International Journals (SCI/E )
30. Sharma R., Mishra D.P., Brar L.S., Analysis and optimization of a fin and tube heat exchanger with the novel arrangement of curved winglets using CFD and artificial neural network, Int. Com. in Heat and Mass Transfer, 157 (2024): 1–16. (https://doi.org/10.1016/j.icheatmasstransfer.2024.107804).
29. Kumar D., Jha K., Kumar V., Brar L.S., Performance evaluation of cyclone separators with elliptical cross-section using large-eddy simulation, Powder Technology, 438 (2024): 1–15. (https://doi.org/10.1016/j.powtec.2024.119660)
28. Brar L.S., Rahmani F., The impact of operating temperatures on the fluctuating flow field and precessing vortex core in cyclone separator using large-eddy simulations, Physics of Fluids, 36 (2024): 1–21. (https://doi.org/10.1063/5.0195382).
27. Pandey S., Wasilewski M., Mukhopadhyay A., Prakash Om, Ahmad A., Brar L.S., Multi-objective optimization of cyclone separators based on the geometrical parameters for performance enhancement, Applied Sciences, 14(5) (2024): 1–24. (https://doi.org/10.3390/app14052034)
26. Kumar L., Om Prakash, Ahmad A., Das B., Brar L.S., Performance Evaluation and Development of FE Modelling for Passive Greenhouse Solar Dryer for Potato Chips Drying, Environmental Progress and Sustainable Energy, e14373 (2024): 1–13. (https://doi.org/10.1002/ep.14373)
25. Brar L.S., Rahmani F., Wasilewski M., Performance analysis of multi-inlet cyclone separators considering different shapes and locations of the inlet ducts, Advanced Powder Technology, 35(2) (2024): 1–17. (https://doi.org/10.1016/j.apt.2024.104325)
24. Agrawal R., Prakash Om, Brar L.S., Mukhopadhyay A., A systematic investigation of lead free electroless Ni-B-W coating properties using Taguchi’s methodology, Coatings, 13 (2023): 1585. (https://doi.org/10.3390/coatings13091585)
23. Wasilewski M., Brar L.S., Performance analysis of the cyclone separator with a novel clean air inlet installed on the roof surface, Powder Technology, 428 (2023): 118849. (https://doi.org/10.1016/j.powtec.2023.118849)
22. Sharma R., Mishra D.P., Wasilewski M., Brar L.S., Application of Response Surface Methodology and Artificial Neural Network to Optimize the Curved Trapezoidal Winglet Geometry for Enhancing the Performance of a Fin-and-Tube Heat Exchanger, Energies, 16(10) (2023): 4209. (https://doi.org/10.3390/en16104209)
21. Pandey S., Brar L.S., Performance analysis of cyclone separators with bulged conical segment using large-eddy simulation, Powder Technology, 425 (2023): 118584. (https://doi.org/10.1016/j.powtec.2023.118584)
20. Pandey S., Brar L.S., The impact of increasing the length of the conical segment on the cyclone performance using large-eddy simulation, Symmetry, 15(3) (2023): 1–20. (https://doi.org/10.3390/sym15030682)
19. Brar L.S., Wasilewski M., Investigating the effects of temperature on the performance of novel cyclone separators using large-eddy simulation, Powder Technology, 416 (2023): 1–21. (https://doi.org/10.1016/j.powtec.2022.118213)
18. Sharma R., Mishra D.P., Sarangi S.K., Brar L.S., Performance evaluation of a fin and tube heat exchanger based on different shapes of the winglets, J. of Th. Sc. & Eng. Appl., 15(5) (2023): 050905. (https://doi.org/10.1115/1.4056384)
17. Pandey S., Brar L.S., On the performance of cyclone separators with different shapes of the conical section using CFD, Powder Technology, 407 (2022): 1–17. (https://doi.org/10.1016/j.powtec.2022.117629)
16. Pandey S., Saha I., Prakash O., Mukherjee T., Iqbal J., Roy A.K., Wasilewski M., Brar L.S., CFD investigations of cyclone separators with different cone heights and shapes, Applied Sciences, 12(10) (2022): 1–20. (https://doi.org/10.3390/app12104904)
15. Shastri R., Brar L.S., Elsayed K., Multi-objective optimization of cyclone separators using mathematical modelling and large-eddy simulation for a fixed total height condition, Separation and Purification Technology, 291 (2022): 1–21. (https://doi.org/10.1016/j.seppur.2022.120968)
14. Shastri R., Wasilewski M., Brar L.S., Analysis of the novel hybrid cyclone separators using large-eddy simulation, Powder Technology, 394 (2021): 951–969. (https://doi.org/10.1016/j.powtec.2021.09.033)
13. Wasilewski M., Brar L.S., Ligus G., Effect of the central rod dimensions on the performance of cyclone separators – optimization study, Separation and Purification Technology, 274 (2021): 1–21. (https://doi.org/10.1016/j.seppur.2021.119020)
12. Shastri R., Sharma R.P., Brar L.S., Numerical investigations of cyclone separators with different cylinder-to-cone ratios, Particulate Science and Technology (2021) 40(3): 337–345. (https://doi.org/10.1080/02726351.2021.1905123)
