Birla Institute of Technology, Mesra
Lakshman Mahto
, CQEDS
PhD
Contact Address
Permanent Address 13B At-Paikatand, Post-Kulgo PS-Dumri, District-Giridih 825106, Jharkhand, India
Local Address R.N.: 241/09, Centre for Quantitative Economics and Data Science, Birla Institute of Technology Mesra, Ranchi Ranchi-835215, Jharkhand, India
Phone (Office) 6200824744
Phone Residence 6200824744
Email Id lakshman@bitmesra.ac.in
Joined Institute on : 13-Dec-2024

  Work Experience
 
Teaching : 8 Years

Research : 2 Years

Individual: 10 Years

  Professional Background

ACADEMIC POSITION:

December 2024 – Present: Assistant Professor, Centre for Quantitative Economics and Data Science, Birla Institute of Technology Mesra, Ranchi, India.

December 2021 – December 2024: Assistant Professor (Mathematics), Humanities & Science, Indian Institute of Information Technology Dharwad, India.

July 2019 – December 2021: Assistant Professor (Grade-II, Level-11) (Mathematics), Humanities & Science, Indian Institute of Information Technology Dharwad, India.

August 2017 – July 2019: Assistant Professor (Grade-II, Level-10) (Mathematics), Humanities & Science, Indian Institute of Information Technology Dharwad, India. 

August 2016 – August 2017:  Assistant Professor (Contractual) (Mathematics), Humanities & Science, Indian Institute of Information Technology Dharwad, India.  

February 2015 – August 2016:  Postdoctoral Fellow (Mathematics), The Institute of Mathematical Sciences Chennai, India. Adviser: Dr. S. Kesavan.

September 2014–January 2015: Project Assistant (A DST sponsored project on differential equations), School of Basic Science, Indian Institute of Technology Mandi India.  Adviser: Dr. Syed Abbas. 

February 2010– September 2010: Senior Research Fellow (A DST project on statistical techniques), Applied Mathematics, Birla Institute of Technology Mesra, India. Adviser: Dr. Manish Trivedi.

  Research Areas
 

Dynamical systems & control: Modelling forced or unforced evolution in a state space & establishing its stability and control. Theoretical & data driven system dynamics in statistical learning framework, computing system dynamics, stability & control to estimate perception, prediction & planning in an autonomous control system.
Statistical learning: Designing a predictive function in statistical learning framework with discriminative modelling (e.g. regression) or generative modelling (e.g. multi-modality with CVAE) by minimizing a suitable loss function. Transforming a learning problem as an optimization problem.
Optimization: first order & second order adaptive descent algorithms, interior point method for convex problems. Convexification or relaxation or breaking symmetry or introducing uncertainty in non-convex problems & transforming geometrical or physical intuition of the problem into a scalable optimization algorithm.

  Award and Honours
 
  1. CSIR-NET
  2. GATE
  3. IMSc Institute Postdoctoral Fellowship.

 

  Publications
 

A. Conference proceedings:
1. L. Mahto, Learning algorithms for non-linear dynamical systems, control and autonomy, Conference on Applied AI and Scientific Machine Learning (CASML 2024), Indian Institute of Science, Bangalore, India, 2024.
2. Mahto, L., Computational and statistical complexities of learning algorithm for nonlinear dynamical systems, Indo-German conference on computational mathematics (IGCM-2023) held at Indian Institute of Science, Bangalore, India, 2023.
3. Chauhan, A., Jagadish, D.N. and Mahto, L., Multimodality Data Fusion for COVID-19 Diagnosis. In 2021 IEEE International Conference on Big Data (Big Data) (pp. 4659-4666),15 Dec, 2021, doi:10.1109/BigData52589.2021.9671302, ISBN: 978-1-6654-3902-2.
4. Jagadish D.N., Chauhan A., Mahto L, Autonomous Vehicle Path Prediction Using Conditional Variational Autoencoder Networks. In: Karlapalem K. et al. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2021. Lecture Notes in Computer Science, vol 12712, 129–139. Springer, Cham. https://doi.org/10.1007/978-3-030-75762-5_11 ,ISSN: 978-3-030-75762-5. (H-index: 182).
5. A. Chauhan, S. Kumar, L. Mahto and J. D. N, "Detection of Reckless Driving using Deep Learning," 2020 19th IEEE International Conference on Machine Learning and Applications (ICMLA), Miami, FL, USA, 2020, pp. 853-858, doi: 10.1109/ICMLA51294.2020.00139, ISSN: 978-1-7281-8470-8. (H-index: 18).
6. J. D. N, L. Mahto and A. Chauhan, "Density Based Clustering Methods for Road Traffic Estimation," 2020 IEEE REGION 10 CONFERENCE (TENCON), Osaka, Japan, 2020, pp. 885-890, doi: 10.1109/TENCON50793.2020.9293790, ISSN: 978-1-7281-8455-5. (H-index: 38).
7. Jagadish, D. N., Mahto, L., Chauhan A. (2021) Deep Learning and Density Based Clustering Methods for Road Traffic Prediction. In: Singh S.K., Roy P., Raman B., Nagabhushan P. (eds) Computer Vision and Image Processing. CVIP 2020. Communications in Computer and Information Science, vol 1378, 332–343, Springer, Singapore. https://doi.org/10.1007/978-981-16-1103-2_29, ISSN: 978-981-16-1103-2. 
8. Mahto, L., Abbas, S., Existence, and uniqueness of a solution of Caputo fractional differential equations, AIP Conf. Proc. 1479, 896-899 (2012). https://doi.org/10.1063/1.4756286 , ISSN: 78-0-7354-1091-6. (H-index: 75)
9. Abbas, S., Mahto, L., Existence of almost periodic solution of a model of phytoplankton allelopathy with delay, AIP Conf. Proc. 1479, 900-905 (2012). https://doi.org/10.1063/1.4756287, ISSN: 78-0-7354-1091-6. (H-index: 75)

