Birla Institute of Technology, Mesra
Dr. Randhir Singh
Assistant Professor, Mathematics
Ph.D (IITKGP)
Contact Address
Permanent Address Pathankot, Punjab
Local Address D1/37, B.I.T. MESRA, Ranchi
Phone (Office) 0
Phone Residence 0
Email Id randhirsingh@bitmesra.ac.in
Joined Institute on : 2-Mar-2015

  Work Experience
 
Teaching : 11 Years

Research : 15 Years

Individual: 15 Years

  Professional Background

Employment History 

  1. Assistant Professor (L-12), BIT Mesra (Since September, 2024)
  2. Assistant Professor (L-11), BIT Mesra (March, 2019 to September 2024)
  3. Assistant Professor (L-10), BIT Mesra (March 2015 to March 2019)
  4. Assistant Professor,  NIST Berhampur (August 2014--December 2014) 

Institute Level Activity @ BIT

  1. Assistant Warden of Hostel-13 (November 2016-March 2023)]
  2. Active involvement in Bitotsav as security committee (Since 2017)
  3. Active involvement in convocation as seating arrangement and others (Since 2017)
  4. Active involvement in anti-ragging committee (November 2016-March 2023)]
  5. Active involvement in the Annual Athletic Meet (Since 2017)

Departmental Activity @ BIT

  1. Timetable and Course allotment [Co-Coordinator from June 2017- June 2019]
  2. Microsoft Team Related work: [Coordinator since June 2020]
  3. Departmental Website: [Coordinator since June 2016]
  4. Departmental level Training and placement: [Coordinator since June 2023]
  Research Areas
 

Many boundary value problems in physical science and applied mathematics involve ordinary differential equations subject to two-point boundary conditions. In general, it is very difficult to obtain the exact solution to nonlinear boundary value problems. More difficulties arise when we deal with nonlinear singular boundary value problems. My research interests are in the numerical study of nonlinear singular differential equations. My main interest is studying the numerical and analytical solutions of nonlinear singular differential equations. The solutions to these problems are not trivial because of the singularity.

  • Nonlinear Local/ Nonlocal Boundary Value Problems
  • Numerical Methods for Singular Boundary Value Problems
  • Wavelet Methods
  • Compact Finite Difference Methods
  Award and Honours
 

 

  • Stanford University/Elsevier’s list of the Top 2% Most Influential Scientists Worldwide Rankings (WR) for 2020,  2022, and 2023.
  • Qualified Gate-2010, AIR-64 
  • Qualified Gate-2009, AIR-62 
  • Qualified CSIR-UGC National Eligibility Test (JRF-June-2009) (Mathematics)
  • Qualified CSIR-UGC National Eligibility Test (JRF-DEC-2008) (Mathematics)
  • 6th position in Ph.D Entrance exam at IIT Bombay  in 2009
  • 2nd position in PH.D Entrance exam at IIT Kanpur in 2009
  • 1st Position in PH.D Entrance exam at IIT Kharagpur 2009
  Publications
 

 [A] Journal Publications (SCI= 55 and Scopus= 09;              Single Author=07)

