
ul dz* dz

+hkrC (1= X,)"=0 (18¢)

This expression shows that the fractional conversion of reactant A in its passage
through the reactor is governed by three dimensionless groups: a reaction rate
group kt C4%,', the dispersion group D/uL, and the reaction order n.
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CHEMICAL REACTION AND DISPERSION

30 ]
— = o (mixed flow)
ul
First order
|
16 kr =50
10 :\ \
Ny
4 20
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T 0.25 e ol """!-..., é 2
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Figure 13.19 Comparison of real and plug flow reactors for the first-order
A — products, assuming negligible expansion; from Levenspiel and Bischoff
(1959, 1961).
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THE TANKS-IN-SERIES MODEL

n

Pulse in Exit tracer curve,
the RTD, the E function

2

/ t; = mean time/tanks
C

U e—1{

t= Nt; = mean time for all N tanks

Figure 14.1 The tanks-in-series model.

(rate of dlsappearance) (mput) _ (output)

of tracer rate rate

dC mol tracer
V1 L — O - UC1

dt S

c, dC 1 ¢
J 121 = — | dt

¢ C TRAL

Cl — ot

Co LHE =e'h
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THE TANKS-IN-SERIES MODEL
dC C. _ur ‘mol tracer|
V2——-—2- =p-2e t/tl— UC2
dt [ S
_ ¢
_ t -
LE,=—e¢t [-] N=2
2
R — ! v N —tN/t + — Nt 2 — EZ
tE—(?) (N—l)'e t = Nt o=
_ \V 1 _ 1 _
t.E = — ~t/t Py S 2
; (tl) (N—l)'e t; N O Nt:
_ oN-1

E . = E = ! — . 2, =

0i tl (N _ 1)' € O N

(NON-T  _ 1
E = . E = Néo 2 —
0 (N 1) N(N — 1)' e T N
0, = ?i = dimensionless time based on the mean residence time per tank f;
6= _1 = dimensionless time based on the mean residence time in all N tanks, f.




THE TANKS-IN-SERIES MODEL
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THE TANKS-IN-SERIES MODEL
0 ( 1 }N 1
NN=-1)N-1 _
Enax —————————1, = Eg max = N_1)! g N-1
Area =1
1.5} =N error<2%for N> 5
gl = 1 vem(N-1)
6= N
Epfczm=z==2 <= E; i1t =0.55 Eg 1, for ¥ =4
E; 1 =0.61 Eg may for N = 10
Eq. 3d
0.5+
oV 05 1 1.5 g
H
Figure 14.3 Properties of the RTD curve for the tanks-in-series model.
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