Publications (Journal)
[1] Iqbal, N., & Kumar, P. (2023). Recent developments in soft computing based feature selection and disease classification. Suranaree Journal of Science and Technology, 30(2). (e-ISSN: 0858-849X) (Web of Science- ESCI, Scopus, UGC-CARE) [Source][PDF]
[2] Iqbal, N., & Kumar, P. (2022). Integrated COVID-19 predictor: Differential expression analysis to reveal potential biomarkers and prediction of coronavirus using RNA-Seq profile data. Computers in Biology and Medicine, 147, 105684. https://doi.org/10.1016/j.compbiomed.2022.105684 PMid:35687925 PMCid:PMC9162937 (e-ISSN: 0010-4825) (Web of Science- SCIE, Scopus, PubMed, UGC-CARE) [Elsevier] IF: 6.698, Q1 (2022)
[3] Yang, X., Alam, A., Iqbal, N., & Raza, K. (2021). Repurposing of FDA-Approved Drugs to Predict New Inhibitor Against Key Regulatory Genes in Mycobacterium Tuberculosis. Biocell, 45(6): 1569-1583. https://doi.org/10.32604/biocell.2021.017019 (e-ISSN: 1667-5746) (Web of Science- SCIE, Scopus, UGC-CARE) [Source][PDF] IF: 1.254, Q4 (2021)
[4] Iqbal, N., & Islam, M. (2019). Machine learning for dengue outbreak prediction: A performance evaluation of different prominent classifiers. Informatica, 43(3):363-371. https://doi.org/10.31449/inf.v43i3.1548 (e-ISSN: 0350-5596) (Web of Science- ESCI, Scopus, ACM-Digital Library, UGC-CARE) [Source][PDF]
[5] Iqbal, N., & Kumar, P. (2019). I-NFG: An integrated neuro-fuzzy-genetic based soft computing techniques for feature selection and disease prediction using gene expression. Journal of Applied Computing, 4(1):1-8. (e-ISSN: 2456-5059) [Source][PDF]
[6] Farooqi, M. R., & Iqbal, N. (2019). Performance evaluation for competency of bank telemarketing prediction using data mining techniques. International Journal of Recent Technology and Engineering, 8(2): 5666-5674. https://doi.org/10.35940/ijrte.A1269.078219 (e-ISSN: 2277-3878) (Scopus, UGC-CARE) [Source][PDF]
[7] Farooqi, M. R., & Iqbal, N. (2017). Effectiveness of data mining in banking industry: An empirical study. International Journal of Advanced Research in Computer Science, 8(5):827-830. (e-ISSN: 0976-5697) (ICI 2016-UGC) [Source][PDF]
[8] Iqbal, N., & Islam, M. (2017). Machine learning for dengue outbreak prediction: An outlook. International Journal of Advanced Research in Computer Science, 8(1):93-102. (e-ISSN: 0976-5697) (ICI 2016-UGC) [Source][PDF]
[9] Iqbal, N., & Islam, M. (2016). From Big Data to Big Hope: An outlook on recent trends and challenges. Journal of Applied Computing, 1(1):14-24. (e-ISSN: 2456-5059) [Source][PDF]WoS - ESCI, Scopus
Publications (Conference Proceeding)
[1] N. Iqbal & A. Bhardwaj, "Decoding SARS-CoV-2 Variants: An in-silico approach to RNA-Seq feature extraction using K-mers and N-grams," 2024 IEEE International Students' Conference on Electrical, Electronics and Computer Science (SCEECS), Bhopal, India, 2024, pp. 1-10, https://doi.org/10.1109/SCEECS61402.2024.10481950. (IEEE Xplore, Web of Science- CPCI, Scopus)
[2] Iqbal, N., & Kumar, P. (2023). From Data Science to Bioscience: Emerging era of bioinformatics applications, tools and challenges. Procedia Computer Science, 218, 1516-1528. https://doi.org/10.1016/j.procs.2023.01.130. Elsevier. (ISSN: 1877-0509) (Web of Science- CPCI, Scopus)
[3] Iqbal, N., & Kumar, P. (2021). Coronavirus Disease Predictor: An RNA-Seq based pipeline for dimension reduction and prediction of COVID-19. In Journal of Physics: Conference Series, (Vol. 2089, p. 12025). IOP Publishing. https://doi:10.1088/1742-6596/2089/1/012025 (ISSN: 1742-6588) (Scopus) [Source]
[4] Iqbal, N., & Kumar, P. (2020). A Framework for the RNA-Seq Based Classification and Prediction of Disease. In: Kumar A., Paprzycki M., Gunjan V. (eds) ICDSMLA 2019. Lecture Notes in Electrical Engineering, Vol. 601, p. 74-81. Springer, Singapore. https://doi.org/10.1007/978-981-15-1420-3_8 (ISBN: 978-981-15-1419-7) (Scopus) [Source] ICDSMLA 2019 Springer
Publications (Book Chapter)
[1] Qazi, W., Qazi, S., Iqbal, N., & Raza, K. (2023). The Scope and Applications of Nature-Inspired Computing in Bioinformatics. In Nature-Inspired Intelligent Computing Techniques in Bioinformatics (pp. 3-18). Springer, Singapore. https://doi.org/10.1007/978-981-19-6379-7_1 (e-ISBN: 978-981-19-6379-7 ) (Scopus)
[2] Qazi, S., Iqbal, N., Raza K. (2022). Fuzzy Logic-Based Hybrid Models for Clinical Decision Support Systems in Cancer. In: Raza K. (eds) Computational Intelligence in Oncology. Studies in Computational Intelligence, vol 1016. Springer, Singapore. https://doi.org/10.1007/978-981-16-9221-5_12 (e-ISBN: 978-981-16-9221-5) (Scopus)
[3] Farooqi, M.R., Tiwari, A., Siddiqui, S., Kumar, N. & Iqbal, N. (2021). Big Data Analytics for Market Intelligence. Big Data Analytics, Taylor & Francis Group, 5: 18. https://doi.org/10.1201/9781003175711-5 (e-ISBN: 9781003175711)
[4] Qazi, S., Iqbal, N. & Raza, K. (2021). Artificial intelligence in medicine (AIM): machine learning in cancer diagnosis, prognosis and therapy. In D. Gupta, U. Kose, B. Le Nguyen, S. Bhattacharyya & B. Nguyen (Ed.), Artificial Intelligence for Data-Driven Medical Diagnosis (pp. 103-126). Berlin, Boston: De Gruyter. https://doi.org/10.1515/9783110668322-005 (e-ISBN: 9783110668322 )
[5] Alam, A., Qazi, S., Iqbal, N., & Raza, K. (2020). Fog, Edge and Pervasive Computing in Intelligent Internet of Things Driven Applications in Healthcare: Challenges, Limitations and Future Use. Fog, Edge, and Pervasive Computing in Intelligent IoT Driven Applications, John Wiley & Sons, 1: 1-26. https://doi.org/10.1002/9781119670087.ch1 (e-ISBN: 9781119670087) (Scopus)
[6] Farooqi, M.R., Iqbal, N., Singh, N.K., Affan, M. & Raza, K. (2019). Wireless Sensor Networks towards convenient infrastructure in Health care industry: A systematic study. Sensors for Health Monitoring, Elsevier, 5: 31-46. https://doi.org/10.1016/B978-0-12-819361-7.00002-6 (e-ISBN: 978-0-12-819361-7) (Scopus)