  1.  Nirupam Sahoo, Randhir Singh: A stable higher-order numerical method for solving asystem of third-order singular Emden-Fowler type equations, Journal of Applied Mathematics and Computing, (2024) https://doi.org/10.1007/s12190-024-02233-x   [SCI, IF. 2.4]
  2. N Yadav, Z Ansari, R Singh, A Das, S Singh, S Heinrich, M Singh: Explicit and approximate solutions for a classical hyperbolic fragmentation equation using a hybrid projected differential transform method, Physics of Fluids,  (2024)   [SCI, IF. 4.1]
  3. N Sahoo, R Singh, H Ramos : An innovative fourth-order numerical scheme with error analysis for Lane-Emden-Fowler type systems,  Numerical Algorithms, 1-29 (2024)  https://doi.org/10.1007/s11075-024-01882-0   [SCI, IF. 1.7]
  4. R Singh, V Guleria, H Ramos, M Singh:  Highly efficient optimal decomposition approach and its mathematical analysis for solving fourth-order Lane–Emden–Fowler equations, Journal of Computational and Applied Mathematics,  Vol. 456, 116238  (2025)  [SCI, IF. 2.1]
  5. Nikita Saha,Randhir Singh: Numerical and mathematical analysis of nonlocal singular Emden–Fowler type BVPs by improved Taylor-wavelet method, Computational and Applied Mathematics,  Vol.43 (5), 280, (2024).  [SCI, IF. 2.5]
  6. S. Yadav, A. Das, S. Singh, S. Tomar, Randhir Singh, M. Singh: Coupled approach and its convergence analysis for aggregation and breakage models: Study of extended temporal behaviour, Powder Technology, Vol. 439 PP. 119714 (2024).   [SCI, IF. 5.2]
  7. J. Shahni, Randhir Singh: A novel collocation approach using Chebyshev wavelets for solving fourth-order Emden-Fowler type equations,  Journal of Computational Science, Vol. 77, PP. 102243, (2024).  [SCI, IF. 3.817]
  8.  Nisha Yadav, Mehakpreet Singh, Sukhjit Singh, Randhir Singh, Jitendra Kumar, Stefan Heinrich: An efficient approach to obtain analytical solution of nonlinear particle aggregation equation for longer time domains, Advanced Powder Technology, Vol. 35, Issue 3, PP. 104370,  (2024). [SCI, IF. 5.2]
  9. J. Shahni, Randhir Singh: Numerical solution and error analysis of the Thomas–Fermi type equations with integral boundary conditions by the modified collocation techniques, Journal of Computational and Applied Mathematics, Vol. 441, PP. 115701, (2024). [SCI, IF. 2.4]
  10. Nikita Saha,Randhir Singh: An efficient new numerical algorithm for solving Emden–Fowler pantograph differential equation using Laguerre polynomials, Journal of Computational Science, Vol. 72, PP. 102108, (2023).  [SCI, IF. 3.817]
  11. N Yadav, M Singh, S Singh, Randhir Singh, J Kumar: A note on homotopy perturbation approach for nonlinear coagulation equation to improve series solutions for longer times, Chaos, Solitons & Fractals,  Vol. 173, 113628, (2023)[SCI, IF. 9.922]
  12. Nirupam  Sahoo, Randhir Singh: A new efficient semi-numerical method with a convergence control parameter for Lane–Emden–Fowler boundary value problem, Journal of Computational Science, Vol. 70, PP. 102041, (2023).  [SCI, IF. 3.817]
  13. P Pathak, AK Barnwal, N Sriwastava, Randhir Singh, M Singh, An Algorithm Based on Homotopy Perturbation Theory and its Mathematical Analysis for Singular Nonlinear System of Boundary Value Problems, Mathematical Methods in the Applied Sciences, (2023)  Accepted, [SCI, IF. 3.601]
  14. J Shahni, Randhir Singh, C Cattani:  An efficient numerical approach for solving three-point Lane-Emden-Fowler boundary value problem, Mathematics and Computers in Simulation, Vol. 210, PP. 1-16, (2023). [SCI, IF. 3.601]
  15. J Shahni, Randhir Singh, C Cattani: Bernoulli collocation method for the third-order Lane-Emden-Fowler boundary value problem, Applied Numerical Mathematics, Vol. 186, PP. 100-113,  (2023).  [SCI, IF. 2.994]
  16. Randhir Singh and Mehakpreet Singh: An optimal decomposition method for analytical and numerical solution of third-order Emden–Fowler type equations, Journal of Computational Science, Vol. 63, PP. 101790, (2022).  [SCI, IF. 3.817]
  17. G. Kaur, Randhir Singh, H.  Briesen: Approximate solutions of aggregation and breakage population balance equations, Journal of Mathematical Analysis and Applications, 512(2), pp. 126166, (2022). [SCI, IF. 1.417]
  18. Randhir Singh, A. M. Wazwaz:  An Efficient Method for Solving the Generalized Thomas–Fermi and Lane–Emden–Fowler Type Equations with Nonlocal Integral Type Boundary Conditions, International Journal of Applied and Computational Mathematics, 8, Article number: 68 (2022).   [Scopus
  19.  Randhir Singh, A. M. Wazwaz:  Analytical approximations of three-point generalized Thomas-Fermi and Lane-Emden-Fowle type equations, The European Physical Journal Plus137, Article number: 63 (2022).  [SCI, IF. 3.758]
  20. J. Shahni, Randhir Singh: Numerical simulation of Emden-Fowler integral equation with Green’s function type kernel by Gegenbauer-wavelet, Taylor-wavelet and Laguerre-wavelet collocation methods, Mathematics and Computers in Simulation, (2021),  Accepted  [SCI, IF. 3.601]
  21. J. Shahni, Randhir Singh: A fast numerical algorithm based on Chebyshev wavelet technique for solving Thomas-Fermi type equation, Engineering with Computers, (2021) Accepted. [SCI, IF. 8.083]
  22. J. Shahni, Randhir Singh: Bernstein and Gegenbauer-wavelet collocation methods for Bratu-like equations arising in electrospinning process, Journal of Mathematical Chemistry59, PP. 2327–2343 (2021). [SCI, IF. 2.413]
  23. Randhir Singh, G. Singh, M. Singh: Numerical algorithm for solution of the system of Emden-Fowler type equations, International Journal of Applied and Computational Mathematics,  7, 136 (2021). [Scopus]
  24. J. Shahni, Randhir Singh: Numerical solution of system of Emden-Fowler type equations by Bernstein collocation method, Journal of Mathematical Chemistry, 59, 1117—1138 (2021) .  [SCI, IF. 2.413]
  25. J. Shahni, Randhir Singh: Laguerre wavelet method for solving Thomas--Fermi type equations, Engineering with Computers, (2021) Accepted. [SCI, IF. 8.083]
  26. Randhir Singh: An efficient technique based on the HAM with Green's function for a class of nonlocal elliptic boundary value problems, Computational methods for differential equations, (2021), Accepted. [ESCI, Scopus] 
  27.  J. Shahni, Randhir Singh: Numerical results of Emden-Fowler boundary value problems with derivative dependence using the Bernstein collocation method, Engineering with Computers, (2020) Accepted. [SCI, IF. 8.083]
  28. G. Kaur, Randhir Singh, M. Singh, J. Kumar, T. Matsoukas: Reply to Comment on Analytical approach for solving population balances: a homotopy perturbation method'' Journal of Physics A: Mathematical and Theoretical, 53 (2020) 388002 (3pp). [SCI, IF.  2.331]
  29. M. Singh,  Randhir Singh, S. Singh,  G. Walker, T Matsoukas:  Discrete finite volume approach for multidimensional agglomeration population balance equation on unstructured grid, Powder Technology, 376, (2020) 229-240.  [SCI, IF.  5.64]
  30.  J. Shahni, Randhir Singh: An efficient numerical technique for Lane–Emden–Fowler boundary value problems: Bernstein collocation method, The European Physical Journal Plus, 135, (2020) 475.   [SCI, IF. 3.758]
  31. Randhir Singh: An iterative technique for solving a class of local and nonlocal elliptic boundary value problems, Journal of Mathematical Chemistry, (2020), Accepted.  [SCI, IF. 2.413]
  32. Randhir Singh: Solving Coupled Lane-Emden Equations by Green’s Function and Decomposition Technique, International Journal of Applied and Computational Mathematics, 6 (1), (2020), 80.  [Scopus]  