B. Workshop proceedings:
1. Mahto, L., Chauhan, A., An approximate gradient-based hyper-parameter optimization in a neural network architecture, NeurIPS 12th workshop on Optimization in Machine Learning (OPT2020), 2020. https://opt-ml.org/papers/2020/paper_62.pdf 
2. D N., Jagadish, Chauhan, A., Mahto, L., Deep Learning Techniques for Autonomous Vehicle Path Prediction, AAAI workshop on the AI for Urban Mobility Workshop (AI4UM 2021). https://aaai.org/Conferences/AAAI-21/ws21workshops/

C. Journal:
1. Jagadish, D.N., Chauhan, A. & Mahto, L. Conditional Variational Autoencoder Networks for Autonomous Vehicle Path Prediction. Neural Process Lett 54, 3965–3978 (2022). https://doi.org/10.1007/s11063-022-10802-z ISSN: 370-4621.
2. Mahto, L.; Abbas, S., Hafayed, M., Srivastava, H.M., Approximate Controllability of Sub Diffusion Equation with Impulsive Condition. Mathematics, MDPI 2019, 7, 190. https://doi.org/10.3390/math7020190, ISSN: 2227-7390. (SCI indexed, IF=2.7, Q2).
3. Abbas, S., Mahto, L., Favini, A., Hafayed, M., Dynamical analysis of a fractional model of phytoplankton allelopathy, Differential Equations and Dynamical Systems, Springer, 24 (3), pp 267–280, July 2016. http://link.springer.com/article/10.1007/s12591014-0219-5, ISSN: 971-3514.  (Scopus indexed, Q3).
4. Mahto, L., Abbas, S., PC-almost automorphic solution of impulsive fractional functional differential equations, Mediterranean Journal of Mathematics, Springer, 12 (3), pp 771–790, July 2015.  http://link.springer.com/article/10.1007/s00009-014-0449-3, ISSN: 1660-5446. (SCI indexed, IF=1.4, Q2).
5. Abbas, S., Mahto, L., Hafayed, M., Alemi, F.M., Asymptotic almost automorphic solution of impulsive neural network with almost automorphic coefficients, Neurocomputing, Elsevier, 142 (22), October, 326-334, 2014). https://doi.org/10.1016/j.neucom.2014.04.028, ISSN: 0925-2312. (SCI indexed, IF=5.5, Q1)
6. Mahto, L., Abbas, S., Approximate controllability and optimal control of impulsive fractional functional differential equations, J. Abstr. Differ. Equ. Appl., 4 (2), 44–59, 2013.  Doi: http://mathres-pub.org/jadea/4/2/approximate-controllability-and-optimalcontrol-impulsive-fractionalfunctional, ISSN: 2158-611X. (Mathscinet indexed, MCQ=0.3).
7. Mahto, L., Abbas, S., Favini, A., Analysis of Caputo impulsive fractional-order differential equations with applications, Int. J. Differ. Equ., 2013, Art. ID 704547, 11 pp, 2012. http://dx.doi.org/10.1155/2013/704547  , ISSN: 1687-9643 (Scopus indexed, Q3)

D. Book chapters:
1. Abbas S., Mahto L. (2019) Piecewise Continuous Stepanov-Like Almost Automorphic Functions with Applications to Impulsive Systems. In: Dutta H., Ko?inac L., Srivastava H. (eds) Current Trends in Mathematical Analysis and Its Interdisciplinary Applications. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-15242-0_4. ISBN: 978-3-030-15241-3  

E. Books:
1. Mahto, Lakshman. "Introduction to probability and statistics: a computational framework of randomness." arXiv preprint arXiv:2401.08622 (2023).

  Current Sponsored Projects
 

Deep Learning Model for Autonomous Navigation on Indian Roads funded by SERB-DST under core research grants as a Co-PI, Status-Ongoing at IIIT Dharwad 2023-2026, Amount: 1761905.
 

  Text and Reference Books
 

Mahto, Lakshman. "Introduction to probability and statistics: a computational framework of randomness." arXiv preprint arXiv:2401.08622 (2023).