11. Sarangi S.K., Mishra D.P., Ramachandran H., Anand N., Masih V., Brar L.S., Analysis and optimization of the curved trapezoidal winglet geometry in a high-efficiency compact heat exchanger, International Journal of Thermal Sciences, 164 (2021): 1–15. (https://doi.org/10.1016/j.ijthermalsci.2021.106872)
10. Sarangi S.K., Mishra D.P., Ramachandran H., Anand N., Masih V., Brar L.S., Analysis and optimization of the curved trapezoidal winglet geometry in a compact heat exchanger, Applied Thermal Engineering, 182 (2021): 1–14. (https://doi.org/10.1016/j.applthermaleng.2020.116088)
9. Shastri R., Brar L.S., Numerical investigations of the flow-field inside cyclone separators with different cylinder-to-cone ratios using large-eddy simulation, Separation and Purification Technology, 249 (2020): 1–17. (https://doi.org/10.1016/j.seppur.2020.117149)
8. Brar L.S., Derksen J.J., Revealing the details of vortex core precession in cyclones by means of large-eddy simulation, Chemical Engineering Research and Design, 159 (2020): 339–352. (https://doi.org/10.1016/j.cherd.2020.04.030) [Download]
7. Wasilewski M., Brar L.S., Ligus G., Experimental and numerical investigation on the performance of square cyclones with different vortex finder configurations, Separation and Purification Technology, 239 (2020): 1–20. (https://doi.org/10.1016/j.seppur.2020.116588)
6. Wasilewski M., Brar L.S., Effect of the inlet duct angle on the performance of cyclone separators, Separation and Purification Technology, 213 (2019): 19–33. (https://doi.org/10.1016/j.seppur.2018.12.023)
5. Brar L.S., Elsayed K., Analysis and optimization of cyclone separators with eccentric vortex finders using large eddy simulation and artificial neural network, Separation and Purification Technology, 207 (2018): 269–283. (https://doi.org/10.1016/j.seppur.2018.06.013)
4. Wasilewski M., Brar L.S., Optimization of the geometry of cyclone separators used in clinker burning process: A Case Study, Powder Technology, 313 (2017): 293–302. (https://doi.org/10.1016/j.powtec.2017.03.025)
3. Brar L.S., Elsayed K., Analysis and optimization of multi-inlet gas cyclones using large eddy simulation and artificial neural network, Powder Technology, 311 (2017): 465–483. (https://doi.org/10.1016/j.powtec.2017.02.004)
2. Brar L.S., Sharma R.P., Elsayed K., The effect of the cyclone length on the performance of Stairmand high-efficiency cyclone, Powder Technology, 286 (2015): 668–677. (https://doi.org/10.1016/j.powtec.2015.09.003)
1. Brar L.S., Sharma R.P., Dwivedi R., Effect of Vortex Finder Diameter on Flow Field and Collection Efficiency of Cyclone Separators, Particulate Science and Technology, 33 (2015): 34–40. (https://doi.org/10.1080/02726351.2014.933144)
International Conference Proceedings (Scopus / WOS)
7. Sarangi S.K., Anand N., Srivastava K., Chamoli P., Mishra D.P., Brar L.S., Heat Transfer and Pressure Drop Assessment of a Vortex Generator Supported Fin-And-Tube Heat Exchanger, Advances in Mechanical Processing and Design, Springer, Singapore (2021). (https://doi.org/10.1007/978-981-15-7779-6_13)
6. Pandey S. and Brar L.S., Large-Eddy Simulations of Cyclone Separator Based on the Lattice-Boltzmann Method, AIP Conference Proceedings 2341, 030020 (2021). (https://doi.org/10.1063/5.0050107)
5. Wasilewski M., Brar L.S., Investigations of the flow field inside a square cyclone separator using DPIV and CFD, E3S Web of Conferences, EKO-DOK (2019): 1-8. (https://doi.org/10.1051/e3sconf/201910000083) [Download]
4. Dayal A., Shrivastava M., Upadhyaya R., Brar L.S., Numerical study using detailed chemistry combustion comparing effects of wall heat transfer models for compression ignition diesel engine, SN Applied Sciences (2019). (https://doi.org/10.1007/s42452-019-1033-z) [download]
3. Brar L.S. Application of response surface methodology to optimize the performance of cyclone separator using mathematical models and CFD simulations, Materials Today 5(9)(3) (2018): 20426-20436. (https://doi.org/10.1016/j.matpr.2018.06.418)
2. Brar L.S., Sharma R.P., Effect of varying diameter on the performance of industrial-scale gas cyclone dust separators, Materials Today: Proceedings 2 (2015): 3230 – 3237. (https://doi.org/10.1016/j.matpr.2015.07.127)
1. Brar L.S., Kumar A., Analysis of gas cyclones with different cylinder diameters, 1st International Conference on Futuristic trend in Computational Analysis and Knowledge Management (ABLAZE-2015) (2015). (https://doi.org/10.1109/ABLAZE.2015.7154989)
Important Links : [Google Scholar] [Scopus ID] [Web of Science ID] [ResearchGate] [Vidwan ID] [Linkedin]