  33. Randhir Singh, V. Guleria, M. Singh: Haar wavelet quasilinearization method for numerical solution of Emden-Fowler type equations, Mathematics and Computers in Simulation, 174, (2020), 123--133.  [SCI, IF. 3.601]

  34. M. Singh, Randhir Singh, S. Singh, G. Singh, G. Walker:  Finite volume approximation of multidimensional aggregation population balance equation on triangular grid, Mathematics and Computers in Simulation, 172, 191-212, (2020).   [SCI, IF. 3.601]

  35. Randhir Singh: Analytic solution of singular Emden-Fowler type equations by Green's function and homotopy analysis method, The European Physical Journal Plus, 134 (2019), 583.  [SCI, IF. 3.758]

  36. Randhir Singh, J.  Shahni, H. Garg, A. Garg: Haar wavelet collocation approach for Lane-Emden equations arising in mathematical physics and astrophysics, The European Physical Journal Plus, 134, 548,(2019).    [SCI, IF. 3.758]

  37. G. Kaur, Randhir Singh, M. Singh, J. Kumar, T. Matsoukas: Analytical approach for solving population balances: a homotopy perturbation method, Journal of Physics A: Mathematical and Theoretical,  52, (2019).      [SCI, IF.  2.331]

  38. M. Singh, H. Y. Ismail, Randhir Singh, A.B. Albadarin, G. Walker: Finite volume approximation of nonlinear agglomeration population balance equation on triangular grid, Journal of Aerosol Science, 147, 105430, (2019).   [SCI, IF.  2.331]

  39. Randhir Singh: A Modified Homotopy Perturbation Method for Nonlinear Singular Lane–Emden Equations Arising in Various Physical Models, International Journal of Applied and Computational Mathematics,   5(3),  64, (2019)  .     [Scopus] 

  40. Randhir Singh, A. M. Wazwaz: An Efficient Algorithm for Solving Coupled Lane-Emden Boundary Value Problems in Catalytic Diffusion Reactions: The Homotopy Analysis Method, MATCH Communications in Mathematical and in Computer Chemistry, 81(3), (2019),  785--800.   [SCI, IF.  2.633]

  41. Randhir Singh, H. Garg, V. Guleria: Haar wavelet collocation method for Lane-Emden equations with Dirichlet, Neumann and Neumann-Robin boundary conditions, Journal of Computational and Applied Mathematics, 346, (2019) 151-160.   [SCI, IF.  2.872]

  42. Randhir Singh, A.M. Wazwaz: Steady-State Concentrations of Carbon Dioxide Absorbed into Phenyl Glycidyl Ether: An Optimal Homotopy Analysis Method, MATCH Communications in Mathematical and in Computer Chemistry, 81(3), (2019), 800--812.    [SCI, IF.  2.633]

  43. Randhir Singh: Analytical approach for computation of exact and analytic approximate solutions to the system of Lane-Emden-Fowler types equations arising in astrophysics, The European Physical Journal Plus, 133(8), (2018) 320.     [SCI, IF. 3.758]

  44. Randhir Singh: Optimal homotopy analysis method for the non-isothermal reaction-diffusion model equations in a spherical catalyst, Journal of Mathematical Chemistry,  56(9), 2579–2590, (2018).    [SCI, IF. 2.413]

  45.  Randhir Singh, A.M. Wazwaz: Optimal Homotopy Analysis Method for Oxygen Diffusion in a Spherical Cell with Nonlinear Oxygen Uptake Kinetics, MATCH Communications in Mathematical and in Computer Chemistry, 80(2), 369-382, (2018).     [SCI, IF.  2.633]

  46.  Randhir Singh, DK Gupta, R. Singh,  M. Singh, E Martinez: Convergence of an Iteration of Fifth-Order Using Weaker Conditions on First Order Fréchet Derivative in Banach Spaces, International Journal of Computational Methods, 15(06), 1850048, (2018).  [SCI, IF.   1.734]

  47. Randhir Singh, Nilima Das, J. Kumar: The optimal modified variational iteration method for the Lane-Emden equations with Neumann and Robin boundary conditions, The European Physical Journal Plus, 132(6), 551,(2017).     [SCI, IF. 3.758]

  48. Randhir Singh, A.M. Wazwaz: Numerical solutions of fourth-order Volterra integro-differential equations by the Green's function and decomposition method, Mathematical Sciences, 10(4), (2016) 159--166.      [SCI, IF.  2.070]

  49. Randhir Singh, S. Singh A.M. Wazwaz: A modified homotopy perturbation method for singular time-dependent Emden-Fowler equations with boundary conditions, Journal of Mathematical Chemistry, 54(2), (2016) 918--931.    [SCI, IF. 2.413]

  50. Randhir Singh, A.M.Wazwaz: Numerical solution of the time-dependent Emden--Fowler equations with boundary conditions using modified decomposition method, Applied Mathematics and Information Sciences, 10( 2), 403—408, (2016).   [Scopus]

  51. Randhir Singh, A.M. Wazwaz, J. Kumar: An efficient semi-numerical technique for solving nonlinear singular boundary value problems arising in various physical models, International Journal of Computer Mathematics, 93(8), 1330—1346, (2016).    [SCI, IF.  1.750]

  52. Nilima Das, Randhir Singh, A.M. Wazwaz, J. Kumar: An algorithm based on the variational iteration technique for the Bratu-type and the Lane-Emden problems, Journal of Mathematical Chemistry, 54(2), 527—551, (2016).  [SCI, IF. 2.413]

  53. Randhir Singh, A.M. Wazwaz: An efficient approach for solving second-order nonlinear differential equation with Neumann boundary conditions, Journal of Mathematical Chemistry, 53( 2), 767-790, (2015). [SCI, IF. 2.413]  

  54. Randhir Singh, G. Nelakanti, J. Kumar, Approximate solution of two-point boundary value problems using Adomian decomposition method with Green's function, Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 85(2), 51—61, (2015).   [SCI, IF.  1.291]

  55. Randhir Singh, J. Saha, J. Kumar, Adomian decomposition method for solving fragmentation and aggregation population balance equations, Journal of Applied Mathematics and Computing, 48(1-2), 265-292, (2015).  [SCI, IF.  2.196]

  56. Randhir Singh, J. Kumar, An efficient numerical technique for the solution of nonlinear singular boundary value problems, Computer Physics Communications,185(4), 1282-1289, (2014).  [SCI, IF.  4.717]

  57. R. Singh, J. Kumar, G. Nelakanti: A new efficient technique for solving two-point boundary value problems for integro-differential equations, Journal of Mathematical Chemistry, 52(8), 2030—2051,(2014).   [SCI, IF. 2.413]

  58. Randhir Singh, J. Kumar, G. Nelakanti: Approximate series solution of fourth-order boundary value problems using decomposition method with Green's function, Journal of Mathematical Chemistry,52( 4), 1099—1118,(2014).   [SCI, IF. 2.413]

  59. Randhir Singh, J. Kumar, G. Nelakanti, Approximate series solution of singular boundary value problems with derivative dependence using Green's function technique, Computational and Applied Mathematics, 33(2), (2014), 451--467.   [SCI, IF. 2.998]

  60. Randhir Singh, J. Kumar: The Adomian decomposition method with Green's function for solving nonlinear singular boundary value problems, Journal of Applied Mathematics and Computing, 44(1-2), 397—416,(2014).     [SCI, IF.  2.196]

  61. Randhir Singh, J. Kumar, G. Nelakanti: Numerical solution of singular boundary value problems using Green's function and improved decomposition method, Journal of Applied Mathematics and Computing, 43(1-2), 409—425, (2013).    [SCI, IF.  2.196]

  62. Randhir Singh, J. Kumar, G. Nelakanti: Approximate Series Solution of Nonlinear Singular Boundary Value Problems Arising in Physiology, The Scientific World Journal,  Volume 2014 | Article ID 945872, (2014). [Scopus]

  63. Randhir Singh, G. Nelakanti, J. Kumar:   Approximate Solution of Urysohn Integral Equations Using the Adomian Decomposition Method, The Scientific World Journal,     Volume 2014 | Article ID 150483, (2014). [Scopus]

  64. Randhir Singh, J. Kumar: Computation of eigenvalues of singular Sturm-Liouville problems using modified Adomian decomposition method, International Journal of Nonlinear Science, 15(3), 247—258, (2013).  [Scopus]

 

[B] Conferences/ Workshops Attended/ Participated

  1. Workshop on "Numerical Solutions of Differential Equations"  held from 16th -20th September 2020 at the Department of mathematics, National Institute of Technology Jalandhar (India)
  2. Workshop on "Multi-Scale Computational Fluid Dynamics: Fundamentals and Applications"  held on September 21-25, 2020, at the Department of Mechanical Engineering, National Institute of Technology Jalandhar (India)
  3. UGC- Sponsored 93rd Orientation Programme held from 20-11-2018 to 17-12-2018 at UGC-HRD Centre, Ranchi University, Ranchi, India
  4. Workshop on Mathematical Modeling and Research Methodology  held during August 08-12, 2018, at Dept. of  Mathematics,  HBTU, Kanpur, India
  5. Workshop on High-Performance Computing  (HPC-2016) held during May 2-6, 2016 at Dept. of Computer Science and Engg., BIT Mesra, Ranchi, India
  6. Workshop on Wipro Mission10x Engineering Faculty Workshop held during December 4-6, 2014 at NIST, Berhampur, Odisha, India
  7. Approximate series solution of singular boundary value problems using decomposition method with Green's function, 5th   Research Scholars' Day-2014, February 21-22, 2014 held at IIT Kharagpur, India
  8. An efficient numerical technique for the solution of nonlinear singular boundary value problems, International Conference on Mathematical Modeling and Optimization Techniques in Science and Engineering (MMOTSE -2013), July 26-27, 2013 held at Applied Science Department, SSBT's COET, Bambhori, Jalgaon, India
  9.  Numerical solution of singular boundary value problems using Green's function and improved decomposition method, 4th Research Scholars' Day-2013, February 18-19, 2013 held at IIT Kharagpur, India
  10. Workshop on "Recent Development in Mathematical and Physical Sciences (WRDMPS-2012)" held on January 01, 2012, at Calcutta Mathematical Society, Kolkata, India

 

Important Links: 

  Member of Professional Bodies
 
  1. International Association of Engineers (IAENG) (Member No: 132502)
  Current Sponsored Projects
 
  1. Construction of compact difference methods for real world singular differential equations funded by (National Project Implementation Unit (NPIU)), Amount Rs 545000/ (18/06/ 2019)
  Text and Reference Books
 
  Member, Editorial Board
 

       Working as a reviewer of Mathematical Review, the largest mathematical research database, the American Mathematical Society, USA.

Reviewer of the following International Journals

  1. Applied Mathematics and Computation
  2. Computers and Mathematics with Applications
  3. Applied Mathematics Letters
  4. Central European Journal of Mathematics
  5. Applied Mathematical Modelling
  6. International Journal of Modeling, Simulation, and Scientific Computing
  7. Mathematics and Computers in Simulation
  8. Mathematical Methods in the Applied Sciences
  9. Journal of Applied Mathematics and Computing
  10. Journal of Mathematical Chemistry
  11. International Journal of Applied and Computational Mathematics
  12.  Applied Numerical Mathematics
  13. Computational and Applied Mathematics